
Theorem (Cook-Levin): 3SAT is NP-complete

Corollary: 3SAT ∈ P if and only if P = NP



A 3SAT
f

f

The reduction f turns a string w into a 3-cnf formula φ 
such that:  w ∈ A ⇔ φ ∈ 3SAT.  

φ will simulate the NP machine N for A on w.

w φ

polytime



Suppose  A ∈ NTIME(nk ) and let  N be an NP machine for A.  
A tableau for N on w is an nk × nk table whose rows are the 
configurations of some possible computation of N on input w.

q0 w1 wnw2# #… …

# #

# #

nk

nk



φ = φcell ∧ φstart ∧ φaccept ∧ φmove



∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t )φcell  =

s,t ∈ C 
s ≠ t

O(n2k) clauses
Length(φcell ) = O(n2k) O(log nk) = O(n2k log n)

length(indices)

φ = φcell ∧ φstart ∧ φaccept ∧ φmove



O(nk)

k

φstart  =  x1,1,# ∧ x1,2,q   ∧  

  x1,3,w   ∧ x1,4,w   ∧ … ∧ x1,n+2,w   ∧  

    x1,n+3,  ∧ … ∧ x1,n  -1,  ∧ x1,n   ,#

0

1 2 n

k k

φ = φcell ∧ φstart ∧ φaccept ∧ φmove



φaccept  =
1 ≤ i, j ≤ nk

xi,j,qaccept

O(n2k)

φ = φcell ∧ φstart ∧ φaccept ∧ φmove



φmove  =
1 ≤ i, j ≤ nk

( the (i, j) window is legal )

O(n2k)

a1, …, a6 
ISN’T a legal window

              ( xi,j-1,a  ∨ xi,j,a  ∨ xi,j,+1,a  ∨ xi+1,j-1,a  ∨ xi+1,j,a  ∨ xi+1,j+1,a ) 1 2 3 4 5 6
- - - - - -

the (i, j) window is legal = 

This is a conjunct over all (≤ |C|6 ) illegal sequences (a1, …, a6).



3-SAT?
How do we convert the whole thing into 
a 3-cnf formula? 

Everything was an AND of ORs 
We just need to make those ORs with 3 literals

 a ≡ (a ∨ a ∨ a),  (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

(a ∨ b ∨ c ∨ d) ≡(a ∨ b ∨ z) ∧ (¬z ∨ c ∨ d) 
If a clause has more than three variables:

(a1 ∨ a2 ∨ … ∨ at )  ≡
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧… (¬zt-3 ∨ at-1 ∨ zt)



A 3SAT
f

f

Given A in NP. The reduction f turned a string w into a 
3-cnf formula φ such that:  w ∈ A ⇔ φ ∈ 3SAT. 

w φ

polytime



NP-COMPLETENESS II
Tuesday  April 1



There are googols of  
NP-complete languages 



K-CLIQUE

b

a

e

c

d f

g

k-clique = complete subgraph of k nodes



CLIQUE = { (G,k) | G is an undirected graph 
     with a k-clique }

Theorem: CLIQUE is NP-Complete

(1) CLIQUE ∈ NP

(2) 3SAT ≤P CLIQUE

Assume a reasonable encoding of graphs  
(example: the adjacency matrix is reasonable)



P
NP

CLIQUE

3SAT

CLIQUE is NP-Complete



3SAT ≤P CLIQUE
We transform a 3-cnf formula φ into (G,k) such that

φ ∈ 3SAT ⇔ (G,k) ∈ CLIQUE

The transformation can be done in time 
that is polynomial in the length of φ



3SAT CLIQUEf

f

The reduction f will turn a 3-cnf formula φ into a graph (G,k)  
such that  φ ∈ 3SAT ⇔ (G,k) ∈ CLIQUE

φ (G,k) 

polytime



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2) 

x1 ¬x1

x1 x2

¬x2 ¬x2

x2 x2

¬x1

k = #clauses

cl
a
u
s
e

#nodes = 3(# clauses)



3SAT ≤P CLIQUE
We transform a 3-cnf formula φ into (G,k) such that

φ ∈ 3SAT ⇔ (G,k) ∈ CLIQUE
If φ has k clauses, we create a graph with k 
clusters of 3 nodes each. 
Each cluster corresponds to a clause.  
Each node in a cluster is labeled with a literal 
from the clause.

