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ORACLE MACHINES

An ORACLE is a set B to which the TM may pose 
membership questions “Is w in B?”  
(formally: TM enters state q?)  
and the TM always receives a correct answer in 
one step 
(formally: if the string on the “oracle tape” is in B,  
state q? is changed to qYES, otherwise qNO)

This makes sense even if B is not decidable! 
(We do not assume that the oracle B is a 

computable set!)



We say A is semi-decidable in B  
if there is an oracle TM M with oracle B that 
semi-decides A

We say A is decidable in B  
if there is an oracle TM M with oracle B that 
decides A



if A is decidable in B, ie  if there is an 
oracle TM M with oracle B that decides A

Language A “Turing Reduces” to  
Language B

A ≤T B



≤T VERSUS ≤m
Theorem: If A ≤m B then A ≤T B 
Proof: 
If A ≤m B then there is a computable function  
f : Σ* → Σ*, where for every w,

w ∈ A ⇔ f(w) ∈ B
We can thus use an oracle for B to decide A

Theorem: ¬ATTM ≤T ATTM

Theorem: ¬ATTM ≤m ATTM
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= languages of the form { x | ∃y R(x,y) } 

= languages of the form { x | ∀y R(x,y) } 

Π
1
0

Δ
1
0

∑
1
0 Π

1
0∩=

= { semi-decidable sets }
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Where R is a decidable predicate

Theorem
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Where R is a decidable predicate
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Where R is a decidable predicate

Theorem



∑
1
0 = languages of the form { x | ∃y R(x,y) } 

We know  that ATM is in ∑
1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

ATM = { <(M,w)> | ∃v (v is an accepting  
            computation history  of M on w} 

Example



Definition: A decidable predicate R(x,y) is some 
proposition about x and y1, where there is a TM M 
 such that 

for all x, y, R(x,y) is TRUE   ⇒   M(x,y) accepts 
  R(x,y) is FALSE  ⇒   M(x,y) rejects 

We say M “decides” the predicate R. 

EXAMPLES:  
R(x,y) = “x + y is less than 100” 
R(<N>,y) = “N halts on y in at most 100 steps” 
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.  

1. x, y are positive integers or elements of ∑*



Definition: A decidable predicate R(x,y) is some 
proposition about x and y1, where there is a TM M 
 such that 

for all x, y, R(x,y) is TRUE   ⇒   M(x,y) accepts 
  R(x,y) is FALSE  ⇒   M(x,y) rejects 

We say M “decides” the predicate R. 

EXAMPLES:  
R(x,y) = “x + y is less than 100” 
R(<N>,y) = “N halts on y in at most 100 steps” 
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.  

Note: A is decidable ⇔  A = {x | R(x,ε)}, 
            for some decidable predicate R.
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Where R is a decidable predicate

Theorem



Theorem: A language A is semi-decidable  
if and only if there is a decidable predicate R(x, y) 
such that: A = { x | ∃y R(x,y) }
Proof:
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable 

Because we can enumerate over all y’s

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) } 

Let M semi-decide A  
Then, A = { x | ∃y T(<M>, x, y) } 
where 
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps. 

(Here M is fixed.)



Theorem. There is a 1-1 and onto computable 
function < , >: Σ* x Σ* → Σ*  and  computable 
functions π1 and π2 : Σ* → Σ*  such that  

  z = <w, t>  ⇒  π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Proof:  Let w = w1…wn  ∈  Σ*, t  ∈  Σ*.  
Let a, b  ∈  Σ, a ≠  b. 

<w, t> := a w1… a wn b t  
 π1 (z) := “if z has the form a w1… a wn b t, 

then output w1… wn, else output ε” 
 π2(z) := “if z has the form a w1… a wn b t, 

then output  t, else output ε”



∑
1
0

= languages of the form { x | ∃y R(x,y) } 

= languages of the form { x | ∀y R(x,y) } 

Π
1
0

Δ
1
0

∑
1
0 Π

1
0∩=

= { semi-decidable sets }

= { complements of semi-decidable sets }

= { decidable sets }

Where R is a decidable predicate

Theorem



∑
2
0

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) } 

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) } 
Π

2
0

Δ
2
0 ∑

2
0 Π

2
0∩=

= { sets semi-decidable in some semi-dec. B }

= { complements of            sets}∑
2
0

Theorem

Where R is a decidable predicate



∑
1
0 = languages of the form { x | ∃y R(x,y) } 

We know  that ATM is in ∑
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ATM = { <(M,w)> | ∃t [M accepts w in t steps] }
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ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

ATM = { <(M,w)> | ∃v (v is an accepting  
            computation history  of M on w} 
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0 = languages of the form { x | ∀y R(x,y) } 

