
TIME COMPLEXITY AND
POLYNOMIAL TIME;

NON DETERMINISTIC TURING
MACHINES AND NP

 THURSDAY Mar 20

COMPLEXITY THEORY
Studies what can and can’t be computed under

limited resources such as time, space, etc

Today: Time complexity

Definition:

Suppose M is a TM that halts on all inputs.

The running time or time-complexity of M is
the function f : N → N, where f(n) is the
maximum number of steps that M uses on
any input of length n.

MEASURING TIME COMPLEXITY
We measure time complexity by counting the
elementary steps required for a machine to halt

Consider the language A = { 0k1k | k ≥ 0 }

1. Scan across the tape and reject if the
string is not of the form 0i1j

2. Repeat the following if both 0s and 1s
remain on the tape:
 Scan across the tape, crossing off a
 single 0 and a single 1

3. If 0s remain after all 1s have been crossed
off, or vice-versa, reject. Otherwise accept.~n

~n2

~n

On input of length n:

ASYMPTOTIC ANALYSIS
5n3 + 2n2 + 22n + 6 = O(n3)

Let f and g be two functions f, g : N → R+. We say
that f(n) = O(g(n)) if there exist positive integers c
and n0 so that for every integer n ≥ n0

f(n) ≤ cg(n)
When f(n) = O(g(n)), we say that g(n) is an
asymptotic upper bound for f(n)

BIG-O

5n3 + 2n2 + 22n + 6 = O(n3)
If c = 6 and n0 = 10, then 5n3 + 2n2 + 22n + 6 ≤ cn3

f asymptotically NO MORE THAN g

3nlog2 n + 5n log2log2 n

2n4.1 + 200283n4 + 2

nlog10 n78

= O(n4.1)

= O(nlog2 n)

= O(nlog10 n)

log10 n = log2 n / log2 10
O(nlog10 n) = O(nlog2 n) = O(nlog n)

Definition: TIME(t(n)) = { L | L is a language
decided by a O(t(n)) time Turing Machine }

A = { 0k1k | k ≥ 0 } ∈ TIME(n2)

9/12/2013 9

Big-oh necessary

• Moral: big-oh notation necessary given our
model of computation
– Recall: f(n) = O(g(n)) if there exists c such that f(n) ≤ c

g(n) for all sufficiently large n.
– TM model incapable of making distinctions between

time and space usage that differs by a constant.

9/12/2013 10

Linear Speedup

Theorem: Suppose TM M decides language L in
time f(n). Then for any ε > 0, there exists TM M’
that decides L in time

εf(n) + n + 2.
• Proof:

– simple idea: increase “word length”
– M’ will have

• one more tape than M
• m-tuples of symbols of M

∑new = ∑old ∪ ∑old
m

• many more states

9/12/2013 11

Linear Speedup

• part 1: compress input onto fresh tape

. . . a b a b b a a a

. . . aba bba aa_

9/12/2013 12

Linear Speedup

• part 2: simulate M, m steps at a time

b b a a b a b a a a b

. . . abb aab aba aab aba

.

. . .
m m

– 4 (L,R,R,L) steps to read relevant symbols,
“remember” in state

– 2 (L,R or R,L) to make M’s changes

9/12/2013 13

Linear Speedup

• accounting:
– part 1 (copying): n + 2 steps
– part 2 (simulation): 6 (f(n)/m)
– set m = 6/ε
– total: εf(n) + n + 2

Theorem: Suppose TM M decides language L in
space f(n). Then for any ε > 0, there exists TM M’
that decides L in space εf(n) + 2.

• Proof: same.

A = { 0k1k | k ≥ 0 } ∈ TIME(nlog n)
Cross off every other 0 and every other 1. If the #
of 0s and 1s left on the tape is odd, reject

00000000000001111111111111
x0x0x0x0x0x0xx1x1x1x1x1x1x
xxx0xxx0xxx0xxxx1xxx1xxx1x
xxxxxxx0xxxxxxxxxxxx1xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

We can prove that a one-tape TM
cannot decide A in less time than

O(nlog n)
*7.49 Extra Credit. Let f(n) = o(nlogn). Then
Time(f(n)) contains only regular languages.

where f(n) = o(g(n)) iff limn->∞ f(n)/g(n) = 0

ie, for all c >0, ∃ n0 such that f(n) < cg(n) for all n ≥n0

f asymptotically LESS THAN g

Can A = { 0k1k | k ≥ 0 } be decided in time
O(n) with a two-tape TM?

