
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms
EQUALS

Turing Machines

UNDECIDABILITY II:
REDUCTIONS

TUESDAY Feb 18

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (constructive proof & subtle)

 Assume machine H semi-decides ATM (such exist, why?)

H((M,w)) =
Accept if M accepts w

Rejects or loops otherwise

Construct a new TM DH as follows: on input M,
run H on (M,M) and output the “opposite” of H
whenever possible.

DH (M) =

Reject if M accepts M
(i.e. if H(M , M) = Accept)

Accept if M rejects M
(i.e. if H(M , M) = Reject)

loops if M loops on M
(i.e. if H(M , M) loops)

DH

DH DH
DH DH

DH DH
DHDH

DH DH
DH DH

Note: It must be the case that DH loops on DH

There is no contradiction here!
Thus we have effectively constructed an instance
which does not belong to ATM (namely, (DH, DH))
but H fails to tell us that.

That is:

Given any semi-decision machine H for ATM

(and thus a potential decision machine for ATM),

we can effectively construct an instance which
does not belong to ATM (namely, (DH, DH))

but H fails to tell us that.

So H cannot be a decision machine for ATM

In most cases, we will show that a
language L is undecidable by showing

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding
the language in question

ATM “<“ L

HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE HALTING PROBLEM

Proof: Assume, for a contradiction, that TM H
decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w)
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts and
Reject if M rejects

H

(M,w)

(M,w)

M

w

If M doesn’t
halt: REJECT

If M halts

Does M
halt on w?

D

ACCEPT if halts in accept state
REJECT otherwise

In most cases, we will show that a
language L is undecidable by showing

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding
the language in question

ATM “<“ L

So, ATM “<“ HaltTM
Is HaltTM “<“ ATM ?

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w } (*)

ETM = { M | M is a TM and L(M) = ∅ } (*)

REGTM = { M | M is a TM and L(M) is regular} (*)

ALLPDA = { P | P is a PDA and L(P) = Σ* } (*)

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)} (*)

ALL UNDECIDABLE
(*) Use Reductions to Prove

Which are SEMI-DECIDABLE?
What about complements?

ETM = { M | M is a TM and L(M) = ∅ }
Theorem: ETM is undecidable
Proof: Assume, for a contradiction, that TM Z
decides ETM .

s Erase s, run M(w)

Algorithm for deciding ATM: On input (M,w):

Mw

1. Create Mw

2. Run Z on Mw

Use Z as a subroutine to decide ATM

So, L (Mw) = ∅ ⇔ M(w) does not accept
 L (Mw) ≠ ∅ ⇔ M(w) accepts

Accepts if M does not accept w
Rejects, otherwise

Z

s Erase s, run M(w)

Mw

(M,w)

L(Mw) = ∅?

So, L (Mw) = ∅ ⇔ M(w)
does not accept

REVERSE accept/reject

Decision Machine
for ATM

N

L(N) = ∅?

Mw

REGULARTM = { M | M is a TM and L(M) is regular}

Theorem: REGULARTM is undecidable
Proof: Assume, for a contradiction, that TM R
decides REGULARTM

Use R as a subroutine to decide ATM

s
M’w

1. Create M’w

2. Run R on M’w

So, L (M’w) = Σ* ⇔ M(w) accepts
 L (M’w) = {0n1n} ⇔ M(w) does not accept

If s = 0n1n, accept
Else run M(w)

R

N

Is L(N) regular?

s If s = 0n1n, accept
Else run M(w)

Mwʹ′

L(Mwʹ′) = Σ* if M(w) accepts

 {0n1n } otherwise

L(Mwʹ′) is regular ⇔ M(w) accepts

Mwʹ′

Is L(Mwʹ′) regular?

Yes ⇔ M accepts w

MAPPING REDUCIBILITY
f : Σ* → Σ* is a computable function if some
Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A ≤m B, if there is a computable function
 f : Σ* → Σ*, where for every w,

w ∈ A ⇔ f(w) ∈ B
f is called a reduction from A to B

Think of f as a “computable coding”

A Bf

f

A is mapping reducible to B, A ≤m B,

Σ* Σ*

Also, ¬ A ≤m ¬ B, why?

if there is a computable f : Σ* → Σ*
such that w ∈ A ⇔ f(w) ∈ B

Theorem: If A ≤m B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from A to B

We build a machine N that decides A as follows:

On input w:

1. Compute f(w)

2. Run M on f(w)

Theorem: If A ≤m B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from A to B

We build a machine N that (semi) decides A as
follows:

On input w:

1. Compute f(w)

2. Run M on f(w)

All undecidability proofs from today can
be seen as constructing an f that reduces
ATM to the proper language

(Sometimes you have to consider
the complement of the language.)

