
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

THE ARITHMETIC HIERARCHY

THURSDAY, MAR 6

FINITE
STATE

CONTROL

INFINITE TAPE

I N P U T

q?

ORACLE TMs

Is (M,w) in
ATM?

YES

Oracle for ATM

ORACLE MACHINES

An ORACLE is a set B to which the TM may pose
membership questions “Is w in B?”  
(formally: TM enters state q?)  
and the TM always receives a correct answer in
one step 
(formally: if the string on the “oracle tape” is in B,  
state q? is changed to qYES, otherwise qNO)

This makes sense even if B is not decidable!
(We do not assume that the oracle B is a

computable set!)

We say A is semi-decidable in B  
if there is an oracle TM M with oracle B that
semi-decides A

We say A is decidable in B  
if there is an oracle TM M with oracle B that
decides A

if A is decidable in B, ie if there is an
oracle TM M with oracle B that decides A

Language A “Turing Reduces” to  
Language B

A ≤T B

≤T VERSUS ≤m
Theorem: If A ≤m B then A ≤T B
Proof:
If A ≤m B then there is a computable function
f : Σ* → Σ*, where for every w,

w ∈ A ⇔ f(w) ∈ B
We can thus use an oracle for B to decide A

Theorem: ¬ATTM ≤T ATTM

Theorem: ¬ATTM ≤m ATTM

Δ
1
0

THE ARITHMETIC HIERARCHY

∑
1
0

Π
n
0

Δ
n+1
0

= { semi-decidable sets }

= { decidable sets } (sets = languages)

= { sets semi-decidable in some B ∈ }

= { sets decidable in some B ∈ }

= { complements of sets in }

∑
n+1
0 ∑

n
0

∑
n
0

∑
n
0

Δ
1
0

∑
1
0 Δ

2
0

∑
2
0 Δ

3
0

Δ
1
0

∑
1
0 Π

1
0

Decidable Languages

Semi-
decidable
Languages

Co-semi-
decidable
Languages

∑
1
0 Π

1
0∩=

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Semi-
decidable
Languages

Co-semi-
decidable
Languages

Δ
1
0

Decidable Languages

∑
1
0 Π

1
0∩=

∑
1
0

= languages of the form { x | ∃y R(x,y) }

= languages of the form { x | ∀y R(x,y) }

Π
1
0

Δ
1
0

∑
1
0 Π

1
0∩=

= { semi-decidable sets }

= { complements of semi-decidable sets }

= { decidable sets }

Where R is a decidable predicate

Theorem

∑
2
0

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) }

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) }
Π

2
0

Δ
2
0 ∑

2
0 Π

2
0∩=

= { sets semi-decidable in some semi-dec. B }

= { complements of sets}∑
2
0

Theorem

Where R is a decidable predicate

∑
n
0 = languages { x | ∃y1∀y2∃y3…Qyn R(x,y1,…,yn) }

= languages { x | ∀y1∃y2∀y3…Qyn R(x,y1,…,yn) } Π
n
0

Δ
n
0 ∑

n
0 Π

n
0∩=

Where R is a decidable predicate

Theorem

∑
1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑
1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

ATM = { <(M,w)> | ∃v (v is an accepting
 computation history of M on w}

Example

Definition: A decidable predicate R(x,y) is some
proposition about x and y1, where there is a TM M
 such that

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
 R(x,y) is FALSE ⇒ M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:  
R(x,y) = “x + y is less than 100”
R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

1. x, y are positive integers or elements of ∑*

Definition: A decidable predicate R(x,y) is some
proposition about x and y1, where there is a TM M
 such that

for all x, y, R(x,y) is TRUE ⇒ M(x,y) accepts
 R(x,y) is FALSE ⇒ M(x,y) rejects

We say M “decides” the predicate R.

