TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP

THURSDAY Mar 20

COMPLEXITY THEORY

Studies what can and can't be computed under limited resources such as time, space, etc

Today: Time complexity

Definition:

Suppose M is a TM that halts on all inputs.

The running time or time-complexity of M is the function $f: N \rightarrow N$, where f(n) is the maximum number of steps that M uses on any input of length n.

MEASURING TIME COMPLEXITY We measure time complexity by counting the elementary steps required for a machine to halt Consider the language $A = \{ 0^{k}1^{k} \mid k \ge 0 \}$ On input of length n: 1. Scan across the tape and reject if the ~n string is not of the form 0ⁱ1^j 2. Repeat the following if both 0s and 1s remain on the tape: ~n² Scan across the tape, crossing off a single 0 and a single 1 3. If 0s remain after all 1s have been crossed **~**∩ off, or vice-versa, reject. Otherwise accept.

ASYMPTOTIC ANALYSIS $5n^{3} + 2n^{2} + 22n + 6 = O(n^{3})$

BIG-O

Let f and g be two functions f, g : N \rightarrow R⁺. We say that f(n) = O(g(n)) if there exist positive integers c and n₀ so that for every integer n \ge n₀

$f(n) \leq cg(n)$

When f(n) = O(g(n)), we say that g(n) is an asymptotic upper bound for f(n)

f asymptotically NO MORE THAN g

 $5n^3 + 2n^2 + 22n + 6 = O(n^3)$

If c = 6 and n_0 = 10, then $5n^3 + 2n^2 + 22n + 6 \le cn^3$

$2n^{4.1} + 200283n^4 + 2 = O(n^{4.1})$

$3n\log_2 n + 5n\log_2 \log_2 n = O(n\log_2 n)$

$n\log_{10} n^{78} = O(n\log_{10} n)$

 $log_{10} n = log_{2} n (log_{2} 1)$ O(nlog_{10} n) = O(nlog_{2} n) = O(nlog n)

Definition: TIME(t(n)) = { L | L is a language decided by a O(t(n)) time Turing Machine }

$A = \{ 0^{k}1^{k} | k \ge 0 \} \in TIME(n^{2})$

Big-oh necessary

- Moral: big-oh notation necessary given our model of computation
 - Recall: f(n) = O(g(n)) if there exists c such that f(n) ≤ c g(n) for all sufficiently large n.
 - TM model incapable of making distinctions between time and space usage that differs by a constant.

<u>Theorem</u>: Suppose TM M decides language L in time f(n). Then for any ε > 0, there exists TM M' that decides L in time

$\epsilon f(n) + n + 2.$

- Proof:
 - simple idea: increase "word length"
 - M' will have
 - one more tape than M
 - m-tuples of symbols of M

$$\sum_{new} = \sum_{old} \cup \sum_{old} m$$

many more states

• part 1: compress input onto fresh tape

• part 2: simulate M, m steps at a time

- 4 (L,R,R,L) steps to read relevant symbols, "remember" in state
- -2 (L,R or R,L) to make M's changes

- accounting:
 - part 1 (copying): n + 2 steps
 - part 2 (simulation): 6 (f(n)/m)
 - set m = 6/ ϵ
 - total: $\epsilon f(n) + n + 2$

<u>**Theorem</u>**: Suppose TM M decides language L in space f(n). Then for any $\epsilon > 0$, there exists TM M' that decides L in space $\epsilon f(n) + 2$.</u>

• Proof: same.

$A = \{ 0^k 1^k \mid k \ge 0 \} \in TIME(nlog n)$

Cross off every other 0 and every other 1. If the # of 0s and 1s left on the tape is odd, reject

000000000000111111111111111 x0x0x0x0x0x0x1x1x1x1x1x1x1x1xxxx0xxx0xxx0xxxx1xxx1xxx1x xxxxxx0xxxxxxxxxxx1xxxxx

We can prove that a one-tape TM cannot decide A in less time than O(nlog n)

*7.49 Extra Credit. Let f(n) = o(nlogn). Then Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff $\lim_{n\to\infty} f(n)/g(n) = 0$ ie, for all c > 0, $\exists n_0$ such that f(n) < cg(n) for all $n \ge n_0$

f asymptotically LESS THAN g

Can A = { $0^{k}1^{k} | k \ge 0$ } be decided in time O(n) with a two-tape TM?

Scan all 0s and copy them to the second tape. Scan all 1s, crossing off a 0 from the second tape for each 1.