All undecidability proofs from today can
be seen as constructing an f that reduces
ATM to the proper language

ATM ≤m HALTTM (So also, ¬ ATM ≤m¬ HALTTM):

Map (M, w) → (M’, w)
where M’(w) = M(w) if M(w) accepts
 loops otherwise

So (M, w) ∈ ATM ⇔ (M’, w) ∈ HALTTM

CLAIM: ATM ≤m ¬ ETM

f: (M,w) → Mw where Mw (s) = M(w)

So, (M, w) ∈ ATM ⇔ Mw ∈ ¬ ETM

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = ∅ }

CONSTRUCT f : Σ* → Σ*

So, M(w) accepts ⇔ L (Mw) ≠ ∅

¬ ATM ≤m ETM

So ¬ ETM is NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is ETM SEMI-DECIDABLE?

CLAIM: ATM ≤m REGTM

f: (M,w) → M’w where M’w (s) = accept if s = 0n1n
 M(w) otherwise

So, (M, w) ∈ ATM ⇔ M’w ∈ REGTM

REGTM = { M | M is a TM and L(M) is regular}

CONSTRUCT f : Σ* → Σ*

So, L (M’w) = Σ* if M(w) accepts
 {0n1n} if not

So REGTM is UNDECIDABLE

Is REG SEMI-DECIDABLE? (¬ REG is not. Why?)

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ¬ ATM ≤m REGTM

f: (M,w) → M”w where M”w (s) = accept if s = 0n1n
 and M(w) accepts

 Loop otherwise

So, (M, w) ∉ ATM ⇔ M”w ∈ REGTM

CONSTRUCT f : Σ* → Σ*

So, L (M’w) = {0n1n} if M(w) accepts
∅ if not

So, REG NOT SEMI-DECIDABLE

So REGTM is NOT SEMI-
DECIDABLE

REGTM = { M | M is a TM and L(M) is regular}

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = ∅ }

REGTM = { M | M is a TM and L(M) is regular}

ALLPDA = { P | P is a PDA and L(P) = Σ* }

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }

CLAIM: ETM ≤m EQTM

f : M → (M, M ∅) where M ∅ (s) = Loops

So, M ∈ E TM ⇔ (M, M ∅) ∈ EQTM

ETM = { M | M is a TM and L(M) = ∅ }

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* → Σ*

So EQTM is UNDECIDABLE

Is EQTM SEMI-DECIDABLE? NO, since,

¬ ATM ≤m ETM ≤m EQTM What about ¬EQTM?

CLAIM: ATM ≤m EQTM

f : (M,w) → (Mw, MA)

Where for each s in Σ*,

 Mw (s) = M(w) and MA(s) always accepts

So, (M,w) ∈ A TM ⇔ (Mw, MA) ∈ EQTM

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* → Σ*

So ¬EQTM is not semi-decidable

ATM = { (M,w) | M is a TM that accepts string w }

ETM ≤m EQTM

ATM ≤m ¬ ETM

ATM ≤m REGTM

ATM ≤m ¬REGTM

So, ¬ATM ≤m EQTM

Undecidable given a TM to tell if the language it
recognizes is empty. It’s not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Undecidable given a TM to tell if it is equivalent
to a FSM. It’s not even semi-decidable, nor is it
semi-decidable to tell if it is not equivalent to a
FSM.

Undecidable given 2 TMs to tell if they are
equivalent. It’s not even semi-decidable, nor is
it semi-decidable to tell If they are not

Also, ATM ≤m EQTM

CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ*

¬ ATM ≤m ALLPDA

If M(w) does not accept, then there is no accepting
computation for M on input w. Then any string of 0’s
and 1’s will fail to be (a code for) an accepting
computation.

So, map (M, w) to a PDA P that accepts
non-accepting computations of M on w.

Then, M(w) does not accept ⇔ L(P) = Σ*

Idea!