EXAMPLES:  
R(x,y) = “x + y is less than 100”
R(<N>,y) = “N halts on y in at most 100 steps”
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

Note: A is decidable ⇔ A = {x | R(x,ε)}, 
 for some decidable predicate R.

∑
n
0 = languages { x | ∃y1∀y2∃y3…Qyn R(x,y1,…,yn) }

= languages { x | ∀y1∃y2∀y3…Qyn R(x,y1,…,yn) } Π
n
0

Δ
n
0 ∑

n
0 Π

n
0∩=

Where R is a decidable predicate

Theorem

Theorem: A language A is semi-decidable
if and only if there is a decidable predicate R(x, y)
such that: A = { x | ∃y R(x,y) }
Proof:
(1) If A = { x | ∃y R(x,y) } then A is semi-decidable

Because we can enumerate over all y’s

(2) If A is semi-decidable, then A = { x | ∃y R(x,y) }

Let M semi-decide A
Then, A = { x | ∃y T(<M>, x, y) }
where
Kleene’s T predicate, T(<M>, x, y): M accepts x in y steps.

(Here M is fixed.)

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Proof: Let w = w1…wn ∈ Σ*, t ∈ Σ*.  
Let a, b ∈ Σ, a ≠ b.

<w, t> := a w1… a wn b t  
 π1 (z) := “if z has the form a w1… a wn b t,

then output w1… wn, else output ε”
 π2(z) := “if z has the form a w1… a wn b t,

then output t, else output ε”

∑
1
0

= languages of the form { x | ∃y R(x,y) }

= languages of the form { x | ∀y R(x,y) }

Π
1
0

Δ
1
0

∑
1
0 Π

1
0∩=

= { semi-decidable sets }

= { complements of semi-decidable sets }

= { decidable sets }

Where R is a decidable predicate

Theorem

∑
2
0

= languages of the form { x | ∃y1∀y2 R(x,y1,y2) }

= languages of the form { x | ∀y1∃y2 R(x,y1,y2) }
Π

2
0

Δ
2
0 ∑

2
0 Π

2
0∩=

= { sets semi-decidable in some semi-dec. B }

= { complements of sets}∑
2
0

Theorem

Where R is a decidable predicate

∑
1
0 = languages of the form { x | ∃y R(x,y) }

We know that ATM is in ∑
1
0

ATM = { <(M,w)> | ∃t [M accepts w in t steps] }

decidable predicate

Decidable predicate

ATM = { <(M,w)> | ∃t T (<M>, w, t }

Why?

Show it can be described in this form:

ATM = { <(M,w)> | ∃v (v is an accepting
 computation history of M on w}

Example

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

Π
1
0 = languages of the form { x | ∀y R(x,y) }

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

Π
1
0

two quantifiers?? decidable predicate

Π
1
0 = languages of the form { x | ∀y R(x,y) }

Show that EMPTY (ie, ETM) = { M | L(M) = ∅ } is in Π
1
0

two quantifiers?? decidable predicate

EMPTY = { M | ∀w∀t [¬T(<M>, w, t)] }

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

EMPTY = { M | ∀w∀t [M doesn’t accept w in t steps] }

EMPTY = { M | ∀z [M doesn’t accept π1 (z) in π2(z) steps]}

THE PAIRING FUNCTION

EMPTY = { M | ∀z [¬T(<M>, π1 (z) , π2(z))] }

Theorem. There is a 1-1 and onto computable
function < , >: Σ* x Σ* → Σ* and computable
functions π1 and π2 : Σ* → Σ* such that

 z = <w, t> ⇒ π1 (z) = w and π2(z) = t

THE PAIRING FUNCTION

Proof: Let w = w1…wn ∈ Σ*, t ∈ Σ*.  
Let a, b ∈ Σ, a ≠ b.