Scan all 0s and copy them to the second
tape. Scan all 1s, crossing off a 0 from
the second tape for each 1.

Different models of computation
yield different running times for

the same language!

Theorem: Let t(n) be a function such that t(n) ≥ n.
Then every t(n)-time multi-tape TM has an
equivalent O(t(n)2) single tape TM

Claim: Simulating each step in the multi-
tape machine uses at most O(t(n)) steps
on a single-tape machine.
Hence total time of simulation is O(t(n)2) .

MULTITAPE TURING MACHINES

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE
STATE
CONTROL

δ : Q × Γk
 → Q × Γk × {L,R}k

FINITE
STATE
CONTROL

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE
CONTROL

0 01

FINITE
STATE
CONTROL 0 01 # # #. . .

Theorem: Every Multitape Turing Machine can be
transformed into a single tape Turing Machine

FINITE
STATE
CONTROL

0 01

FINITE
STATE
CONTROL 0 01 # # #. . .

Analysis: (Note, k, the # of tapes, is fixed.)

Let S be simulator
• Put S’s tape in proper format: O(n) steps
• Two scans to simulate one step,
 1. to obtain info for next move O(t(n)) steps, why?
 2. to simulate it (may need to shift everything
 over to right possibly k times): O(t(n)) steps, why?

P = TIME(nk)∪
k ∈ N

NON-DETERMINISTIC
TURING MACHINES AND NP

0 → 0, R

read write move

 → , R

qaccept

qreject

0 → 0, R

 → , R

0 → 0, R

Definition: A Non-Deterministic TM is a 7-tuple
T = (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states

Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ

q0 ∈ Q is the start state

Σ is the input alphabet, where ∉ Σ

δ : Q × Γ → 2(Q × Γ × {L,R})

qaccept ∈ Q is the accept state

qreject ∈ Q is the reject state, and qreject ≠ qaccept

NON-DETERMINISTIC TMs
…are just like standard TMs, except:

1. The machine may proceed according to
several possibilities

2. The machine accepts a string if there
exists a path from start configuration to an
accepting configuration

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Definition: Let M be a NTM that is a decider (Ie all branches halt
on all inputs).
The running time or time-complexity of M is the function f : N → N,
where f(n) is the maximum number of steps that M uses on any
branch of its computation on any input of length n.

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

Theorem: Let t(n) be a function such that t(n) ≥ n. Then
every t(n)-time nondeterministic single-tape TM has an
equivalent 2O(t(n)) deterministic single tape TM

 { L | L is decided by a
O(t(n))-time non-deterministic Turing machine }
Definition: NTIME(t(n)) =

TIME(t(n)) ⊆ NTIME(t(n))

BOOLEAN FORMULAS

(¬x ∧ y) ∨ zφ =

logical
operations

variables

parentheses
A satisfying assignment is a setting of the
variables that makes the formula true

x = 1, y = 1, z = 1 is a satisfying assignment for φ

¬(x ∨ y) ∧ (z ∧ ¬x)
0 0 1 0

SAT = { φ | φ is a satisfiable Boolean formula }

A Boolean formula is satisfiable if there
exists a satisfying assignment for it

¬(x ∨ y) ∧ x

a ∧ b ∧ c ∧ ¬dYES

NO

A 3cnf-formula is of the form:
(x1 ∨ ¬x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x5) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

clauses

(x1 ∨ ¬x2 ∨ x1)

(x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ ¬x1)

(x1 ∨ x2 ∨ x3) ∧ (¬x4 ∨ x2 ∨ x1) ∨ (x3 ∨ x1 ∨ ¬x1)

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∧ ¬x2 ∧ ¬x1)

