15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

KOLMOGOROV-CHAITIN (descriptive) COMPLEXITY

TUESDAY, MAR 18

CAN WE QUANTIFY HOW MUCH INFORMATION IS IN A STRING?

A = 010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can "compress" a string, the less "information" it contains....

INFORMATION AS DESCRIPTION

INFORMATION IN A STRING:
SHORTEST DESCRIPTION OF THE STRING

How can we "describe" strings?

Turing machines with inputs!

INFORMATION AS DESCRIPTION

INFORMATION IN A STRING:
SHORTEST DESCRIPTION OF THE STRING

How can we "describe" strings?

Turing machines with inputs!

Definition: Let x be in $\{0,1\}^*$. The shortest description of x, denoted as d(x), is the lexicographically shortest string $\langle M, w \rangle$ s.t. M(w) halts with x on tape.

Definition: Let x in $\{0,1\}^*$. The shortest description of x, denoted as d(x), is the lexicographically shortest string $\langle M, w \rangle$ s.t. M(w) halts with x on tape.

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

Definition: Let x in $\{0,1\}^*$. The shortest description of x, denoted as d(x), is the lexicographically shortest string $\langle M, w \rangle$ s.t. M(w) halts with x on tape.

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

How to code <M,w>?

Assume w in {0,1}* and we have a binary encoding of M

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function $<,>: \Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2: \Sigma^* \to \Sigma^*$ such that:

$$z = \langle M, w \rangle \Rightarrow \pi_1(z) = M \text{ and } \pi_2(z) = w$$

Let $Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1$ Then:

$$:= Z(M) w$$

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function <,>: $\Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \to \Sigma^*$ such that:

$$z = \langle M, w \rangle \Rightarrow \pi_1(z) = M \text{ and } \pi_2(z) = w$$

Let $Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1$ Then:

$$:= Z(M) w$$

(Example: <10110,101> = 01000101001101)

Note that
$$|| = 2|M| + |w| + 1$$

A BETTER PAIRING FUNCTION

```
Let b(n) be the binary encoding of n
Again let Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1
< M, w > := Z(b(|M|)) M w
```

A BETTER PAIRING FUNCTION

```
Let b(n) be the binary encoding of n
Again let Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1
< M, w > := Z(b(|M|)) M w
```

```
Example: Let <M,w> = <10110,101>
So, b(|10110|) = 101
So, <10110,101> = 010001110110101
```

A BETTER PAIRING FUNCTION

Let b(n) be the binary encoding of n
Again let
$$Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1$$

 $< M, w > := Z(b(|M|)) M w$

Example: Let
$$= <10110,101>$$

So, b(|10110|) = 101
So, $<10110,101> = 010001110110101$

We can still decode 10110 and 101 from this! Now, $|\langle M, w \rangle| = 2 \log(|M|) + |M| + |w| + 1$

Definition: Let x in $\{0,1\}^*$. The shortest description of x, denoted as d(x), is the lexicographically shortest string $\langle M, w \rangle$ s.t. M(w) halts with x on tape.

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

EXAMPLES??

Let's start by figuring out some properties of K. Examples will fall out of this.

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(x) \le |x| + c$

"The amount of information in x isn't much more than x"

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(x) \le |x| + c$

"The amount of information in x isn't much more than x"

Proof: Define M = "On w, halt."

On any string x, M(x) halts with x on its tape!

This implies

$$K(x) \le |\langle M, x \rangle| \le 2|M| + |x| + 1 \le c + |x|$$

(Note: M is fixed for all x. So M is constant)

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(xx) \le K(x) + c$

"The information in xx isn't much more than that in x"

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(xx) \le K(x) + c$

"The information in xx isn't much more than that in x"

```
Proof: Let N = \text{``On } < M, w>, let s=M(w). Print ss."
```

- Let $\langle M, w' \rangle$ be the shortest description of x.
- Then <N,<M,w'>> is a description of xx
- **Therefore**

$$K(xx) \le |\langle N, \langle M, w' \rangle \rangle| \le 2|N| + K(x) + 1 \le c + K(x)$$

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log_2 n$

"The information in xⁿ isn't much more than that in x"

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$, $K(x^n) \le K(x) + c \log_2 n$

"The information in xⁿ isn't much more than that in x"

Proof:

An intuitive way to see this:

Define M: "On $\langle x, n \rangle$, print x for n times".

Now take $\langle M, \langle x, n \rangle \rangle$ as a description of x^n .

In binary, n takes $O(\log n)$ bits to write down, so we have $K(x) + O(\log n)$ as an upper bound on $K(x^n)$.

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log_2 n$

"The information in xⁿ isn't much more than that in x"

Recall:

A = 010101010101010101010101010101

For $w = (01)^n$, $K(w) \le K(01) + c \log_2 n$

CONCATENATION of STRINGS

Theorem: There is a fixed c so that for all x, y in {0,1}*,

$$K(xy) \leq 2K(x) + K(y) + c$$

Better: $K(xy) \le 2 \log K(x) + K(x) + K(y) + c$

Turing machines are one programming language. If we use other programming languages, can we get shorter descriptions?

