TIME COMPLEXITY AND
POLYNOMIAL TIME;
NON DETERMINISTIC TURING
MACHINES AND NP

THURSDAY Mar 20

COMPLEXITY THEORY

Studies what can and can’t be computed under
limited resources such as time, space, etc

Today: Time complexity

Definition:
Suppose M is a TM that halts on all inputs.

The running time or time-complexity of M is
the function f : N — N, where f(n) is the

maximum number of steps that M uses on
any input of length n.

MEASURING TIME COMPLEXITY

We measure time complexity by counting the
elementary steps required for a machine to halt

Consider the language A= {0k | k=0}

On input of length n:

1. Scan across the tape and reject if the

N string is not of the form 0i1)

2. Repeat the following if both 0s and 1s
~n2 remain on the tape:
Scan across the tape, crossing off a
single 0 and a single 1

3. If 0s remain after all 1s have been crossed

N off, or vice-versa, reject. Otherwise accept.

ASYMPTOTIC ANALYSIS
5n3 + 2n? + 22n + 6 = O(n3)

BIG-O

Let f and g be two functions f, g : N — R*. We say

that f(n) = O(g(n)) if there exist positive integers ¢
and n, so that for every integer n = n,

H X [()

When f(n) = O(g(n)), we say that g(n) is an
asymptotic upper bound for f(n)

f asymptotically NO MORE THAN g
5n3 + 2n? + 22n + 6 = O(n3)

If c =6 and n, = 10, then 5n3 + 2n? + 22n + 6 < cn3

2n*1 +200283n% + 2 = O(n*1)
3nlog, n + 5n log,log, n = O(nlog, n)
nlog,,n’® = O(nlog,, n)

log,, n =log,n

O(nlog,, n) = O(nlog, n) = O(nlog n)

Definition: TIME(t(n)) ={ L | L is a language
decided by a O(t(n)) time Turing Machine }

A= {0k |k =0} € TIME(n2)

Big-oh necessary

« Moral: big-oh notation necessary given our
model of computation

— Recall: f(n) = O(g(n)) if there exists ¢ such that f(n) <c
g(n) for all sufficiently large n.

— TM model incapable of making distinctions between
time and space usage that differs by a constant.

9/12/2013

Linear Speedup

Theorem: Suppose TM M decides language L in
time f(n). Then for any ¢ > 0, there exists TM M’

that decides L in time

ef(n) + n + 2.
* Proof:
— simple idea: increase “word length”
— M’ will have

* one more tape than M
* m-tuples of symbols of M

2new — 2oldY 2oid
* many more states

9/12/2013

10

Linear Speedup

« part 1. compress input onto fresh tape

a b la b b a

I 7

aba | bba | aa_

Linear Speedup

« part 2: simulate M, m steps at a time

b b a la b a |b [a |[a |a |b

m ﬁ m
abb | aab | aba | aab | aba
T

-4 (L,R,R,L) steps to read relevant symbols,
‘remember” in state

— 2 (L,R or R,L) to make M’s changes

9/12/2013 12

Linear Speedup

* accounting:
— part 1 (copying): n + 2 steps
— part 2 (simulation): 6 (f(n)/m)
— setm =06/¢
— total: ef(n) + n + 2

Theorem: Suppose TM M decides language L in
space f(n). Then for any € > 0, there exists TM M’
that decides L in space ¢f(n) + 2.

 Proof: same.

9/12/2013 13

A ={0kk|k =0} € TIME(nlog n)

Cross off every other 0 and every other 1. If the #
of 0s and 1s left on the tape is odd, reject

00000000000001111111111111

X0x0x0x0x0x0xx1x1x1x1x1x1x
XXX 0XxXX0XxXX0xXXXTXXX1XXX1X
XXXXXXX0XXXXXXXXXXXXTXXXXX

XXX XXXXXXXXXXXXXXXXXXXXXXX

We can prove that a one-tape TM
cannot decide A in less time than
O(nlog n)

*7.49 Extra Credit. Let f(n) = o(nlogn). Then
Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff lim__,_ f(n)/g(n) =0

ie, for all ¢ >0, 3 n, such that f(n) < cg(n) for all n =n,

f asymptotically LESS THAN g

Can A={0k1k| k =0} be decided in time
O(n) with a two-tape TM?