Different models of computation yield different running times for the same language! Theorem: Let t(n) be a function such that $t(n) \ge n$. Then every t(n)-time multi-tape TM has an equivalent $O(t(n)^2)$ single tape TM

Claim: Simulating each step in the multitape machine uses at most O(t(n)) steps on a single-tape machine. Hence total time of simulation is O(t(n)²).

MULTITAPE TURING MACHINES

$\delta: \mathbf{Q} \times \mathbf{\Gamma^{k}} \to \mathbf{Q} \times \mathbf{\Gamma^{k}} \times \{\mathbf{L}, \mathbf{R}\}^{k}$

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

$\delta: \mathbf{Q} \times \mathbf{\Gamma^{k}} \to \mathbf{Q} \times \mathbf{\Gamma^{k}} \times \{\mathbf{L}, \mathbf{R}\}^{k}$

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine

Analysis: (Note, k, the # of tapes, is fixed.)

- Let S be simulator
- Put S's tape in proper format: O(n) steps
- Two scans to simulate one step,
 - 1. to obtain info for next move O(t(n)) steps, why?
 - 2. to simulate it (may need to shift everything over to right possibly k times): O(t(n)) steps, why?

$P = \bigcup_{k \in N} TIME(n^k)$

NON-DETERMINISTIC TURING MACHINES AND NP

Definition: A Non-Deterministic TM is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:

Q is a finite set of states

- **\Sigma** is the input alphabet, where $\Box \notin \Sigma$
- Γ is the tape alphabet, where $\hdotines \subseteq \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta: \mathbf{Q} \times \mathbf{\Gamma} \to \mathbf{2}^{(\mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L}, \mathbf{R}\})}$
- $q_0 \in Q$ is the start state
- $\mathbf{q}_{accept} \in \mathbf{Q}$ is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

NON-DETERMINISTIC TMs

...are just like standard TMs, except:

1. The machine may proceed according to several possibilities

2. The machine accepts a string if there exists a path from start configuration to an accepting configuration

Deterministic Computation

Non-Deterministic Computation

accept or reject

Definition: Let M be a NTM that is a decider (le all branches halt on all inputs). The running time or time-complexity of M is the function $f : N \rightarrow N$, where f(n) is the maximum number of steps that M uses *on any branch of its computation on any input of length n*.

Theorem: Let t(n) be a function such that $t(n) \ge n$. Then every t(n)-time nondeterministic single-tape TM has an equivalent $2^{O(t(n))}$ deterministic single tape TM

Definition: NTIME(t(n)) = { L | L is decided by a O(t(n))-time non-deterministic Turing machine }

$TIME(t(n)) \subseteq NTIME(t(n))$

BOOLEAN FORMULAS

logical parentheses A satisfying assignment is a setting of the variables that makes the formula true $\phi = (\neg X \land y) \lor z$ x = 1, y = 1, z = 1 is a satisfying assignment for ϕ variables $\neg (x \lor y) \land (z \land \neg x)$ 0 1

A Boolean formula is satisfiable if there exists a satisfying assignment for it

YES $a \wedge b \wedge c \wedge \neg d$ NO $\neg (x \vee y) \wedge x$

SAT = { $\phi \mid \phi$ is a satisfiable Boolean formula }

A 3cnf-formula is of the form: $(x_1 \lor \neg x_2 \lor x_3) \land (x_4 \lor x_2 \lor x_5) \land (x_3 \lor \neg x_2 \lor \neg x_1)$

clauses

literals

YES $(x_1 \lor \neg x_2 \lor x_1)$ NO $(x_3 \lor x_1) \land (x_3 \lor \neg x_2 \lor \neg x_1)$ NO $(x_1 \lor x_2 \lor x_3) \land (\neg x_4 \lor x_2 \lor x_1) \lor (x_3 \lor x_1 \lor \neg x_1)$ NO $(x_1 \lor \neg x_2 \lor x_3) \land (x_3 \land \neg x_2 \land \neg x_1)$

3SAT = { ϕ | ϕ is a satisfiable 3cnf-formula }

3SAT = { ϕ | ϕ is a satisfiable 3cnf-formula } **Theorem: 3SAT** \in NTIME(n²)

On input ϕ :

- 1. Check if the formula is in 3cnf
- 2. For each variable, non-deterministically substitute it with 0 or 1

