15-453

FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

THE ARITHMETIC HIERARCHY

THURSDAY, MAR 6

ORACLE TMs

Oracle for Ay
Is (M,w) in s,

| | Amn?

v
dNgefulTl J P

INFINITE TAPE

ORACLE MACHINES

An ORACLE is a set B to which the TM may pose
membership questions “Is w in B?”
(formally: TM enters state q.)

and the TM always receives a correct answer in
one step

(formally: if the string on the “oracle tape” is in B,
state q, is changed to gygg, otherwise q,()

This makes sense even if B is not decidable!
(We do not assume that the oracle B is a
computable set!)

We say A Is semi-decidable in B
if there is an oracle TM M with oracle B that
semi-decides A

We say A is decidable in B
if there is an oracle TM M with oracle B that
decides A

Language A “Turing Reduces” to
Language B

if A is decidable in B, ie if there is an
oracle TM M with oracle B that decides A

A=.B

< VERSUS <_
Theorem: IfA<_BthenA=<;B
Proof:

If A <, B then there is a computable function
f:2* — 2% where for every w,

weA<f(w)eB

We can thus use an oracle for B to decide A

Theorem: -AT;y =1 ATy,
Theorem: —ATy s/, ATy

THE ARITHMETIC HIERARCHY
A O
1

= { decidable sets } (sets = languages)

2 (1) = { semi-decidable sets }

0
2 2+1 = { sets semi-decidable in some B €) .

0
A +1 = { sets decidable in some B € Ez)

0
I n = { complements of sets in E g }

E 0
Semi- 1

decidable
Languages

0
L

EOmHO

1

1

Decidable Languages

I10
1

Co-semi-
decidable
Languages

E 0
Semi- 1

decidable
Languages

0

1

=>% NIIO
1 1

Decidable Languages

I10
1

Co-semi-
decidable
Languages

Theorem

2 (1) = { semi-decidable sets }

= languages of the form { x | 3y R(x,y) }

I1 (1) = { complements of semi-decidable sets }

= languages of the form { x | Yy R(x,y) }

Ag = { decidable sets }
-39 NI

Where R is a decidable predicate

Theorem

2 g = { sets semi-decidable in some semi-dec. B }

= languages of the form { x | 3y,Vy, R(x,y,,Y,) }

11 g = { complements of 2 g sets}
= languages of the form { x | Vy,3y, R(x,y.,y,) }

A0 _ N0 0
z'EzﬂHz

Where R is a decidable predicate

Theorem

0
E - languages { x | dy,Vy,3y,...Qy, R(X,y;;..-,¥,) }

0
[1 o= languages { x | Vy,dy,Vy....Qy, R(X,y4,...,¥,) }

AO=EO M T10
n

n n

Where R is a decidable predicate

Example Decidable predicate

E 2 = languages of the form { x | Ely

We know that Ay isin2 ¢ Why?

Show it can be described in this form:

Ay = {<(M,w)> | 3t [M accepts w in t steps] }

—

decidable predicate

Ay = { <(M,w)> | 3t T (<M>, w, t }

Ay = {<(M,w)>| dv (v Is an accepting
computation history of M on w}

Definition: A decidable predicate R(x,y) is some

proposition about x and y1, where thereisa TM M
such that

for all x, y, R(x,y) is TRUE = M(x,y) accepts
R(x,y) is FALSE = M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:
R(x,y) = “x + y is less than 100”

R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, X, y): M accepts X in y steps

1. X, y are positive integers or elements of >*

Definition: A decidable predicate R(x,y) is some

proposition about x and y1, where thereisa TM M
such that

for all x, y, R(x,y) is TRUE = M(x,y) accepts
R(x,y) is FALSE = M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:
R(x,y) = “x + y is less than 100”

R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, X, y): M accepts X in y steps

Note: A is decidable < A = {x | R(x,£)},
for some decidable predicate R.

Theorem

0
E - languages { x | dy,Vy,3y,...Qy, R(X,y;;..-,¥,) }

0
[1 o= languages { x | Vy,dy,Vy....Qy, R(X,y4,...,¥,) }

AO=EO M T10
n

n n

Where R is a decidable predicate

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)

such that: A ={x]|3yR(x,y)}

Proof:

(1) If A={ x| dy R(x,y) } then A is semi-decidable
Because we can enumerate over all y’s

(2) If A is semi-decidable, then A ={ x| dy R(x,y) }

Let M semi-decide A

Then, A={x |3y T(KM>, X, ¥) } (Here M is fixed.)
where
, T(<M>, X, y): M accepts X in y steps.

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function <, >: 2*x2* — 2* and computable
functions n, and &, : £* — 2* such that

z=<w,t> = n, (z) =wand n,(z2) = t

Proof: Letw=w,..w, € 2*,t € 2%
Leta,b € 2,a = b.
<w,t>:=aw,..aw bt

n4 (z) := “if z has the formaw,...aw_ b t,
then output w,... w_, else output €”
n,(2) := “if z has the formaw,... aw_ b t,

then output t, else output €”

Theorem

2 (1) = { semi-decidable sets }

= languages of the form { x | 3y R(x,y) }

I1 (1) = { complements of semi-decidable sets }

= languages of the form { x | Yy R(x,y) }

Ag = { decidable sets }
-39 NI

Where R is a decidable predicate

Theorem

2 g = { sets semi-decidable in some semi-dec. B }

= languages of the form { x | 3y,Vy, R(x,y,,Y,) }

11 g = { complements of 2 g sets}
= languages of the form { x | Vy,3y, R(x,y.,y,) }

A0 _ N0 0
z'EzﬂHz

Where R is a decidable predicate

Example Decidable predicate

E 2 = languages of the form { x | Ely

We know that Ay isin2 ¢ Why?