An interpreter is a (partial) computable function $p: \Sigma^* \to \Sigma^*$

Takes programs as input, and prints their outputs

Turing machines are one programming language. If we use other programming languages, can we get shorter descriptions?

An interpreter is a (partial) computable function $p: \Sigma^* \to \Sigma^*$

Takes programs as input, and prints their outputs

Definition: Let $x \in \{0,1\}^*$. The shortest description of x under p, $(d_p(x))$, is the lexicographically shortest string for which $p(d_p(x)) = x$.

Turing machines are one programming language. If we use other programming languages, can we get shorter descriptions?

An interpreter is a (partial) computable function $p: \Sigma^* \to \Sigma^*$

Takes programs as input, and prints their outputs

Definition: Let $x \in \{0,1\}^*$. The shortest description of x under p, $(d_p(x))$, is the lexicographically shortest string for which $p(d_p(x)) = x$.

Definition: $K_p(x) = |d_p(x)|$.

Theorem: For every interpreter p, there is a fixed c so that for all $x \in \{0,1\}^*$, $K(x) \le K_p(x) + c$

Using any other programming language would only change K(x) by some constant

Theorem: For every interpreter p, there is a fixed c so that for all $x \in \{0,1\}^*$, $K(x) \le K_p(x) + c$

Using any other programming language would only change K(x) by some constant

Proof: Define $M_p = "On w, output p(w)"$

Then $\langle M_p, d_p(x) \rangle$ is a description of x, and

$$K(x) \le |\langle M_p, d_p(x) \rangle|$$

 $\le 2|M_p| + K_p(x) + 1 \le c + K_p(x)$

INCOMPRESSIBLE STRINGS

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \ge n$

"There are incompressible strings of every length"

INCOMPRESSIBLE STRINGS

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \ge n$

"There are incompressible strings of every length"

Proof: (Number of binary strings of length n) = 2^n

(Number of descriptions of length < n)

≤ (Number of binary strings of length < n)</p>

 $= 2^{n} - 1.$

Therefore: there's at least one n-bit string that doesn't have a description of length < n

INCOMPRESSIBLE STRINGS

```
Theorem: For all n and c,  \Pr_{x \in \{0,1\}^n} [ K(x) \ge n-c ] \ge 1 - 1/2^c
```

"Most strings are fairly incompressible"

Proof: (Number of binary strings of length n) = 2^n

(Number of descriptions of length < n-c)

≤ (Number of binary strings of length < n-c)</p>

 $= 2^{n-c} - 1$

So the probability that a random x has K(x) < n-c is at most $(2^{n-c} - 1)/2^n < 1/2^c$.

A QUIZ

Give short algorithms for generating:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610
- 3. 12624120720504040320362880

This seems hard in general. Why? We'll give a formal answer in just one moment...

Can an algorithm help us compress strings?
Can an algorithm tell us when a string is compressible?

COMPRESS = $\{(x,c) \mid K(x) \le c\}$

Theorem: COMPRESS is undecidable!

Can an algorithm help us compress strings?
Can an algorithm tell us when a string is compressible?

COMPRESS = $\{(x,c) \mid K(x) \le c\}$

Theorem: COMPRESS is undecidable!

Berry Paradox: "The first string whose shortest description cannot be written in less than fifteen words."

COMPRESS = $\{(x,n) \mid K(x) \le n\}$

Theorem: COMPRESS is undecidable!

Proof:

```
M = "On input x \in \{0,1\}^*, Interpret x as integer n. (|x| \le log n)
Find first y \in \{0,1\}^* in lexicographical order, s.t. (y,n) \notin COMPRESS, then print y and halt."
```

M(x) prints the first string y^* with $K(y^*) > n$. Thus <M,x> describes y^* , and |<M,x> $| \le c + log n$ So n < K(y^*) $\le c + log n$. CONTRADICTION!

Theorem: K is not computable

```
Proof:
```

```
M = "On input x \in \{0,1\}^*, Interpret x as integer n. (|x| \le \log n) Find first y \in \{0,1\}^* in lexicographical order, s. t. K(y) > n, then print y and halt."
```

M(x) prints the first string y* with K(y*) > n. Thus <M,x> describes y*, and |<M,x> $| \le c + log n$ So n < K(y*) $\le c + log n$. CONTRADICTION!

SO WHAT CAN YOU DO WITH THIS?

Many results in mathematics can be proved very simply using incompressibility.

Theorem: There are infinitely many primes.

IDEA: Finitely many primes ⇒ can compress everything!

SO WHAT CAN YOU DO WITH THIS?

Many results in mathematics can be proved very simply using incompressibility.

Theorem: There are infinitely many primes.

IDEA: Finitely many primes ⇒ can compress everything!

Proof: Suppose not. Let p_1, \ldots, p_k be the primes. Let x be incompressible. Think of n = x as integer. Then there are e_i s.t.

$$n = p_1^{e1} \dots p_k^{ek}$$

For all i, $e_i \le log n$, so $|e_i| \le log log n$ Can describe n (and x) with k log log n + c bits! But x was incompressible... CONTRADICTION!

WWW.FLAC.WS

Read Chapter 7.1 for next time