YES

NO

NO

NO

3SAT = { φ | φ is a satisfiable 3cnf-formula }

literals

Theorem: 3SAT ∈ NTIME(n2)
3SAT = { φ | φ is a satisfiable 3cnf-formula }

1. Check if the formula is in 3cnf
On input φ:

2. For each variable, non-deterministically
substitute it with 0 or 1

3. Test if the assignment satisfies φ

(x ∨ y¬ ∨ x)

(∨ y¬ ∨)0 0 (∨ y¬ ∨)1 1

(∨ ¬ ∨)0 00 (∨ ¬ ∨)0 1 0

NP = NTIME(nk)∪
k ∈ N

Theorem: L ∈ NP ⇔ if there exists a poly-time
Turing machine V(erifier) with

L = { x | ∃y(witness) |y| = poly(|x|) and V(x,y) accepts }

Proof:

(1) If L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }
 then L ∈ NP

Because we can guess y and then run V

(2) If L ∈ NP then
 L = { x | ∃y |y| = poly(|x|) and V(x,y) accepts }

Let N be a non-deterministic poly-time TM that
decides L and define V(x,y) to accept if y is an
accepting computation history of N on x

3SAT = { φ | ∃y such that y is a satisfying
assignment to φ and φ is in 3cnf }

SAT = { φ | ∃y such that y is a satisfying
assignment to φ }

A language is in NP if and only if there
exist polynomial-length certificates*

for membership to the language

SAT is in NP because a satisfying
assignment is a polynomial-length

certificate that a formula is satisfiable

* that can be verified in poly-time

HAMILTONIAN PATHS

b

a

e

c

d

f

hi

g

HAMPATH = { (G,s,t) | G is a directed graph
with a Hamiltonian path from s to t }

Theorem: HAMPATH ∈ NP

The Hamilton path itself is a certificate

K-CLIQUES

b

a

e

c

d f

g

CLIQUE = { (G,k) | G is an undirected graph
with a k-clique }

Theorem: CLIQUE ∈ NP

The k-clique itself is a certificate

NP = all the problems for which once
you have the answer it is easy (i.e.
efficient) to verify

P = NP?
$$$
$$$

POLY-TIME REDUCIBILITY
f : Σ* → Σ* is a polynomial time computable
function

Language A is polynomial time reducible to
language B, written A ≤P B, if there is a poly-
time computable function f : Σ* → Σ* such that:

w ∈ A ⇔ f(w) ∈ B

f is called a polynomial time reduction of A to B

 if some poly-time Turing machine M, on
every input w, halts with just f(w) on its tape

A B
f

f

Theorem: If A ≤P B and B ∈ P, then A ∈ P

Proof: Let MB be a poly-time (deterministic)
TM that decides B and let f be a poly-time
reduction from A to B

We build a machine MA that decides A as follows:

On input w:

1. Compute f(w)

2. Run MB on f(w)

Definition: A language B is NP-complete if:

1. B ∈ NP
2. Every A in NP is poly-time reducible to B
(i.e. B is NP-hard)

Suppose B is NP-Complete

P
NP

B

So, if B is NP-Complete and B ∈ P then NP = P. Why?

Theorem (Cook-Levin): SAT is NP-complete
Corollary: SAT ∈ P if and only if P = NP

NP-COMPLETENESS:
THE COOK-LEVIN THEOREM

Theorem (Cook-Levin.’71): SAT is NP-
complete

Corollary: SAT ∈ P if and only if P = NP

Steve CookLeonid Levin

Theorem (Cook-Levin): SAT is NP-complete

Proof:

(1) SAT ∈ NP

(2) Every language A in NP is polynomial time
reducible to SAT

We build a poly-time reduction from A to SAT

Let N be a non-deterministic TM that decides
A in time nk How do we know N exists?

The reduction turns a string w into a 3-cnf
formula φ such that w ∈ A iff φ ∈ 3-SAT.
φ will simulate the NP machine N for A on w.

So proof will also show:
3-SAT is NP-Complete

P
NP

3-SAT

A 3SAT
f

f

The reduction f turns a string w into a 3-cnf formula φ
such that: w ∈ A ⇔ φ ∈ 3SAT.

