15 - 453FORMAL LANGUAGES, **AUTOMATA AND** COMPUTABILITY

NP-COMPLETENESS: THE COOK-LEVIN THEOREM

TUESDAY March 25

Theorem (Cook-Levin): SAT is NP-complete

Corollary: SAT \in P if and only if P = NP

Theorem (Cook/Levin'71) $P = NP \Leftrightarrow SAT \in P$

Leonid Levin

Steve Cook

SAT = { $\phi \mid \phi$ is a satisfiable boolean formula }

$3-SAT = \{ \phi | \phi \text{ is a satisfiable 3cnf-formula } \}$

A 3cnf-formula is of the form: $(x_1 \lor \neg x_2 \lor x_3) \land (x_4 \lor x_2 \lor x_5) \land (x_3 \lor \neg x_2 \lor \neg x_1)$ clauses

SAT = { $\phi \mid \phi$ is a satisfiable boolean-formula }

$3-SAT = \{ \phi | \phi \text{ is a satisfiable 3cnf-formula } \}$

SAT, 3-SAT ∈ NP (why?)

Theorem (Cook-Levin): SAT is NP-complete Proof:

(1) SAT \in NP (3SAT \in NP)

(2) Every language A in NP is polynomial time reducible to SAT

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT \in NP (3SAT \in NP)

(2) Every language A in NP is polynomial time reducible to SAT

We build a poly-time reduction from A to SAT

The reduction turns a string w into a 3-cnf formula ϕ such that w \in A iff $\phi \in$ 3-SAT.

• will *simulate* the NP machine N for A on w.

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT \in NP (3SAT \in NP)

(2) Every language A in NP is polynomial time reducible to SAT

We build a poly-time reduction from A to SAT

The reduction turns a string w into a 3-cnf formula ϕ such that w \in A iff $\phi \in$ 3-SAT.

• will *simulate* the NP machine N for A on w.

Let N be a non-deterministic TM that decides A in time n^k

The reduction f turns a string w into a 3-cnf formula ϕ such that: $w \in A \Leftrightarrow \phi \in 3SAT$. ϕ will simulate the NP machine N for A on w.

So proof will also show: 3-SAT is NP-Complete

Suppose $A \in NTIME(n^k)$ and let N be an NP machine for A.

A tableau for N on w is an $n^k \times n^k$ table whose rows are the configurations of *some* possible computation of N on input w.

A tableau is accepting if any row of the tableau is an accepting configuration

Determining whether N accepts w is equivalent to determining whether there is an accepting tableau for N on w A tableau is accepting if any row of the tableau is an accepting configuration

Determining whether N accepts w is equivalent to determining whether there is an accepting tableau for N on w

Given w, our 3cnf-formula o will describe a generic tableau for N on w (in fact, essentially generic for N on any string w of length n).

The 3cnf formula ϕ will be satisfiable *if and only if* there is an accepting tableau for N on w.

VARIABLES of ϕ Let $C = \overline{Q \cup \Gamma \cup \{\#\}}$ Each of the (n^k)² entries of a tableau is a cell cell[i,j] = the cell at row i and column j For each i and j ($1 \le i, j \le n^k$) and for each $s \in C$ we have a variable x_{i.i.s} # variables = $|C|n^{2k}$, ie O(n^{2k}), since |C| only depends on N

VARIABLES of ϕ

Let $C = Q \cup \Gamma \cup \{ \# \}$

Each of the (n^k)² entries of a tableau is a cell

cell[i,j] = the cell at row i and column j

- For each i and j ($1 \le i, j \le n^k$) and for each $s \in C$ we have a variable $x_{i,j,s}$
- # variables = $|C|n^{2k}$, ie O(n^{2k}), since |C| only depends on N

These are the variables of ϕ and represent the contents of the cells

We will have: $x_{i,j,s} = 1 \Leftrightarrow cell[i,j] = s$

means

cell[i, j] = s

We now design ϕ so that a satisfying assignment to the variables $x_{i,j,s}$ corresponds to an accepting tableau for N on w

The formula ϕ will be the AND of four parts: $\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{accept} \wedge \phi_{move}$ We now design ϕ so that a satisfying assignment to the variables $x_{i,j,s}$ corresponds to an accepting tableau for N on w

The formula ϕ will be the AND of four parts: $\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{accept} \wedge \phi_{move}$

 ϕ_{cell} ensures that for each i,j, exactly one $x_{i,j,s} = 1$

 ϕ_{start} ensures that the first row of the table is the starting (initial) configuration of N on w

 ϕ_{move} ensures* that every row is a configuration that legally follows from the previous config

