
TIME COMPLEXITY AND 
POLYNOMIAL TIME; 

NON DETERMINISTIC TURING 
MACHINES AND NP 

 THURSDAY Mar 20



COMPLEXITY THEORY
Studies what can and can’t be computed under 

limited resources such as time, space, etc

Today: Time complexity



Definition:  

Suppose M is a TM that halts on all inputs.  

The running time or time-complexity of M is 
the function f : N → N, where f(n) is the 
maximum number of steps that M uses on 
any input of length n.



MEASURING TIME COMPLEXITY
We measure time complexity by counting the 
elementary steps required for a machine to halt

Consider the language A = { 0k1k | k ≥ 0 }

1. Scan across the tape and reject if the 
string is not of the form 0i1j

2. Repeat the following if both 0s and 1s 
remain on the tape: 
 Scan across the tape, crossing off a  
 single 0 and a single 1

3. If 0s remain after all 1s have been crossed 
off, or vice-versa, reject. Otherwise accept.~n

~n2

~n

On input of length n:



ASYMPTOTIC ANALYSIS
5n3 + 2n2 + 22n + 6 = O(n3)



Let f and g be two functions f, g : N → R+. We say 
that f(n) = O(g(n)) if there exist positive integers c 
and n0 so that for every integer n ≥ n0

f(n) ≤ cg(n)
When f(n) = O(g(n)), we say that g(n) is an 
asymptotic upper bound for f(n)

BIG-O

5n3 + 2n2 + 22n + 6 = O(n3)
If c = 6 and n0 = 10, then 5n3 + 2n2 + 22n + 6 ≤ cn3 

f asymptotically NO MORE THAN g



3nlog2 n + 5n log2log2 n

2n4.1 + 200283n4 + 2

nlog10 n78

= O(n4.1)

= O(nlog2 n)

= O(nlog10 n)

log10 n = log2 n / log2 10
O(nlog10 n) = O(nlog2 n) = O(nlog n)



Definition: TIME(t(n)) = { L | L is a language 
decided by a O(t(n)) time Turing Machine }

A = { 0k1k | k ≥ 0 } ∈ TIME(n2)
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Big-oh necessary

• Moral: big-oh notation necessary given our 
model of computation 
– Recall: f(n) = O(g(n)) if there exists c such that f(n) ≤ c 

g(n) for all sufficiently large n. 
– TM model incapable of making distinctions between 

time and space usage that differs by a constant. 
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Linear Speedup

Theorem: Suppose TM M decides language L in 
time f(n). Then for any ε > 0, there exists TM M’ 
that decides L in time 

εf(n) + n + 2. 
• Proof: 

– simple idea: increase “word length” 
– M’ will have 

• one more tape than M 
• m-tuples of symbols of M 

∑new = ∑old ∪ ∑old
m 

• many more states
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Linear Speedup

• part 1: compress input onto fresh tape

. . . a b a b b a a a

. . . aba bba aa_
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Linear Speedup

• part 2: simulate M, m steps at a time

b b a a b a b a a a b

. . . abb aab aba aab aba

. . . . . . 

. . . 
m m

– 4 (L,R,R,L) steps to read relevant symbols, 
“remember” in state 

– 2 (L,R or R,L) to make M’s changes 
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Linear Speedup

• accounting: 
– part 1 (copying): n + 2 steps 
– part 2 (simulation): 6 (f(n)/m) 
– set m = 6/ε 
– total: εf(n) + n + 2 

Theorem: Suppose TM M decides language L in 
space f(n). Then for any ε > 0, there exists TM M’ 
that decides L in space εf(n) + 2. 

• Proof: same.



A = { 0k1k | k ≥ 0 } ∈ TIME(nlog n)
Cross off every other 0 and every other 1. If the # 
of 0s and 1s left on the tape is odd, reject

00000000000001111111111111
x0x0x0x0x0x0xx1x1x1x1x1x1x
xxx0xxx0xxx0xxxx1xxx1xxx1x
xxxxxxx0xxxxxxxxxxxx1xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx



We can prove that a one-tape TM 
cannot decide A in less time than 

O(nlog n)
*7.49  Extra Credit.  Let f(n) = o(nlogn). Then 
Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff limn->∞  f(n)/g(n) = 0 

ie, for all c >0,  ∃ n0 such that f(n) < cg(n) for all n ≥n0 

f asymptotically LESS THAN g



Can A = { 0k1k | k ≥ 0 } be decided in time 
O(n) with a two-tape TM?