We do not connect any nodes in the same cluster
We connect nodes in different clusters whenever 
they are not contradictory

The transformation can be done in time 
that is polynomial in the length of φ



(x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ x2) ∧  
(x2 ∨ x2 ∨ x2) ∧ (¬x2 ∨ ¬x2 ∨ x1) 

x1

x1

x2

x2

¬x1 ¬x1

¬x2 ¬x2

x1 x2

x2

x1



VERTEX-COVER

b

a

e

c

d

b

a

e

c

d

vertex cover = set of nodes that cover all edges



VERTEX-COVER = { (G,k) | G is an undirected 
graph with a k-node vertex cover }

Theorem: VERTEX-COVER is NP-Complete
(1) VERTEX-COVER ∈ NP

(2) 3SAT ≤P VERTEX-COVER



3SAT ≤P VERTEX-COVER
We transform a 3-cnf formula φ into (G,k) such that

φ ∈ 3SAT ⇔ (G,k) ∈ VERTEX-COVER

The transformation can be done in time 
polynomial in the length of φ



3SAT VERTEX 
COVER

f

f

The reduction f will turn a 3-cnf formula φ into a graph (G,k)  
such that  φ ∈ 3SAT ⇔ (G,k) ∈ VERTEX-COVER

φ (G,k) 

polytime



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2) 

x1

x1 x2

¬x1

x2 x2
¬ ¬x2

¬x1

x1 ¬x1 x2 ¬x2

Variables and negations of variables

clauses

#nodes = 2(#variables) + 3(#clauses)

x2



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2) 

x1

x1 x2

¬x1

x2 x2
¬ ¬x2

¬x1

x1 ¬x1 x2 ¬x2

Variables and negations of variables

clauses

#nodes = 2(#variables) + 3(#clauses)

x2



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2) 

x1

x1 x2

¬x1

x2 x2¬x2 ¬x2

¬x1

x1 ¬x1 x2 ¬x2

Variables and negations of variables

clauses

φ satisfiable then put “true” literals on top in vertex cover 
For each clause, pick a true literal and put other 2 in vertex cover



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x2) 

x1

x1 x2

¬x1

x2 x2¬x2 ¬x2

¬x1

x1 ¬x1 x2 ¬x2

k = 2(#clauses) + (#variables)

Variables and negations of variables

clauses



(x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ x2) ∧  
(x2 ∨ x2 ∨ x2) ∧ (¬x2 ∨ ¬x2 ∨ x1) 



HAMILTON PATH

s t



HAMPATH = { (G,s,t) | G is an directed graph  
   with a Hamilton path from s to t}

Theorem: HAMPATH is NP-Complete
(1) HAMPATH ∈ NP

(2) 3SAT ≤P HAMPATH 

Proof is in Sipser, Chapter 7.5







Case: a2 separator node 
Only edges entering a2 would be a1 and a3

Case: a3 separator node. Then a1, a2 in same clause pair 
Only edges entering a2 would be a1, a3, c

If hamiltonian path were not normal:



UHAMPATH = { (G,s,t) | G is an undirected graph  
   with a Hamilton path from s to t}

Theorem: UHAMPATH is NP-Complete
(1) UHAMPATH ∈ NP

(2) HAMPATH ≤P UHAMPATH 





SUBSETSUM = { (S, t) | S is  multiset of integers and for 
some Y ⊆ S,  we have ∑y∈ Y  y = t } 

Theorem: SUBSETSUM is NP-Complete
(1) SUBSETSUM ∈ NP

(2) 3SAT ≤P SUBSETSUM





HW

Let G denote a graph, and s and t denote nodes. 

SHORTEST PATH  
= {(G, s, t, k) | 
             G has a simple path of length < k from s to t } 

LONGEST PATH 
= {(G, s, t, k) |  
             G has a simple path of length > k from s to t } 

   WHICH IS EASY?   WHICH IS HARD? Justify 
                          (see Sipser 7.21)



(x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x2) 