Scan all 0s and copy them to the second
tape. Scan all 1s, crossing off a 0 from
the second tape for each 1.

Different models of computation
yield different running times for
the same language!

Theorem: Let t(n) be a function such that t(n) = n.

Then every t(n)-time multi-tape TM has an
equivalent O(t(n)?) single tape TM

Claim: Simulating each step in the multi-
tape machine uses at most O(t(n)) steps
on a single-tape machine.

Hence total time of simulation is O(t(n)?) .

MULTITAPE TURING MACHINES

FINITE
STATE
CONTROL

0:QxIMk— Q x Nk x {L,R}x

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE

CONTROL

0:QAxTMNk— Q x Nk x {L,R}¥

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

L fofel [1]
LI LT]]
LI LT]]

FINITE
STATE
CONTROL

FINITE

\4

STATE
contro | [t oo l# | f#]" |#

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

pofo] []
FINITE
CONTROL

FINITE 1

STATE
controL | [t 0o]# | #]" |#

Analysis: (Note, k, the # of tapes, is fixed.)

_et S be simulator

 Put S’s tape in proper format: O(n) steps

 Two scans to simulate one step,
1. to obtain info for next move O(t(n)) steps, why?
2. to simulate it (may need to shift everything
over to right possibly k times): O(t(n)) steps, why?

_U TIME(nk)

ke N

NON-DETERMINISTIC
TURING MACHINES AND NP

read write move 0—-0,R

~_ \ / T\
0—>0 0 — 0O,R
-0 =

|0—>0,R
\ 4

0 - O,R

Definition: A Non-Deterministic TM is a 7-tuple
L (Q! Z, r! 6! qO! qaccept! qreject)! where:

Q is a finite set of states

2 is the input alphabet, where 0 ¢ %

I" is the tape alphabet, where D €lNand Z C T
O Q x [— 2(QxT x{L,R})

d, € Q is the start state

Qaccept = Q is the accept state

Qreject S Q is the reject state, and Oreject * Daccept

NON-DETERMINISTIC TMs

...are just like standard TMs, except:

1. The machine may proceed according to
several possibilities

2. The machine accepts a string if there
exists a path from start configuration to an
accepting configuration

Deterministic Non-Deterministic

Computation Computation
I N
8 °
; NN
! L L N\
| /:\4 reject
i l

accept or reject accept

Deterministic
Computation

accept or reject

Non-Deterministic
Computation

N\
JIN I\

l N\

/ \4 reject

v
[
|
v
[

.4—.

accept

Definition: Let M be a NTM that is a decider (le all branches halt

on all inputs).

The running time or time-complexity of M is the function f: N — N,
where f(n) is the maximum number of steps that M uses on any
branch of its computation on any input of length n.

Deterministic Non-Deterministic

Computation Computation

I N
8 °
; SN\
! L L\
| / :\4 reject
1 1

accept or reject accept

Theorem: Let t(n) be a function such that t(n) = n. Then

every t(n)-time nondeterministic single-tape TM has an
equivalent 20(tn) deterministic single tape TM

Definition: NTIME(t(n)) = {L|L is decided by a
O(t(n))-time non-deterministic Turing machine }

TIME(t(n)) C NTIME(t(n))

BOOLEAN FORMULAS

logical parentheses

operatlons
A satisfying assign g of the
variables that mali uIa true
=X A y(} vV Z
=1,y=1,z=1is a é€t|7fy| assignment for ¢

variables
(X vy)A(z A -X)
0 0 1 0

A Boolean formula is satisfiable if there
exists a satisfying assignment for it

vyEs aarbaca-d
NOo ~—(XVVy)AX

SAT ={ ¢ | ¢ is a satisfiable Boolean formula }

A 3cnf-formula is of the form:

W\/ Xy V X5) A (X3 V =X5 V =Xy)

clauses

YES (X4 Vv =X,V X,)

3SAT ={ ¢ | ¢ is a satisfiable 3cnf-formula }

3SAT ={ ¢ | ¢ is a satisfiable 3cnf-formula }
Theorem: 3SAT € NTIME(n?)
On input ¢:

1. Check if the formula is in 3cnf

2. For each variable, non-deterministically
substitute it with 0 or 1

(MVHMX,%
‘%‘MVMW i1]

(OO MIoDT T ICIoM Tt MIoDT]

3. Test if the assignment satisfies ¢

NP = U NTIME(nk)
k&EeN

Theorem: L € NP < if there exists a poly-time
Turing machine V(erifier) with
L = { x | dy(witness) |y| = poly(|x|) and V(x,y) accepts }
Proof:
(1) If L ={x[3y ly| = poly(|x]) and V(x,y) accepts }
then L& NP
Because we can guess y and then run V

(2) If L& NP then
L ={x| 3y |yl = poly(|x]) and V(x,y) accepts }

Let N be a non-deterministic poly-time TM that
decides L and define V(x,y) to accept if y is an
accepting computation history of N on x

3SAT = {¢| dy such that y is a satisfying
assignment to ¢ and ¢ is in 3cnf }

SAT = {¢| dy such that y is a satisfying
assignment to ¢ }

A language is in NP if and only if there
exist polynomial-length certificates*®
for membership to the language

SAT is in NP because a satisfying
assignment is a polynomial-length
certificate that a formula is satisfiable

* that can be verified in poly-time

0, /@
1\ 27/
. [

@—»@ —0®

HAMPATH = { (G,s,t) | G is a directed graph
with a Hamiltonian path from s to t }

Theorem: HAMPATH € NP

The Hamilton path itself is a certificate

CLIQUE = { (G,k) | G is an undirected graph
with a k-clique }

Theorem: CLIQUE € NP

The k-clique itself is a certificate

NP = all the problems for which once
you have the answer it is easy (i.e.
efficient) to verify

POLY-TIME REDUCIBILITY

f:2* — 2% is a polynomial time computable
function if some poly-time Turing machine M, on
every input w, halts with just f(w) on its tape

Language A is polynomial time reducible to
language B, written A <; B, if there is a poly-

time computable function f : 2* — Z* such that:

wEA<= f(w)EB

f is called a polynomial time reduction of Ato B

Theorem: IfA<pBand B €P,thenAcP

Proof: Let Mg be a poly-time (deterministic)

TM that decides B and let f be a poly-time
reduction from A to B

We build a machine M, that decides A as follows:

On input w:
1. Compute f(w)
2. Run Mg on f(w)

Definition: A language B is NP-complete if:

1. BE NP

2. Every A in NP is poly-time reducible to B
(i.e. B is NP-hard)

Suppose B is NP-Complete

So, if B is NP-Complete and B € P then NP = P. Why?

Theorem (Cook-Levin): SAT is NP-complete
Corollary: SAT € P if and only if P = NP

NP-COMPLETENESS:
THE COOK-LEVIN THEOREM

Theorem (Cook-Levin.’71): SAT is NP-
complete

Corollary: SAT € P if and only if P = NP

’ h

Leonid Levin Steve Cook

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT € NP

(2) Every language A in NP is polynomial time
reducible to SAT

We build a poly-time reduction from A to SAT

The reduction turns a string w into a 3-cnf
formula ¢ such that w € A iff § € 3-SAT.

¢ will simulate the NP machine N for A on w.

Let N be a non-deterministic TM that decides
Aintime nk How do we know N exists?

So proof will also show:
3-SAT is NP-Complete

The reduction f turns a string w into a 3-cnf formula ¢

such that: we A < ¢ € 3SAT.
¢ will “simulate” the NP machine N for A on w.

Deterministic
Computation

accept or reject

Non-Deterministic
Computation

0‘/ . \AQ
/NN
}

AN
/

o {— @

e
/

Suppose A & NTIME(nk) and let N be an NP machine for A.