Scan all 0s and copy them to the second 
tape. Scan all 1s, crossing off a 0 from 
the second tape for each 1.



Different models of computation 
yield different running times for 

the same language!



Theorem: Let t(n) be a function such that t(n) ≥ n. 
Then every t(n)-time multi-tape TM has an 
equivalent O(t(n)2) single tape TM

Claim: Simulating each step in the multi-
tape machine uses at most O(t(n)) steps 
on a single-tape machine.  
Hence total time of simulation is O(t(n)2) .



MULTITAPE TURING MACHINES

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE 
STATE 
CONTROL



δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE 
STATE 
CONTROL

Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 
STATE 
CONTROL

0 01

FINITE 
STATE 
CONTROL 0 01 # # #. . .



Theorem: Every Multitape Turing Machine can be 
transformed into a single tape Turing Machine

FINITE 
STATE 
CONTROL

0 01

FINITE 
STATE 
CONTROL 0 01 # # #. . .



Analysis: (Note,  k, the # of tapes, is  fixed.) 

Let S be simulator 
• Put S’s tape in proper format:  O(n) steps 
• Two scans to simulate one step,  
      1. to  obtain info for next move O(t(n)) steps, why? 
      2. to simulate it (may need to shift everything 
      over to right possibly  k times): O(t(n)) steps, why? 



P =       TIME(nk)∪
k ∈ N



NON-DETERMINISTIC  
TURING MACHINES AND NP



0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R



Definition: A Non-Deterministic TM is a 7-tuple  
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:  

Q is a finite set of states

Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where  ∉ Σ 

δ : Q × Γ → 2(Q × Γ × {L,R}) 

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept



NON-DETERMINISTIC TMs
…are just like standard TMs, except:

1. The machine may proceed according to 
several possibilities

2. The machine accepts a string if there 
exists a path from start configuration to an 
accepting configuration



Deterministic 
Computation

Non-Deterministic 
Computation

accept or reject accept

reject



Deterministic 
Computation

Non-Deterministic 
Computation

accept or reject accept

reject

Definition: Let M be a NTM that is a decider (Ie all branches halt 
on all inputs).   
The running time or time-complexity of M is the function f : N → N, 
where f(n) is the maximum number of steps that M uses on any 
branch of its computation on any input of length n.



Deterministic 
Computation

Non-Deterministic 
Computation

accept or reject accept

reject

Theorem: Let t(n) be a function such that t(n) ≥ n. Then 
every t(n)-time nondeterministic single-tape TM has an 
equivalent 2O(t(n)) deterministic single tape TM



     { L | L is decided by a 
O(t(n))-time non-deterministic Turing machine }
Definition:  NTIME(t(n))  =

TIME(t(n)) ⊆ NTIME(t(n))



BOOLEAN FORMULAS

(¬x ∧ y) ∨ zφ =

logical  
operations

variables

parentheses
A satisfying assignment is a setting of the 
variables that makes the formula true

x = 1, y = 1, z = 1 is a satisfying assignment for φ

¬(x ∨ y) ∧ (z ∧ ¬x)
0 0 1 0



SAT = { φ | φ is a satisfiable Boolean formula }

A Boolean formula is satisfiable if there 
exists a satisfying assignment for it

¬(x ∨ y) ∧ x

a ∧ b ∧ c ∧ ¬dYES

NO



A 3cnf-formula is of the form:
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1) 

clauses

(x1 ∨ ¬x2 ∨ x1)

(x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ ¬x1) 

(x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x1) ∨ (x3 ∨ x1 ∨ ¬x1) 

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∧ ¬x2 ∧ ¬x1) 

YES

NO

NO

NO

3SAT = { φ | φ is a satisfiable 3cnf-formula }

literals



Theorem: 3SAT ∈ NTIME(n2)
3SAT = { φ | φ is a satisfiable 3cnf-formula }

1. Check if the formula is in 3cnf 
On input φ:

2. For each variable, non-deterministically 
substitute it with 0 or 1

3. Test if the assignment satisfies φ

( x ∨ y¬ ∨ x )

( ∨ y¬ ∨ )0 0 ( ∨ y¬ ∨ )1 1

( ∨ ¬ ∨ )0 00 ( ∨ ¬ ∨ )0 1 0



NP =       NTIME(nk)∪
k ∈ N



Theorem: L ∈ NP ⇔ if there exists a poly-time 
Turing machine V(erifier) with

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts }

Proof:

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }  
  then L ∈ NP

Because we can guess y and then run V

(2) If L ∈ NP  then 
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts } 

Let N be a non-deterministic poly-time TM that 
decides L and define V(x,y) to accept if y is an 
accepting computation history of N on x