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in 

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

Π
1
0

two quantifiers?? decidable predicate



Π
1
0 = languages of the form { x | ∀y R(x,y) } 

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in Π
1
0

two quantifiers?? decidable predicate

EMPTY = { M | ∀w∀t [ ¬T(<M>, w, t) ] }



Theorem. There is a 1-1 and onto computable 
function < , >: Σ* x Σ* → Σ*  and  computable 
functions π1 and π2 : Σ* → Σ*  such that  

  z = <w, t>  ⇒  π1 (z) = w and π2(z) = t

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

EMPTY = { M | ∀z [M doesn’t accept π1 (z) in π2(z) steps]}

THE PAIRING FUNCTION

EMPTY = { M | ∀z [ ¬T(<M>, π1 (z) , π2(z) ) ] }



Theorem. There is a 1-1 and onto computable 
function < , >: Σ* x Σ* → Σ*  and  computable 
functions π1 and π2 : Σ* → Σ*  such that  

  z = <w, t>  ⇒  π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Proof:  Let w = w1…wn  ∈  Σ*, t  ∈  Σ*.  
Let a, b  ∈  Σ, a ≠  b. 

<w, t> := a w1… a wn b t  

 π1 (z) := “if z has the form a w1… a wn b t, 
then output w1… wn, else output ε” 

 π2(z) := “if z has the form a w1… a wn b t, 
then output  t, else output ε”
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Π
2
0 = languages of the form { x | ∀y∃z R(x,y,z) } 

Show that TOTAL = { M | M halts on all inputs }  
is in 

TOTAL = { M | ∀w ∃t [M halts on w in t steps] }
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Π
2
0 = languages of the form { x | ∀y∃z R(x,y,z) } 

Show that TOTAL = { M | M halts on all inputs }  
is in 

TOTAL = { M | ∀w ∃t [ T(<M>, w, t) ] }
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∑
2
0 = languages of the form { x | ∃y∀z R(x,y,z) } 

Show that FIN = { M | L(M) is finite } is in 

FIN = { M | ∃n∀w∀t [Either |w| < n, or  
                       M doesn’t accept w in t steps] }

∑
2
0

FIN = { M | ∃n∀w∀t ( |w| < n ∨¬ T(<M>,w, t) )}

decidable predicate
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∑
3
0 = languages of the form { x | ∃y∀z∃u R(x,y,z,u) } 

Show that COF = { M | L(M) is cofinite } is in 

COF = { M | ∃n∀w∃ t [ |w| > n ⇒ M accept w in t steps] }

∑
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COF = { M | ∃n∀w∃ t ( |w|  ≤  n ∨T(<M>,w, t) )}

decidable predicate
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Each is m-complete for its level in 
hierarchy and cannot go lower (by next 
Theorem, which shows the hierarchy 
does not collapse).

L is m-complete for class C if 
i)  L  ∈ C  and 
ii)  L is m-hard for C, 

      ie, for all L’  ∈ C , L’ ≤m L



ATM is m-complete for class  C = 

i) ATM ∈ C   

ii) ATM is m-hard for C, 

Suppose L  ∈ C . Show:  L ≤m ATM  

Let M semi-decide L.  Then Map         
                  !
 where w   !  (M, w). 

Then, w ∈ L ⇔ (M,w) ∈ ATM            QED                              

∑
1
0

∑* ∑*



FIN is m-complete for class  C = 

i) FIN ∈ C   
ii) FIN is m-hard for C, 

Suppose L  ∈ C . Show:  L ≤m FIN 
       
Suppose L= { w | ∃y∀z R(w,y,z) } 
where R is decided by some TM  D  
        
Map             ! 
where    w   !    ND,w   
       

∑
2
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∑* ∑*



  

Supose L ∈           ie L= { w | ∃y∀z R(w,y,z) }  
where R is decided by some TM  D  
Show:      L  ≤m FIN 
   

Map             !
where     w     !    ND,w   
    

Define ND,w    On  input s: 

1. Write down all strings y of length |s| 
2. For each y, try to find a z such that 
¬ R(w, y, z) and accept if all are successful 
(here use D and w) 

So, w ∈ L ⇔ ND,w ∈ FIN 

∑* ∑*

∑
2
0



ORACLES not all powerful
The following problem cannot be decided, even by 
a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the  
       Halting Problem, halts on x}

Can use diagonalization here! 
Suppose H decides SUPERHALT (with oracle) 
Define D(X) = “if H(X,X) accepts (with oracle)  
   then LOOP, else ACCEPT.” 
D(D) halts ⇔  H(D,D) accepts ⇔  D(D) loops…



SUPERHALT0 = HALT = { (M,x) | M halts on x}.

Theorem: The arithmetic hierarchy is strict. 
That is, the nth level contains a language  
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT1 = { (M,x) | M, with an oracle for the  
       Halting Problem, halts on x}

  SUPERHALTn = { (M,x) | M, with an oracle for   
            SUPERHALTn-1, halts on x}

ORACLES not all powerful
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Read Chapter 6.4 for next time