φ will “simulate” the NP machine N for A on w.

w φ

Deterministic
Computation

Non-Deterministic
Computation

accept or reject accept

reject

nk

exp(nk)

Suppose A ∈ NTIME(nk) and let N be an NP machine for A.
A tableau for N on w is an nk × nk table whose rows are the
configurations of some possible computation of N on input
w.

q0 w1 wnw2# #… …

#

#

nk

nk

A tableau is accepting if any row of the tableau
is an accepting configuration

Determining whether N accepts w is equivalent
to determining whether there is an accepting
tableau for N on w

Given w, our 3cnf-formula φ will describe a
generic tableau for N on w (in fact, essentially
generic for N on any string w of length n).

The 3cnf formula φ will be satisfiable if and only
if there is an accepting tableau for N on w.

Let C = Q ∪ Γ ∪ { # }

For each i and j (1 ≤ i, j ≤ nk) and for each s ∈ C
we have a variable xi,j,s

VARIABLES of φ

Each of the (nk)2 entries of a tableau is a cell

cell[i,j] = the cell at row i and column j

These are the variables of φ and represent the
contents of the cells

We will have: xi,j,s = 1 ⬄ cell[i,j] = s

variables = |C|n2k, ie O(n2k), since |C| only depends on N

xi,j,s = 1

means

cell[i, j] = s

φaccept ensures* that an accepting configuration
occurs somewhere in the table

We now design φ so that a satisfying assignment
to the variables xi,j,s corresponds to an accepting
tableau for N on w
The formula φ will be the AND of four parts:
φ = φcell ∧ φstart ∧ φaccept ∧ φmove

φcell ensures that for each i,j, exactly one xi,j,s = 1
φstart ensures that the first row of the table is the
starting (initial) configuration of N on w

φmove ensures* that every row is a configuration
that legally follows from the previous config
*if the other components of φ hold

∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t)φcell =

s,t ∈ C
s ≠ t

at least one
variable is
turned on

at most one
variable is
turned on

φcell ensures that for each i,j, exactly one xi,j,s =
1

φstart = x1,1,# ∧ x1,2,q ∧

 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧

 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

q0 w1 wnw2# #… …

#

#

φaccept =
1 ≤ i, j ≤ nk

xi,j,qaccept

φaccept ensures that an accepting
configuration occurs somewhere in the table

φmove ensures that every row is a configuration
that legally follows from the previous
It works by ensuring that each 2 × 3 “window”
of cells is legal (does not violate N’s rules)

q0 w1 wnw2# #… …

#

#

If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}
Which of the following windows are legal:

a q1 b

q2 a c

b a

b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b 2

If δ(q1,a) = {(q1,b,R)} and δ(q1,b) = {(q2,c,L), (q2,a,R)}
Which of the following windows are legal:

a q1 b

q2 a c

b a

b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b q2

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol
Case 2. center cell of window is a state symbol

s

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol

a
a

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

CLAIM:
If

• the top row of the tableau is the start configuration,
and
• and every window is legal,

Then  
each row of the tableau is a configuration that legally
follows the preceding one.

Proof:
In upper configuration, every cell that doesn’t contain the
boundary symbol #, is the center top cell of a window.

Case 1. center cell of window is a non-state symbol and not
adjacent to a state symbol
Case 2. center cell of window is a state symbol

a q
a ok ok ok

q0 w1 wnw2# #… …

#

#

ok

o
k
k

ok

w3 w4

w2 w3 w4

q0 w1 wnw2# #… …

#

#

ok

o
k
k

ok

w3 w4

w2 w3 w4

q0 w1 wnw2# #… …

#

#

ok

o
k
k

ok

w3 w4

w2 w3 w4

a1 q ana2# #… …

#

#

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5

a1 q ana2# #… …

#

#

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5

a1 q ana2# #… …

#

#

ok

o
k
k

ok

a3 a4

a3 a4ok

a5

a5

So the lower configuration follows from the
upper!!!

(i,j-1)
a1

(i,j)
a2

(i,j+1)
a3

(i+1,j-1)
a4

(i+1,j)
a5

(i+1,j+ 1)
a6

row i

row i+1

col. j-1 col. j col. j+1

The (i,j) Window

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6).