3SAT = { φ | ∃y such that y is a satisfying 
assignment to φ and φ is in 3cnf } 

SAT = { φ | ∃y such that y is a satisfying 
assignment to φ } 



A language is in NP if and only if there 
exist polynomial-length certificates* 

for membership to the language

SAT is in NP because a satisfying 
assignment is a polynomial-length 

certificate that a formula is satisfiable

* that can be verified in poly-time



HAMILTONIAN PATHS

b

a

e

c

d

f

hi

g



HAMPATH = { (G,s,t) | G is a directed graph 
with a Hamiltonian path from s to t }

Theorem: HAMPATH ∈ NP

The Hamilton path itself is a certificate



K-CLIQUES

b

a

e

c

d f

g



CLIQUE = { (G,k) | G is an undirected graph 
with a k-clique }

Theorem: CLIQUE ∈ NP

The k-clique itself is a certificate



NP = all the problems for which once 
you have the answer it is easy (i.e. 
efficient) to verify



P = NP?
$$$
$$$



POLY-TIME REDUCIBILITY
f : Σ* → Σ* is a polynomial time computable 
function

Language A is polynomial time reducible to 
language B, written A ≤P B, if there is a poly-
time computable function f : Σ* → Σ* such that:

w ∈ A ⇔ f(w) ∈ B

f is called a polynomial time reduction of A to B

       if some poly-time Turing machine M, on 
every input w, halts with just f(w) on its tape



A B
f

f



Theorem: If A ≤P B and B ∈ P, then A ∈ P

Proof:      Let MB be a poly-time (deterministic) 
TM that decides B and let f be a poly-time 
reduction from A to B 

We build a machine MA that decides A as follows:

On input w:

1. Compute f(w)

2. Run MB on f(w)



Definition: A language B is NP-complete if:

1. B ∈ NP
2. Every A in NP is poly-time reducible to B 
(i.e. B is NP-hard)



Suppose B is NP-Complete

P
NP

B

So, if B is NP-Complete and B ∈ P then NP =  P. Why?



Theorem (Cook-Levin): SAT is NP-complete
Corollary: SAT ∈ P if and only if P = NP



NP-COMPLETENESS:  
THE COOK-LEVIN THEOREM



Theorem (Cook-Levin.’71): SAT is NP-
complete

Corollary: SAT ∈ P if and only if P = NP



Steve CookLeonid Levin



Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT ∈ NP

(2) Every language A in NP is polynomial time  
reducible to SAT

We build a poly-time reduction from A to SAT

Let N be a non-deterministic TM that decides 
A in time nk How do we know N exists?

The reduction turns a string w into a 3-cnf 
formula φ such that w ∈ A iff φ ∈ 3-SAT. 
φ will simulate  the NP machine N for A on w.



So proof will also show:  
3-SAT is NP-Complete

P
NP

3-SAT



A 3SAT
f

f

The reduction f turns a string w into a 3-cnf formula φ 
such that:  w ∈ A ⇔ φ ∈ 3SAT.  

φ will “simulate” the NP machine N for A on w.

w φ



Deterministic 
Computation

Non-Deterministic 
Computation

accept or reject accept

reject

nk

exp(nk)



Suppose  A ∈ NTIME(nk ) and let  N be an NP machine for A.  
A tableau for N on w is an nk × nk table whose rows are the 
configurations of some possible computation of N on input 
w.

q0 w1 wnw2# #… …

# #

# #

nk

nk



A tableau is accepting if any row of the tableau 
is an accepting configuration

Determining whether N accepts w is equivalent 
to determining whether there is an accepting 
tableau for N on w 

Given w, our 3cnf-formula φ will describe a 
generic tableau for N on w (in fact, essentially 
generic for N on any string w of length n).

The 3cnf formula φ will be satisfiable if and only 
if there is an accepting tableau for N on w.