*if the other components of ϕ hold

 ϕ_{cell} ensures that for each i,j, exactly one $x_{i,j,s} = 1$

$$\begin{split} \phi_{\text{cell}} &= \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right] \\ & s \notin t \end{split}$$

at least one variable is turned on at most one variable is turned on

 ϕ_{cell} ensures that for each i,j, exactly one $x_{i,i,s} = 1$ $\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^{k}} \left(\bigvee_{s \in C} X_{i,j,s} \right) \wedge \left(\bigwedge_{s,t \in C} (\neg X_{i,j,s} \lor \neg X_{i,j,t}) \right)$ at least one at most one variable is variable is turned on turned on

Thus, ϕ_{cell} is satisfiable

(ie, there exist assignment to the variables s.t. ϕ_{cell} evaluates to 1)

each cell in the tableau has exactly one symbol (from C.)

$$\begin{aligned} \phi_{\text{start}} &= \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q_0} \wedge \\ & \mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \dots \wedge \mathbf{X}_{1,n+2,w_n} \wedge \\ & \mathbf{X}_{1,n+3,\Box} \wedge \dots \wedge \mathbf{X}_{1,n^{k-1},\Box} \wedge \mathbf{X}_{1,n^{k},\#} \end{aligned}$$

#	q ₀	W ₁	W ₂	 w _n		#
#						#

$$\begin{aligned} \phi_{\text{start}} &= \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q_0} \wedge \\ & \mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \dots \wedge \mathbf{X}_{1,n+2,w_n} \wedge \\ & \mathbf{X}_{1,n+3,\Box} \wedge \dots \wedge \mathbf{X}_{1,n^{k-1},\Box} \wedge \mathbf{X}_{1,n^{k},\#} \end{aligned}$$

Thus, ϕ_{start} is satisfiable⇔ the first row of the tableau represents the start configuration for N on input w

$\phi_{accept} = \bigvee X_{i,j,q_{accept}}$ $1 \le i, j \le n^{k}$

Thus, ϕ_{accept} is satisfiable \Leftrightarrow at least one cell in the tableau has the symbol q_{accept} .

• ensures that every row is a configuration that legally follows from the previous

It works by ensuring that each 2 × 3 "window" of cells is legal (Does not violate N's rules)

 ϕ_{move} ensures that every row is a configuration that legally follows from the previous

It works by ensuring that each 2 × 3 "window" of cells is legal (Does not violate N's rules)

If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$ which of the following windows are legal:

а	b	a
а	а	а

a	q ₁	b
a	а	q ₂

b	b	b
С	b	b

If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$ which of the following windows are legal:

b	b	b
С	b	b

b

a	q ₁	b
a	a	q ₂

CLAIM: If

the top row of the table is the start configuration, and

and every window is legal,

Then

each row of the table is a configuration that legally follows the preceding one.

CLAIM: If

the top row of the table is the start configuration, and

and every window is legal,

Then

each row of the table is a configuration that legally follows the preceding one.

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

CLAIM:

the top row of the table is the start configuration, and

and every window is legal,

Then

each row of the table is a configuration that legally follows the preceding one.

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not adjacent to a state symbol

CLAIM:

the top row of the table is the start configuration, and

and every window is legal,

Then

each row of the table is a configuration that legally follows the preceding one.

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

#	\mathbf{q}_{0}	w ₁	w ₂	W ₃	w ₄	 w _n		#
#	ok	ok	W ₂	W ₃	W ₄			#

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

So the lower configuration follows from the upper!!!

The (i,j) Window

the (i, j) window is legal =

 $\sqrt{ (x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j,+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j,a_4} \land x_{i+1,j+1,a_6}) }_{a_1, \dots, a_6}$ is a legal window

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ..., a_6$).

the (i, j) window is legal =

 $\bigvee_{\substack{a_1, \dots, a_6}} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j,+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6})$ is a legal window

This is a disjunct over all (≤ |C|⁶) legal sequences (a₁, …, a₆).

This disjunct is satisfiable

 \Rightarrow

There is **some** assignment to the cells (ie variables) in the window (i,j) that makes the window legal

$\oint_{move} = \bigwedge (\text{ the (i, j) window is legal })$ $1 \le i, j \le n^k$

the (i, j) window is legal =

 $\sqrt{ \left(\begin{array}{c} x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j,+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j} \\ a_1, \ \dots, \ a_6 \end{array} \right) } \\ \text{is a legal window}$

This is a disjunct over all (≤ |C|⁶) legal sequences (a₁, …, a₆).

```
So \phi_{move} is satisfiable

⇔

There is some assignment to each of the variables that

makes every window legal.
```


the (i, j) window is legal =

 $\bigvee_{a_1, \dots, a_6} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j,+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,ja_5} \wedge x_{i+1,j+1,a_6})$ is a legal window

- This is a disjunct over all (≤ |C|⁶) legal sequences (a₁, ..., a₆).
- **Can re-write as equivalent conjunct:**

$\oint_{move} = \bigwedge (\text{ the (i, j) window is legal })$ $1 \le i, j \le n^k$

the (i, j) window is legal =

 $\bigvee_{\substack{a_1, \dots, a_6}} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j,+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_4} \wedge x_{i+1,j+1,a_6})$ is a legal window

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ..., a_6$).

