Theorem (Cook-Levin): 3SAT is NP-complete

Corollary: 3SAT € P if and only if P = NP
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The reduction f turns a string w into a 3-cnf formula ¢

such that: we A < ¢ € 3SAT.
¢ will simulate the NP machine N for A on w.



Suppose A & NTIME(nk) and let N be an NP machine for A.

A tableau for N on w is an nk x nk table whose rows are the
configurations of some possible computation of N on input w.




(I) = (l)cell A (I)start A q)accept A q)move



(I) = (l)cell A (I)start A q)accept A q)move

(I)cell = /\ ( \/xi,j,s)/\ ( /\(_'xi,j,s v _'xi,j,t) )

1<i,j<nk \s€C steC
s#t

O(n?k) clauses

Length(¢,,, ) = O(n2) O(log n¥) = O(n2 log n)
|

length(indices)




(I) = (l)cell A (I)start A (I)accept A (I)move

Ostart = X918 N Xq2q9 A
)

X13w, N X1aw, A wor A Xqpaaw A

X1,n+3,|:| AN wan A X1,nk_1,|:| AN X1,nk,#

O(nk)



(I) = (l)cell A (I)start A (I)accept A q)move

(I)accept \/ x 1), 'Yaccept

1<i,j=nk

O(n2k)



dmove = /\ (the (i, j) window is legal

1<1i,j=nk

the (i, j) window is legal =

/\ ( xlj 1 a1 j+1,% v xl+1j -1.2 v x|+1 j§ |+1,j+1,a )

a,, ..
ISN’T a Iegal wmdow

This is a conjunct over all (< |C|°) illegal sequences (a,, ..., ag).

O(n2k)



3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3 literals

If a clause has less than three variables:
as(avava), (avb)=(avbvhb)

If a clause has more than three variables:
(@vbvecvd)Eavbvz)a(-zvecvd)

(a;va,v...va)=

(@, va,vz)a(-zy,vasvz)A...(-z5Vva.,Vz)
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Given A in NP. The reduction f turned a string w into a
3-cnf formula ¢ such that: w € A < ¢ € 3SAT.
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There are googols of
NP-complete languages



K-CLIQUE

-clique = complete subgraph of k nodes



Assume a reasonable encoding of graphs
(example: the adjacency matrix is reasonable)

CLIQUE = { (G,k) | G is an undirected graph
with a k-clique }

Theorem: CLIQUE is NP-Complete
(1) CLIQUE € NP

(2) 3SAT <, CLIQUE



CLIQUE is NP-Complete




3SAT <, CLIQUE

We transform a 3-cnf formula ¢ into (G,k) such that
¢ € 3SAT < (G,k) € CLIQUE

The transformation can be done in time
that is polynomial in the length of ¢
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The reduction f will turn a 3-cnf formula ¢ into a graph (G,k)
such that ¢ € 3SAT <« (G,k) € CLIQUE



#inodes = 3(# clauses) k = #clauses



3SAT <, CLIQUE

We transform a 3-cnf formula ¢ into (G,k) such that

» € 3SAT < (G,k) € CLIQUE

If $ has k clauses, we create a graph with k
clusters of 3 nodes each.

Each cluster corresponds to a clause.

Each node in a cluster is labeled with a literal
from the clause.

We do not connect any nodes in the same cluster
We connect nodes in different clusters whenever
they are not contradictory

The transformation can be done in time
that is polynomial in the length of ¢
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VERTEX-COVER

O—O©

3, 9, \ /
R

vertex cover = set of nodes that cover all edges




VERTEX-COVER = { (G,k) | G is an undirected
graph with a k-node vertex cover }

Theorem: VERTEX-COVER is NP-Complete
(1) VERTEX-COVER € NP

(2) 3SAT <, VERTEX-COVER



3SAT <, VERTEX-COVER

We transform a 3-cnf formula ¢ into (G,k) such that
¢ € 3SAT < (G,k) € VERTEX-COVER

The transformation can be done in time
polynomial in the length of ¢



polytime

The reduction f will turn a 3-cnf formula ¢ into a graph (G,k)
such that ¢ € 3SAT < (G,k) € VERTEX-COVER



X, VXg VX)) A(7Xy VX,V aAX)A (X, VX, VX
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Variables and negations of variables

: "%

@.@ @ /

#nodes = 2(#variables) + 3(#clauses)




X, VXg VX)) A(7Xy VX,V aAX)A (X, VX, VX
1 1 2 1 2 2 1 2 2

Variables and negations of variables

: "%

@.@ @ /

#nodes = 2(#variables) + 3(#clauses)




Variables and negations of variables

¢ satisfiable then put “true” literals on top IImvertex cover
For each clause, pick a true literal and put other 2 in vertex cover




X, VXg VX)) A(7Xy VX,V aAX)A (X, VX, VX
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Variables and negations of variables










HAMPATH = { (G,s,t) | G is an directed graph
with a Hamilton path from s to t}

Theorem: HAMPATH is NP-Complete
(1) HAMPATH € NP

(2) 3SAT <, HAMPATH

Proof is in Sipser, Chapter 7.5
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If hamiltonian path were not normal:

Case: a, separator node
Only edges entering a, would be a, and a,

Case: a, separator node. Then a,, a, in same clause pair
Only edges entering a, would be a,, a;, c



UHAMPATH = { (G,s,t) | G is an undirected graph
with a Hamilton path from s to t}

Theorem: UHAMPATH is NP-Complete
(1) UHAMPATH € NP

(2) HAMPATH <, UHAMPATH
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SUBSETSUM = { (S, t) | S is multiset of integers and for
someYCS, we have ), ., y=t}

Theorem: SUBSETSUM is NP-Complete
(1) SUBSETSUM € NP

(2) 3SAT <, SUBSETSUM
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Let G denote a graph, and s and t denote nodes.

SHORTEST PATH
={(G, s, t, k) |
G has a simple path of length <k froms to t}

LONGEST PATH
={(G,s, t, k) |
G has a simple path of length > k from s to t }

WHICH IS EASY? WHICH IS HARD? Justify
(see Sipser 7.21)