Let C = Q ∪ Γ ∪ { # }

For each i and j (1 ≤ i, j ≤ nk) and for each s ∈ C 
we have a variable xi,j,s

VARIABLES of φ 

Each of the (nk)2 entries of a tableau is a cell

cell[i,j]  = the cell at row i and column j

These are the variables of φ and represent the 
contents of the cells

We will have:     xi,j,s = 1  ⬄ cell[i,j] = s

# variables  = |C|n2k, ie O(n2k), since |C| only depends on N



xi,j,s = 1  

means  

cell[ i, j ] = s



φaccept ensures* that an accepting configuration 
occurs somewhere in the table

We now design φ so that a satisfying assignment 
to the variables xi,j,s corresponds to an accepting 
tableau for N on w
The formula φ will be the AND of four parts: 
φ = φcell ∧ φstart ∧ φaccept ∧ φmove

φcell ensures that for each i,j, exactly one xi,j,s = 1
φstart ensures that the first row of the table is the 
starting (initial) configuration of N on w

φmove ensures* that every row is a configuration 
that legally follows from the previous config
*if the other components of φ hold   



∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t )φcell  =

s,t ∈ C 
s ≠ t

at least one 
variable is 
turned on

at most one 
variable is 
turned on

φcell ensures that for each i,j, exactly one xi,j,s = 
1



φstart  =  x1,1,# ∧ x1,2,q   ∧  

  x1,3,w   ∧ x1,4,w   ∧ … ∧ x1,n+2,w   ∧  

    x1,n+3,  ∧ … ∧ x1,n  -1,  ∧ x1,n   ,#

0

1 2 n

k k

q0 w1 wnw2# #… …

# #

# #



φaccept  =
1 ≤ i, j ≤ nk

xi,j,qaccept

φaccept ensures that an accepting 
configuration occurs somewhere in the table



φmove  ensures that every row is a configuration 
that legally follows from the previous
It works by ensuring that each 2 × 3 “window” 
of cells is legal (does not violate N’s rules)

q0 w1 wnw2# #… …

# #

# #



If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)} 
Which of the following windows are legal:

a q1 b

q2 a c

# b a

# b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b 2



If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)} 
Which of the following windows are legal:

a q1 b

q2 a c

# b a

# b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b q2



CLAIM:  
If 

• the top row of the tableau is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the tableau is a configuration that legally 
follows the preceding one.



Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  

Case 1. center cell of window is a non-state symbol and not 
adjacent to a state symbol 
Case 2. center cell of window is a state symbol

s

CLAIM:  
If 

• the top row of the tableau is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the tableau is a configuration that legally 
follows the preceding one.



Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  

Case 1. center cell of window is a non-state symbol and not 
adjacent to a state symbol

a
a

CLAIM:  
If 

• the top row of the tableau is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the tableau is a configuration that legally 
follows the preceding one.



CLAIM:  
If 

• the top row of the tableau is the start configuration, 
and 
• and every window is legal, 

Then  
each row of the tableau is a configuration that legally 
follows the preceding one.

Proof: 
In upper configuration, every cell that doesn’t contain the 
boundary symbol #, is the center top cell of a window.  

Case 1. center cell of window is a non-state symbol and not 
adjacent to a state symbol 
Case 2. center cell of window is a state symbol

a q
a ok ok ok



q0 w1 wnw2# #… …

# #

# #

ok

o
k
k

ok

w3 w4

w2 w3 w4



q0 w1 wnw2# #… …

# #

# #

ok

o
k
k

ok

w3 w4

w2 w3 w4



q0 w1 wnw2# #… …

# #

# #

ok

o
k
k

ok

w3 w4

w2 w3 w4



a1 q ana2# #… …

# #

# #

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5



a1 q ana2# #… …

# #

# #

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5



a1 q ana2# #… …

# #

# #

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5

So the lower configuration follows from the 
upper!!!



(i,j-1) 
a1 

(i,j) 
a2

(i,j+1) 
a3 

(i+1,j-1) 
a4 

(i+1,j) 
a5 

(i+1,j+ 1)     
a6 

row i

row i+1

col. j-1 col. j col. j+1

The (i,j) Window



φmove  =
1 ≤ i, j ≤ nk

( the (i, j) window is legal )

the (i, j) window is legal = 

a1, …, a6 
is a legal window

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  ) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, 
a6). 



φmove  =
1 ≤ i, j ≤ nk

( the (i, j) window is legal )

the (i, j) window is legal = 

a1, …, a6 
is a legal window

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  ) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, 
a6). This disjunct is satisfiable 
⬄ 
There is some assignment to the cells (ie variables) in 
the window (i,j) that makes the window legal



φmove  =
1 ≤ i, j ≤ nk

( the (i, j) window is legal )

the (i, j) window is legal = 

a1, …, a6 
is a legal window

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  ) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, 
a6). So φmove is satisfiable 
⬄ 
There is some assignment to each of the variables that 
makes every window legal.