Can re-write as equivalent conjunct:

$$= \bigwedge_{a_1, \dots, a_6} (\bar{X}_{i,j-1,a_1} \lor \bar{X}_{i,j,a_2} \lor \bar{X}_{i,j,+1,a_3} \lor \bar{X}_{i+1,j-1,a_4} \lor \bar{X}_{i+1,j,a_5} \lor \bar{X}_{i+1,j+1,a_5})$$
ISN'T a legal window

This is a conjunct over all (≤ |C|⁶) illegal sequences (a₁, …, a₆).

$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$

there is some assignment to each of the variables s.t. ϕ_{cell} and ϕ_{start} and ϕ_{accept} and ϕ_{move} each evaluates to 1 \Leftrightarrow

There is some assignment of symbols to cells in the tableau such that:

- The first row of the tableau is a start configuration and
- Every row of the tableau is a configuration that follows from the preceding by the rules of N and
- One row is an accepting configuration

,⇔

There is some accepting computation for N with input w

$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$

WHAT'S THE LENGTH OF \$?

$$\begin{split} \varphi &= \varphi_{\text{cell}} \land \varphi_{\text{start}} \land \varphi_{\text{accept}} \land \varphi_{\text{move}} \\ \varphi_{\text{cell}} &= \bigwedge_{1 \le i, j \le n^{k}} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right] \\ &= \sum_{s \ne t} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigvee_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right] \\ &= \sum_{s \ne t} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigvee_{s \ne t} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right] \\ &= \sum_{s \ne t} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigvee_{s \ne t} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right] \\ &= \sum_{s \ne t} \left[\left(\bigvee_{s \in C} x_{i,j,s} \lor \neg x_{i,j,s} \right) \land \left(\bigvee_{s \ne t} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \right] \\ &= \sum_{s \ne t} \left[\left(\bigvee_{s \in C} x_{i,j,s} \lor \neg x_{i,j,s} \right) \land \left(\bigvee_{s \ne t} (\neg x_{i,j,s} \lor \neg x_{i,j,t} \lor \neg x_{i,j,t} \right) \right] \\ &= \sum_{s \ne t} \left[\left(\bigvee_{s \in C} x_{i,j,s} \lor \neg x_{i,j,t} \lor \neg x_{i,j,$$

O(n^{2k}) clauses

Length(ϕ_{cell}) = O(n^{2k}) O(log (n)) = O(n^{2k} log n)

length(indices)

O(n^k)

$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$

 $\phi_{\text{accept}} = \bigvee \mathbf{x}_{i,j,q_{\text{accept}}}$ $1 \le i, j \le n^k$

$\phi_{move} = \bigwedge (\text{ the (i, j) window is legal })$ $1 \le i, j \le n^k$

the (i, j) window is legal =

$$\bigwedge_{a_1, \dots, a_6} (\overline{\mathbf{x}_{i,j-1,a_1}} \vee \overline{\mathbf{x}_{i,j,a_2}} \vee \overline{\mathbf{x}_{i,j,+1,a_3}} \vee \overline{\mathbf{x}_{i+1,j-1,a_4}} \vee \overline{\mathbf{x}_{i+1,j,a_5}} \vee \overline{\mathbf{x}_{i+1,j+1,a_6}})$$

T a legal window

This is a conjunct over all ($\leq |C|^6$) illegal sequences ($a_1, ..., a_6$).

ISN"

Theorem (Cook-Levin): SAT is NP-complete

Corollary: SAT \in P if and only if P = NP

Theorem (Cook-Levin): 3SAT is NP-complete

Corollary: $3SAT \in P$ if and only if P = NP

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals

If a clause has less than three variables: $a \equiv (a \lor a \lor a), (a \lor b) \equiv (a \lor b \lor b)$

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals

If a clause has less than three variables: $a \equiv (a \lor a \lor a), (a \lor b) \equiv (a \lor b \lor b)$

If a clause has more than three variables: $(a \lor b \lor c \lor d) \equiv (a \lor b \lor z) \land (\neg z \lor c \lor d)$

 $(a_1 \lor a_2 \lor \ldots \lor a_t) \equiv$ $(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land \ldots (\neg z_{t-3} \lor a_{t-1} \lor z_t)$

Given A in NP. The reduction f turned a string w into a 3-cnf formula ϕ such that: $w \in A \Leftrightarrow \phi \in 3SAT$.

The reduction f is poly time. WHY?

3-SAT is NP-Complete

Theorem (Cook-Levin): 3SAT is NP-complete

Corollary: $3SAT \in P$ if and only if P = NP

WWW.FLAC.WS