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6). This disjunct is satisfiable
⬄
There is some assignment to the cells (ie variables) in
the window (i,j) that makes the window legal

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6). So φmove is satisfiable
⬄
There is some assignment to each of the variables that
makes every window legal.

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

the (i, j) window is legal =

a1, …, a6
is a legal window

(xi,j-1,a ∧ xi,j,a ∧ xi,j,+1,a ∧ xi+1,j-1,a ∧ xi+1,j,a ∧ xi+1,j+1,a) 1 2 3 4 5 6

a1, …, a6
ISN’T a legal window

1 2 3 4 5 6
≡ (i,j-1,a ∨ i,j,a ∨ i,j,+1,a ∨ i+1,j-1,a ∨ i+1,j,a ∨ +1,j

+1,a)

This is a conjunct over all (≤ |C|6) illegal sequences (a1, …, a6).

This is a disjunct over all (≤ |C|6) legal sequences (a1, …,
a6).

Can re-write as equivalent conjunct:

φ is satisfiable (ie, there is some assignment to each of
the varialbes s.t. φ evaluates to 1)
⬄
there is some assignment to each of the variables s.t.
 φcell and φstart and φaccept and φmove each evaluates to 1
⬄
There is some assignment of symbols to cells in the
tableau such that:
• The first row of the tableau is a start configuration and
• Every row of the tableau is a configuration that follows

from the preceding by the rules of N and
• One row is an accepting configuration
 ⬄
There is some accepting computation for N with input w

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
literals

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
literals

 a ≡ (a ∨ a ∨ a), (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

3-SAT?
How do we convert the whole thing into
a 3-cnf formula?

Everything was an AND of ORs
We just need to make those ORs with 3
literals

 a ≡ (a ∨ a ∨ a), (a ∨ b) ≡ (a ∨ b ∨ b)
If a clause has less than three variables:

(a ∨ b ∨ c ∨ d) ≡(a ∨ b ∨ z) ∧ (¬z ∨ c ∨ d)
If a clause has more than three variables:

(a1 ∨ a2 ∨ … ∨ at) ≡
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) …

WHAT’S THE LENGTH OF φ?

φ = φcell ∧ φstart ∧ φaccept ∧ φmove

∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t)φcell =

s,t ∈ C
s ≠ t

(a ∨ b) = (a ∨ b ∨ b)
If a clause has less than three variables:

∧

1 ≤ i, j ≤ nk s ∈ C
xi,j,s (¬xi,j,s ∨ ¬xi,j,t)φcell =

s,t ∈ C
s ≠ t

O(n2k) clauses
Length(φcell) = O(n2k) O(log (n)) = O(n2k log n)

length(indices)

φstart = x1,1,# ∧ x1,2,q ∧

 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧

 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

k k k

0 0 0

 = (x1,1,# ∨ x1,1,# ∨ x1,1,#) ∧

 (x1,2,q ∨ x1,2,q ∨ x1,2,q)

∧ … ∧

 (x1,n ,# ∨ x1,n ,# ∨ x1,n ,#)

O(nk)

k

φstart = x1,1,# ∧ x1,2,q ∧

 x1,3,w ∧ x1,4,w ∧ … ∧ x1,n+2,w ∧

 x1,n+3, ∧ … ∧ x1,n -1, ∧ x1,n ,#

0

1 2 n

k k

φaccept =
1 ≤ i, j ≤ nk

xi,j,qaccept

(a1 ∨ a2 ∨ … ∨ at) =
(a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ z3) …

φaccept =
1 ≤ i, j ≤ nk

xi,j,qaccept

O(n2k)

φmove =
1 ≤ i, j ≤ nk

(the (i, j) window is legal)

O(n2k)

a1, …, a6
ISN’T a legal window

 (xi,j-1,a ∨ xi,j,a ∨ xi,j,+1,a ∨ xi+1,j-1,a ∨ xi+1,j,a ∨ xi+1,j+1,a) 1 2 3 4 5 6
- - - - - -

the (i, j) window is legal =

This is a conjunct over all (≤ |C|6) illegal sequences (a1, …,
a6).

Theorem (Cook-Levin): 3-SAT is NP-
complete

Corollary: 3-SAT ∈ P if and only if P = NP