3. Test if the assignment satisfies $\boldsymbol{\varphi}$
$NP = \bigcup_{k \in N} NTIME(n^k)$

- **Theorem:** $L \in NP \Leftrightarrow$ if there exists a poly-time Turing machine V(erifier) with
- L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts } Proof:
- (1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts } then L ∈ NP

Because we can guess y and then run V

(2) If $L \in NP$ then

 $L = \{ x \mid \exists y \mid y \mid = poly(|x|) \text{ and } V(x,y) \text{ accepts } \}$

Let N be a non-deterministic poly-time TM that decides L and define V(x,y) to accept if y is an accepting computation history of N on x **3SAT =** { ϕ | \exists y such that y is a satisfying assignment to ϕ and ϕ is in 3cnf }

SAT = { ϕ | \exists y such that y is a satisfying assignment to ϕ }

A language is in NP if and only if there exist polynomial-length certificates* for membership to the language

> SAT is in NP because a satisfying assignment is a polynomial-length certificate that a formula is satisfiable

* that can be verified in poly-time

HAMILTONIAN PATHS

HAMPATH = { (G,s,t) | G is a directed graph with a Hamiltonian path from s to t }

Theorem: HAMPATH \in NP

The Hamilton path itself is a certificate

K-CLIQUES

CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

Theorem: CLIQUE \in NP

The k-clique itself is a certificate

NP = all the problems for which once you have the answer it is easy (i.e. efficient) to verify

POLY-TIME REDUCIBILITY

f: $\Sigma^* \rightarrow \Sigma^*$ is a polynomial time computable function if some poly-time Turing machine M, on every input w, halts with just f(w) on its tape

Language A is polynomial time reducible to language B, written $A \leq_P B$, if there is a polytime computable function $f : \Sigma^* \to \Sigma^*$ such that:

 $\mathbf{w} \in \mathbf{A} \Leftrightarrow \mathbf{f}(\mathbf{w}) \in \mathbf{B}$

f is called a polynomial time reduction of A to B

Theorem: If $A \leq_P B$ and $B \in P$, then $A \in P$

Proof: Let M_B be a poly-time (deterministic) TM that decides B and let f be a poly-time reduction from A to B

We build a machine M_A that decides A as follows:

On input w:

1. Compute f(w)

2. Run M_B on f(w)

Definition: A language B is NP-complete if:

1. B ∈ NP

2. Every A in NP is poly-time reducible to B (i.e. B is NP-hard)

Suppose B is NP-Complete

So, if B is NP-Complete and $B \in P$ then NP = P. Why?

Theorem (Cook-Levin): SAT is NP-complete **Corollary:** SAT \in P if and only if P = NP

NP-COMPLETENESS: THE COOK-LEVIN THEOREM

Theorem (Cook-Levin.'71): SAT is NPcomplete

Corollary: SAT \in P if and only if P = NP

Leonid Levin

Steve Cook

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT \in NP

(2) Every language A in NP is polynomial time reducible to SAT

We build a poly-time reduction from A to SAT

The reduction turns a string w into a 3-cnf formula ϕ such that w \in A iff $\phi \in$ 3-SAT.

• will *simulate* the NP machine N for A on w.

Let N be a non-deterministic TM that decides A in time n^k How do we know N exists?

So proof will also show: 3-SAT is NP-Complete

The reduction f turns a string w into a 3-cnf formula ϕ such that: w \in A $\Leftrightarrow \phi \in$ 3SAT. ϕ will "simulate" the NP machine N f<u>or A on w</u>.

Suppose $A \in NTIME(n^k)$ and let N be an NP machine for A.

A tableau for N on w is an $n^k \times n^k$ table whose rows are the configurations of *some* possible computation of N on input

W.

A tableau is accepting if any row of the tableau is an accepting configuration

Determining whether N accepts w is equivalent to determining whether there is an accepting tableau for N on w

Given w, our 3cnf-formula ϕ will describe a *generic* tableau for N on w (in fact, essentially *generic* for N on any string w of length n).

The 3cnf formula ϕ will be satisfiable *if and only if* there is an accepting tableau for N on w.