φmove  =
1 ≤ i, j ≤ nk

( the (i, j) window is legal )

the (i, j) window is legal = 

a1, …, a6 
is a legal window

( xi,j-1,a  ∧ xi,j,a  ∧ xi,j,+1,a  ∧ xi+1,j-1,a  ∧ xi+1,j,a  ∧ xi+1,j+1,a  ) 1 2 3 4 5 6

a1, …, a6 
ISN’T a legal window

1 2 3 4 5 6
≡                (i,j-1,a  ∨ i,j,a  ∨ i,j,+1,a  ∨ i+1,j-1,a  ∨ i+1,j,a  ∨ +1,j

+1,a  )  

This is a conjunct over all (≤ |C|6 ) illegal sequences (a1, …, a6). 

This is a disjunct over all (≤ |C|6 ) legal sequences (a1, …, 
a6). 

Can re-write as equivalent conjunct: 



φ is satisfiable (ie, there is some assignment to each of 
the varialbes s.t. φ evaluates to 1) 
⬄ 
there is some assignment to each of the variables s.t. 
 φcell  and φstart  and φaccept and φmove  each evaluates to 1 
⬄ 
There is some assignment of symbols to cells in the 
tableau such that: 
• The first row of the tableau is a start configuration and 
• Every row of the tableau is a configuration that follows 

from the preceding by the rules of N and 
• One row is an accepting configuration  
 ⬄ 
There is some accepting computation for N with input w 

φ = φcell ∧ φstart ∧ φaccept ∧ φmove



3-SAT?
How do we convert the whole thing into 
a 3-cnf formula? 

Everything was an AND of ORs 
We just need to make those ORs with 3 
literals



3-SAT?
How do we convert the whole thing into 
a 3-cnf formula? 

Everything was an AND of ORs 
We just need to make those ORs with 3 
literals

 a ≡ (a ∨ a ∨ a),  (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:



3-SAT?
How do we convert the whole thing into 
a 3-cnf formula? 

Everything was an AND of ORs 
We just need to make those ORs with 3 
literals

 a ≡ (a ∨ a ∨ a),  (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

(a ∨ b ∨ c ∨ d) ≡(a ∨ b ∨ z) ∧ (¬z ∨ c ∨ d) 
If a clause has more than three variables:

(a1 ∨ a2 ∨ … ∨ at) ≡
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) …



WHAT’S THE LENGTH OF φ?

φ = φcell ∧ φstart ∧ φaccept ∧ φmove



∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t )φcell  =

s,t ∈ C 
s ≠ t

(a ∨ b) = (a ∨ b ∨ b)
If a clause has less than three variables:



∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t )φcell  =

s,t ∈ C 
s ≠ t

O(n2k) clauses
Length(φcell ) = O(n2k) O(log (n)) = O(n2k log n)

length(indices)



φstart  =  x1,1,# ∧ x1,2,q   ∧  

  x1,3,w   ∧ x1,4,w   ∧ … ∧ x1,n+2,w   ∧  

    x1,n+3,  ∧ … ∧ x1,n  -1,  ∧ x1,n   ,#

0

1 2 n

k k

k k k

0 0 0

  =  (x1,1,# ∨ x1,1,# ∨ x1,1,#) ∧  

  (x1,2,q  ∨ x1,2,q  ∨ x1,2,q  )  

∧ … ∧  

  (x1,n   ,# ∨ x1,n   ,# ∨ x1,n   ,#)



O(nk)

k

φstart  =  x1,1,# ∧ x1,2,q   ∧  

  x1,3,w   ∧ x1,4,w   ∧ … ∧ x1,n+2,w   ∧  

    x1,n+3,  ∧ … ∧ x1,n  -1,  ∧ x1,n   ,#

0

1 2 n

k k



φaccept  =
1 ≤ i, j ≤ nk

xi,j,qaccept

(a1 ∨ a2 ∨ … ∨ at) =
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) …



φaccept  =
1 ≤ i, j ≤ nk

xi,j,qaccept

O(n2k)



φmove  =
1 ≤ i, j ≤ nk

( the (i, j) window is legal )

O(n2k)

a1, …, a6 
ISN’T a legal window

              ( xi,j-1,a  ∨ xi,j,a  ∨ xi,j,+1,a  ∨ xi+1,j-1,a  ∨ xi+1,j,a  ∨ xi+1,j+1,a ) 1 2 3 4 5 6
- - - - - -

the (i, j) window is legal = 

This is a conjunct over all (≤ |C|6 ) illegal sequences (a1, …, 
a6).



Theorem (Cook-Levin): 3-SAT is NP-
complete

Corollary: 3-SAT ∈ P if and only if P = NP