A tableau for N on w is an nk x nk table whose rows are the
configurations of some possible computation of N on input
W.

A tableau is accepting if any row of the tableau
is an accepting configuration

Determining whether N accepts w is equivalent
to determining whether there is an accepting
tableau for N on w

Given w, our 3cnf-formula ¢ will describe a

generic tableau for N on w (in fact, essentially
generic for N on any string w of length n).

The 3cnf formula ¢ will be satisfiable if and only
if there is an accepting tableau for N on w.

VARIABLES of ¢
LetC=QUT U{#}

Each of the (nk)? entries of a tableau is a cell

cell[i,j] = the cell at row i and column j

Foreachiandj(1=<i,j<nX)and foreachs & C
we have a variable x..

1,),S
variables = |C|n?k ie O(n2k), since |C| only depends on N
These are the variables of ¢ and represent the
contents of the cells

We will have: x;;;=1 = cell[i,j]=s

Xijis = 1
UEERE

cellli,J]=s

We now design ¢ so that a satisfying assignment

to the variables x;; ; corresponds to an accepting

tableau for N onw
The formula ¢ will be the AND of four parts:

(I) = (I)cell A q)start A (I)accept A (I)move

d.o €Nsures that for each i,j, exactly one Xjjs= 1

dsiare €NSUres that the first row of the table is the
starting (initial) configuration of N on w
Gaccept ensures”* that an accepting configuration

occurs somewhere in the table
dmove €NSUres™ that every row is a configuration

that legally follows from the previous config

*if the other components of ¢ hold

Oce €NSUres that for each i,j, exactly one x;; ;=
1

Peert = /\ \/ ij,s /\(_'X,Jsv "Xt)

1<i,j<nk [\S€EC steC
‘ s¥t ‘
at least one at most one
variable is variable is

turned on turned on

q)start = x1,1,# A x1,2,q A
0

X13w, N Xraw, N os AXgpigw A

X1,n+3,|:| AT A X1,nk_1,|:| N\ X1,nk,#

(I)accept ensures that an accepting
configuration occurs somewhere in the table

(I)accept \/ XiJ L), Gecept

1=<i,j<nk

Pmove €Nsures that every row is a configuration

that legally follows from the previous

It works by ensuring that each 2 x 3 “window”
of cells is legal (does not violate N’s rules)

If 5(q,,a) = {(q4,b,R)} and d(q,,b) = {(d,,c,L), (g,,a,R)}
Which of the following windows are legal:

aChb aq1b a [a],

g,|a |c qg,|a |a alal|b

If 6(q1'xa) = {(q1!bsR)} and 6(c‘|1!b) = {(q25cs|—)a (q25a!R)}
Which of the following windows are legal:

CLAIM:
If
* the top row of the tableau is the start configuration,

and
* and every window is legal,

Then
each row of the tableau is a configuration that legally
follows the preceding one.

CLAIM:
If
* the top row of the tableau is the start configuration,

and
* and every window is legal,

Then
each row of the tableau is a configuration that legally
follows the preceding one.[[S

Proof:

In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

CLAIM:

If
* the top row of the tableau is the start configuration,

and
* and every window is legal,

Then
each row of the tableau is a configuration that legally

follows the preceding one.[[a

a

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol

CLAIM:

If
* the top row of the tableau is the start configuration,
and
* and every window is legal,

Then

each row of the tableau is a configuration that legally

follows the preceding one.[|a q

Proof: d il Kl i

In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not

adjacent to a state symbol
Case 2. center cell of window is a state symbol

So the lower configuration follows from the
upper!!!

row |

row i+1

col. J-1 col. | col. j+1
q, a; CE

(i+1!j'1) (|+1!J) (i+1!j+ 1)
d, ds dg

The (i,j) Window

dmove = /\ (the (i, j) window is legal

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)
a, ..., ag
is a legal window

This is a disjunct over all (< |C|°) legal sequences (a,, ...,
ag)-

dmove = /\ (the (i, j) window is legal)

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)
a, ..., ag
is a legal window

This is a disjunct over all (< |C|°) legal sequences (a,, ...,

Tis disjunct is satisfiable
=t

There is some assignment to the cells (ie variables) in
the window (i,j) that makes the window legal

dmove = /\ (the (i, j) window is legal)

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)
- P

is a legal window
This is a disjunct over all (< |C|°) legal sequences (a,, ...,

& dmove IS Satisfiable

=

There is some assignment to each of the variables that
makes every window legal.