VARIABLES of ϕ Let C = Q $\cup \Gamma \cup \{\#\}$

- Each of the (n^k)² entries of a tableau is a cell
- cell[i,j] = the cell at row i and column j
- For each i and j (1 ≤ i, j ≤ n^k) and for each s \in C we have a variable $x_{i,j,s}$
- # variables = $|C|n^{2k}$, ie O(n^{2k}), since |C| only depends on N
 - These are the variables of ϕ and represent the contents of the cells
 - We will have: $x_{i,j,s} = 1 \Leftrightarrow cell[i,j] = s$

means

cell[i, j] = s

We now design ϕ so that a satisfying assignment to the variables $x_{i,j,s}$ corresponds to an accepting tableau for N on w

- The formula ϕ will be the AND of four parts:
- $\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$
 - ϕ_{cell} ensures that for each i,j, exactly one $x_{i,i,s} = 1$ ϕ_{start} ensures that the first row of the table is the starting (initial) configuration of N on w ϕ_{accept} ensures* that an accepting configuration occurs somewhere in the table ϕ_{move} ensures* that every row is a configuration that legally follows from the previous config *if the other components of **o** hold

$$\phi_{\text{start}} = \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q} \wedge \\ \mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \cdots \wedge \mathbf{X}_{1,n+2,w_n} \wedge \\ \mathbf{X}_{1,n+3,\Box} \wedge \cdots \wedge \mathbf{X}_{1,n^{k}-1,\Box} \wedge \mathbf{X}_{1,n^{k},\#}$$

				 	 	 	I.
#	\mathbf{q}_{0}	w ₁	w ₂	 w _n		#	
#						#	
							l

\$\overline{\overline{accept}} ensures that an accepting configuration occurs somewhere in the table

$$\phi_{\text{accept}} = \sqrt{X_{i,j,q_{\text{accept}}}}$$
$$1 \le i, j \le n^{k}$$

\$\phi_move\$ ensures that every row is a configuration that legally follows from the previous
 It works by ensuring that each 2 × 3 "window" of cells is legal (does not violate N's rules)

If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$ Which of the following windows are legal:

If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$ Which of the following windows are legal:

CLAIM:

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one.

CLAIM:

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one. S

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.
CLAIM:

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one.

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not adjacent to a state symbol

CLAIM:

lf

- the top row of the tableau is the start configuration, and
- and every window is legal,

Then

each row of the tableau is a configuration that legally follows the preceding one.

Proof:

In upper configuration, every cell that doesn't contain the boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not adjacent to a state symbol Case 2. center cell of window is a state symbol

#	q ₀	w ₁	w ₂	w ₃	w ₄	 w _n		#
#	ok	ok	w ₂	w ₃	w ₄			#

#	q ₀	w ₁	w ₂	w ₃	w ₄	 w _n		#
#	ok	ok	w ₂	w ₃	w ₄			#

#	q ₀	w ₁	w ₂	w ₃	w ₄	 w _n		#
#	ok	ok	w ₂	W ₃	w ₄			#

#	a ₁	q	a ₂	a ₃	a ₄	a ₅	 a _n		#
#	ok	ok	ok	a ₃	a ₄	a ₅			#

So the lower configuration follows from the upper!!!

The (i,j) Window

the (i, j) window is legal =

 $\sqrt{(x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j,+1,a} \land x_{i+1,j-1,a} \land x_{i+1,j_5} \land x_{i+1,j+1,a}) }_{a_1, \dots, a_6}$ is a legal window

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ..., a_6$).

the (i, j) window is legal =

 $\left(\begin{array}{c} x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j,+1,a} \wedge x_{i+1,j-1,a} \wedge x_{i+1,j_5} \wedge x_{i+1,j+1,a} \end{array} \right) \\ a_1, \ \ldots, \ a_6 \\ \text{is a legal window} \\ \end{array} \right.$

This is a disjunct over all (≤ |C|⁶) legal sequences (a₁, …,

This disjunct is satisfiable

There is **some** assignment to the cells (ie variables) in the window (i,j) that makes the window legal

the (i, j) window is legal =

 $\left(\begin{array}{c} x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j,+1,a} \wedge x_{i+1,j-1,a} \wedge x_{i+1,j_5a} \wedge x_{i+1,j+1,a} \end{array} \right) \\ a_1, \, \dots, \, a_6 \\ \text{is a legal window} \\ \end{array} \right.$

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ...,$

 $\mathbf{So} \phi_{move}$ is satisfiable

 $\langle \Box \rangle$

There is *some* assignment to each of the variables that makes *every* window legal.

the (i, j) window is legal =

 $\sqrt{ (x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j,+1,a} \land x_{i+1,j-1,a} \land x_{i+1,j_5} \land x_{i+1,j+1,a}) }$ is a legal window

This is a disjunct over all ($\leq |C|^6$) legal sequences ($a_1, ..., a_6$).