<w, t> := a w1… a wn b t  

 π1 (z) := “if z has the form a w1… a wn b t,
then output w1… wn, else output ε”

 π2(z) := “if z has the form a w1… a wn b t,
then output t, else output ε”

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM EMPTY

Π
2
0 = languages of the form { x | ∀y∃z R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
is in

TOTAL = { M | ∀w ∃t [M halts on w in t steps] }

Π
2
0

decidable predicate

Π
2
0 = languages of the form { x | ∀y∃z R(x,y,z) }

Show that TOTAL = { M | M halts on all inputs }
is in

TOTAL = { M | ∀w ∃t [T(<M>, w, t)] }

Π
2
0

decidable predicate

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

∑
2
0 = languages of the form { x | ∃y∀z R(x,y,z) }

Show that FIN = { M | L(M) is finite } is in

FIN = { M | ∃n∀w∀t [Either |w| < n, or
 M doesn’t accept w in t steps] }

∑
2
0

FIN = { M | ∃n∀w∀t (|w| < n ∨¬ T(<M>,w, t))}

decidable predicate

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

∑
3
0 = languages of the form { x | ∃y∀z∃u R(x,y,z,u) }

Show that COF = { M | L(M) is cofinite } is in

COF = { M | ∃n∀w∃ t [|w| > n ⇒ M accept w in t steps] }

∑
2
0

COF = { M | ∃n∀w∃ t (|w| ≤ n ∨T(<M>,w, t))}

decidable predicate

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

COF

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

REG

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

DEC

Δ
1
0

∑
1
0

∑
3
0

∑
2
0

Π
1
0

Π
2
0

Π
3
0

Δ
2
0

Δ
3
0

Decidable languages

Semi-
decidable
languages

Co-semi-
decidable
languages

∑
2
0 Π

2
0∩=

ATM

TOTAL

EMPTY

FIN

CFL

Each is m-complete for its level in
hierarchy and cannot go lower (by next
Theorem, which shows the hierarchy
does not collapse).

L is m-complete for class C if
i) L ∈ C and
ii) L is m-hard for C,

 ie, for all L’ ∈ C , L’ ≤m L

ATM is m-complete for class C =

i) ATM ∈ C

ii) ATM is m-hard for C,

Suppose L ∈ C . Show: L ≤m ATM

Let M semi-decide L. Then Map
 !
 where w ! (M, w).

Then, w ∈ L ⇔ (M,w) ∈ ATM QED

∑
1
0

∑* ∑*

FIN is m-complete for class C =

i) FIN ∈ C
ii) FIN is m-hard for C,

Suppose L ∈ C . Show: L ≤m FIN

Suppose L= { w | ∃y∀z R(w,y,z) }
where R is decided by some TM D

Map !
where w ! ND,w

∑
2
0

∑* ∑*

Supose L ∈ ie L= { w | ∃y∀z R(w,y,z) }
where R is decided by some TM D
Show: L ≤m FIN

Map !
where w ! ND,w

Define ND,w On input s:

1. Write down all strings y of length |s|
2. For each y, try to find a z such that
¬ R(w, y, z) and accept if all are successful
(here use D and w)

So, w ∈ L ⇔ ND,w ∈ FIN

∑* ∑*

∑
2
0

ORACLES not all powerful
The following problem cannot be decided, even by
a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the
 Halting Problem, halts on x}

Can use diagonalization here!
Suppose H decides SUPERHALT (with oracle)
Define D(X) = “if H(X,X) accepts (with oracle)  
 then LOOP, else ACCEPT.”
D(D) halts ⇔ H(D,D) accepts ⇔ D(D) loops…

SUPERHALT0 = HALT = { (M,x) | M halts on x}.

Theorem: The arithmetic hierarchy is strict. 
That is, the nth level contains a language  
that isn’t in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT1 = { (M,x) | M, with an oracle for the
 Halting Problem, halts on x}

 SUPERHALTn = { (M,x) | M, with an oracle for
 SUPERHALTn-1, halts on x}

ORACLES not all powerful

WWW.FLAC.WS
Read Chapter 6.4 for next time