Show it can be described in this form:

Ay = {<(M,w)> | 3t [M accepts w in t steps] }

—

decidable predicate

Ay = { <(M,w)> | 3t T (<M>, w, t }

Ay = {<(M,w)>| dv (v Is an accepting
computation history of M on w}

EO)& HO
3 AO 3
3
A0
2
- >0 NTIIo

3¢ v
2
= 0
> (1) 2 2 I1 ;
Semi- Arn Co-semi-
decidable decidable
languages AO languages

1
Decidable languages

Hg = languages of the form { x | Vy R(x,y) }

Show that EMPTY (ie, E,,) ={ M| L(M) =& }is in]] 0
1

EMPTY ={M | VwVt [M doesn’t accept w in t steps] }

S/

two quantifiers?? decidable predicate

Hg = languages of the form { x | Vy R(x,y) }

Show that EMPTY (ie, E,,) ={ M| L(M) =& }is in]] 0
1

EMPTY={M | VwVt[-T(<M>, w, t)] }

A

two quantifiers?? decidable predicate

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function <, >: 2*x2* — 2* and computable
functions n, and &, : £* — 2* such that

z=<w,t> = n, (z) =wand n,(z2) = t
EMPTY ={M | VYwVt [M doesn’t accept w in t steps] }

EMPTY = { M | Vz [M doesn’t accept x, () in n,(z) steps]}

EMPTY ={M | Vz[-T(<M>, w, (2), 7,(2))]}

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable
function <, >: 2*x2* — 2* and computable
functions n, and &, : £* — 2* such that

z=<w,t> = n, (z) =wand n,(z2) = t

Proof: Letw=w,..w, € 2*,t € 2%
Leta,b € 2,a = b.
<w,t>:=aw,..aw bt

4 (z) :="if z has the form a w,... aw_ b t,
then output w,... w_, else output €’
n,(z) := “if z has the form aw,... aw, b t,
then output t, else output €”

2" I10

3 3

3¢ v

2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

Hg = languages of the form { x | Vydz R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
isin 70
2

TOTAL={M | Vw dt [M halts on w in t steps] }

decidable predicate

Hg = languages of the form { x | Vydz R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
isin 70
2

TOTAL={M | Vw3t [T(<M>, w, t)] }

decidable predicate

2 TOTAL 2

I10
20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

E g = languages of the form { x | dyVz R(x,y,z) }
Show that FIN = { M | L(M) is finite } is inE 0
2

FIN={M | dnVwVt [Either |w| < n, or
M doesn’t accept w in t steps] }

FIN = { M| InVwVt (|w| < n v- T(<M>,w, t))}

Ve

decidable predicate

I]0
29| FIN TOTAL 2

I10
20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

Eg = languages of the form { x | dyVzdu R(x,y,z,u) }
Show that COF = { M | L(M) is cofinite } is in E 0
2

COF={M|3InVwat[|w]|>n = M accept win t steps]

COF ={M|3InvVwit(|w| = n vT(<M>,w, t))}

Ve

decidable predicate

3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

E 0 REG H 0
3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

E 0 DEC H 0
3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

3 AO 3
3

I]0

2 g FIN TOTAL 2

I]0

20 1
Semi- Co-semi-
decidable decidable
languages languages

Decidable languages

Each is m-complete for its level in
hierarchy and cannot go lower (by next
Theorem, which shows the hierarchy

does not collapse).

L is m-complete for class C if
i) L &C and
if) L is m-hard for C,

ie,foralll’ €C,L' < L

A;, is m-complete for class C = 2 (1’
i) ApeC

i) Ay is m-hard for C,

Suppose L € C.Show: L <A,

Let M semi-decide L. Then Map
D)

wherew -2 (M, w).

Then,w €L < (M,w) € Ay QED

FIN is m-complete for class C =) g

i) FINeC
if) FIN is m-hard for C,

Suppose L € C.Show: L <_FIN

Suppose L= {w | dyVz R(w,y,z) }
where R is decided by some TM D

Map 25 > 27
where w 2> Ny,

Supose LE 2 iel={w]|3yVzR(wy.z))
where R is decided by some TM D

Show: L < FIN

\ETe 2> 27
where w 2> Np,

Define Ny, On inputs:

1. Write down all strings y of length |s|

2. For each y, try to find a z such that

- R(w, y, z) and accept if all are successful
(here use D and w)

So,w €L < Np,, EFIN

ORACLES not all powerful

The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the
Halting Problem, halts on x}

Can use diagonalization here!

Suppose H decides SUPERHALT (with oracle)

Define D(X) = “if H(X,X) accepts (with oracle)
then LOOP, else ACCEPT.”

D(D) halts &« H(D,D) accepts <« D(D) loops...

ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict.
That is, the nth level contains a language
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT? = HALT = { (M,x) | M halts on x}.

SUPERHALT' = { (M,x) | M, with an oracle for the
Halting Problem, halts on x}

SUPERHALT" = { (M,x) | M, with an oracle for
SUPERHALT"1, halts on x}

WWW.FLAC.WS

Read Chapter 6.4 for next time