Can re-write as equivalent conjunct:

 $= \sqrt{(\bigotimes_{i,j-1_{1}a} \vee \bigotimes_{j,j,a} \vee \bigotimes_{i,j,+1,a} \vee \bigotimes_{j+1,j-1,a} \vee \bigotimes_{i+1,j,a} \vee \bigotimes_{i$

$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$

there is some assignment to each of the variables s.t. ϕ_{cell} and ϕ_{start} and ϕ_{accept} and ϕ_{move} each evaluates to 1

There is some assignment of symbols to cells in the tableau such that:

- The first row of the tableau is a start configuration and
- Every row of the tableau is a configuration that follows from the preceding by the rules of N and
- One row is an accepting configuration

 $\langle \Box \rangle$

There is some accepting computation for N with input w

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals If a clause has less than three variables:

 $a \equiv (a \lor a \lor a), (a \lor b) \equiv (a \lor b \lor b)$

3-SAT?

How do we convert the whole thing into a 3-cnf formula?

Everything was an AND of ORs We just need to make those ORs with 3 literals

If a clause has less than three variables:

 $a \equiv (a \lor a \lor a), (a \lor b) \equiv (a \lor b \lor b)$

If a clause has more than three variables: $(a \lor b \lor c \lor d) \equiv (a \lor b \lor z) \land (\neg z \lor c \lor d)$

 $(a_1 \lor a_2 \lor \ldots \lor a_t) \equiv$ $(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \ldots$

$\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}$

WHAT'S THE LENGTH OF **\$**?

$$\begin{split} \varphi_{\text{cell}} &= \bigwedge_{1 \le i, j \le n^k} \left(\bigvee_{s \in C} x_{i,j,s} \right)^{\wedge} \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \\ & s \ne t \end{split}$$

If a clause has less than three variables: $(a \lor b) = (a \lor b \lor b)$

$$\begin{split} \varphi_{\text{cell}} &= \bigwedge_{1 \le i, j \le n^k} \left(\bigvee_{s \in C} x_{i,j,s} \right)^{\wedge} \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \right) \\ & s \ne t \end{split}$$

O(n^{2k}) clauses

Length(ϕ_{cell}) = O(n^{2k}) O(log (n)) = O(n^{2k} log n)

length(indices)

 $\phi_{\text{start}} = \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q} \wedge$ $\mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \dots \wedge \mathbf{X}_{1,n+2,w_n} \wedge$ $\mathbf{X}_{1,n+3,\square} \land \dots \land \mathbf{X}_{1,n}^{k} \land \mathbf{X}_{1,n}^{k} \not$ $(\mathbf{X}_{1,1,\#} \vee \mathbf{X}_{1,1,\#} \vee \mathbf{X}_{1,1,\#}) \wedge$ $(\mathbf{X}_{1,2,q_0} \lor \mathbf{X}_{1,2,q_0} \lor \mathbf{X}_{1,2,q_0})$ \wedge ... \wedge $(\mathbf{X}_{1,n}^{k}, \# \vee \mathbf{X}_{1,n}^{k}, \# \vee \mathbf{X}_{1,n}^{k}, \#)$

$$\phi_{\text{start}} = \mathbf{X}_{1,1,\#} \wedge \mathbf{X}_{1,2,q} \wedge \\ \mathbf{X}_{1,3,w_1} \wedge \mathbf{X}_{1,4,w_2} \wedge \dots \wedge \mathbf{X}_{1,n+2,w_n} \wedge \\ \mathbf{X}_{1,n+3,\square} \wedge \dots \wedge \mathbf{X}_{1,n^{k}-1,\square} \wedge \mathbf{X}_{1,n^{k},\#}$$

O(n^k)

$$(a_1 \lor a_2 \lor \ldots \lor a_t) =$$

$$(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land (\neg z_2 \lor a_4 \lor z_3) \ldots$$

the (i, j) window is legal =

$$\bigwedge_{a_1, \dots, a_6} (\mathbf{x}_{i,j-1,a_1} \lor \mathbf{x}_{i,j,a_2} \lor \mathbf{x}_{i,j,+1,a_3} \lor \mathbf{x}_{i+1,j-1,a_1} \lor \mathbf{x}_{i+1,j,a_3} \lor \mathbf{x}_{i+1,j-1,a_1})$$

T a legal window

This is a conjunct over all ($\leq |C|^6$) illegal sequences ($a_1, ..., a_6$).

ISN'

Theorem (Cook-Levin): 3-SAT is NPcomplete

Corollary: 3-SAT \in P if and only if P = NP