(l)move

/\ (the (i, j) window is legal

1<1i,j=nk

the (i, j) window is legal =

\/ (Xij1,a A Xija, A Xijrra A Xivtjga A Xisgja A Xisjrra)

a, ..., ag

is a legal window

This is a disjunct over all (< |C|°) legal sequences (a,, ...,

ag)-

Can rg-write as equivalent conjunct:

= ([W

+1.a) a;5 ..., @g

ij-ha V

ISN’T a legal window

W

4,),a

\Y

W

i!'j!+1aa

\Y

j+1,j-1,a

i+1,j,a

+1,j

(l) = (I)cell A q)start A (I)accept A cl)move

¢ is satisfiable (ie, there is some assignment to each of

the varialbes s.t. ¢ evaluates to 1)
=

there is some assignment to each of the variables s.t.

bcen AN Ogiary AN Oy cepe AN ¢, €ach evaluates to 1

~

There is some assignment of symbols to cells in the

tableau such that:

* The first row of the tableau is a start configuration and

* Every row of the tableau is a configuration that follows
from the preceding by the rules of N and

 One row is an accepting configuration

=

There is some accepting computation for N with input w

3-SAT?

How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
NETES

3-SAT?

How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3

NE LS
If a clause has less than three variables:

as(avava), (avb)=(avbvb)

3-SAT?

How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3

NE LS
If a clause has less than three variables:

as(avava), (avb)=(avbvb)

If a clause has more than three variables:
(@vbvecvd)Eavbvz)a(-zvecvd)

(a;va,v...va)=

(l) = (I)cell A q)start A (I)accept A cl)move

WHAT'S THE LENGTH OF ¢?

= /\ | \/xe M /\%ige v =xi50)

1<i,j<nk \s€C steC
s#t

If a clause has less than three variables:
(@avb)=(avbvb)

1<i,j<nk \s€C steC
s#t

(I)cell = /\ (\/xi,j,s)/\ (/\(_'xi,j,s v _'xi,j,t))

O(n?%k) clauses

Length(¢.,) = O(n?) O(log (n)) = O(n* log n)
|

length(indices)

X148 N X129 A
)

X13w, N X1aw, A wor A Xqpaaw A

(I)start

X1,n+3,|:| AN wan A X1,nk_1,|:| AN X1,nk,#

(Xq 18V Xq 98V X1 A

(x1,2,q0 4 x1,2,q0 \ x1,2,q0)

AN aaa A

(X1,nk JH v x1,nk H v x1,nk ,#)

Ostart = X918 N Xq2q9 A
)

X13w, N X1aw, A wor A Xqpaaw A

X1,n+3,|:| AN wan A X1,nk_1,|:| AN X1,nk,#

O(nk)

(I)accept \/ x 1), 'Yaccept

1<1i,j=nk

(@;va,v...va)=

(a;va,vzy)a(-z,vasvz)a(-z,va, v z,) ...

(I)accept \/ X

O(nZk)

dmove = /\ (the (i, j) window is legal

1<1i,j=nk

the (i, j) window is legal =

/\ (xlj 1 a1 Ij +1,% v xl+1j -1.2 v x|+1 j§ |+1,j+1,a)

a,, ..
ISN’T a Iegal wmdow

This is a conjunct over all (< |C|®¢) illegal sequences (a,, ...,

O(n2k)

Theorem (Cook-Levin): 3-SAT is NP-
complete

Corollary: 3-SAT € P if and only if P = NP