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

More subtle construction

Map (M,w) to a PDA Pw that recognizes Σ*
if and only if M does not accept w

Pw will recognize all (and only those) strings that are
NOT accepting computation histories for M on w

So, (M, w) ∉ ATM ⇔ Pw ∈ ALLPDA

CONFIGURATIONS

11010q700110
q7

1 0 0 0 0 01 1 1 1

COMPUTATION HISTORIES
An accepting computation history is a
sequence of configurations C1,C2,…,Ck, where

An rejecting computation history is a sequence
of configurations C1,C2,…,Ck, where
 1. C1 is the start configuration,
 2. Ck is a rejecting configuration,
 3. Each Ci follows from Ci-1

3. Each Ci follows from Ci-1

2. Ck is an accepting configuration,
1. C1 is the start configuration,

COMPUTATION HISTORIES
An accepting computation history is a
sequence of configurations C1,C2,…,Ck, where

An rejecting computation history is a sequence
of configurations C1,C2,…,Ck, where
 1. C1 is the start configuration,
 2. Ck is a rejecting configuration,
 3. Each Ci follows from Ci-1

3. Each Ci follows from Ci-1

2. Ck is an accepting configuration,
1. C1 is the start configuration,

M accepts w if and only if there exists an accepting
computation history that starts with C1=q0w

1. Do not start with C1 or

2. Do not end with an accepting configuration or
3. Where some Ci does not properly yield Ci+1

P will recognize all strings (read as sequences
of configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3.

1. Start with C1 and

2. End with an accepting configuration and
3. Where each Ci properly yields Ci+1

P will reject all strings (read as sequences of
configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3.

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

q2 x0x

P recognizes all strings except
accepting computation histories :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R

follows properly:

For example,

If =uaqibv and δ (qi,b) = (qj,c,R),

then Ci properly yields Ci+1 ⇔ Ci+1 = uacqjv

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R

follows properly:

For example,

If =uaqibv and δ (qi,b) = (qj,c,L),

then Ck properly yields Ck+1 ⇔ Ck+1 = uqjacv

P recognizes all strings except
accepting computation histories :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is even, put Ci
R

 on stack and see if Ci+1
follows properly.

P recognizes all strings except
accepting computation histories :

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

0 0 0 q1

0
0
0
0
q0

ODD

:

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

0 0 0 q1

0
0
0
0
q0

ODD

:

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

0 0 0 q1

0
0
0
0
q0

ODD

:

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

x q3 0 0

q1

0
0
0

EVEN

:

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

q1

0
0
0

EVEN

x q3 0 0

:

f: (M,w) → Pw where

Pw (s) = accept iff s is NOT an accepting computation of M(w)

So, (M, w) ∉ ATM ⇔ Pw ∈ ALLPDA

So, (M, w) ∈ ATM ⇔ Pw ∈ ¬ ALLPDA

EXPLAIN THE PROOF TO YOUR NEIGHBOR

CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ*

¬ ATM ≤m ALLPDA

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }

ETM = { M | M is a TM and L(M) = ∅ }

REGTM = { M | M is a TM and L(M) is regular}

ALLPDA = { P | P is a PDA and L(P) = Σ* }

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?

WWW.FLAC.WS
Read chapter 5.1-5.3 of the book for next time

THE PCP GAME

ba

a

a

ab

b

bcb

b

a

ba

a

a

ab

a

aa

aaa

a

a

c

a

aa

c

a

aaa

a

a

aa

a

ab

ca

a

b

ca

a

ab

abc

c

a

ab

b

ca

ca

a

abc

c

ca

a

acc

ca

abc

ab

GENERAL RULE #1
If every top string is longer than the

corresponding bottom one, there can’t be a match

aab

aa

acc

a

b

b

c

a

caa

a

b

b

GENERAL RULE #2
If there is a domino with the same string on the top

and on the bottom, there is a match

POST CORRESPONDENCE PROBLEM
Given a collection of dominos, is there a match?
PCP = { P | P is a set of dominos with a match }

PCP is undecidable!

THE FPCP GAME
… is just like the PCP game except that a
match has to start with the first domino

a

aa

aaa

a

a

c

a

aa

c

a

aaa

a

a

aa

FPCP

ba

a

a

ab

b

bcb

b

a

FPCP

Theorem: FPCP is undecidable

Proof: Assume machine C decides FPCP

We will show how to use C to decide ATM

PM,w has a match?

C

caa

c

aba

bb

a

d
…

Given (M,w)

we will construct a set of
dominos PM,w where a match
is an accepting computation
history for M on w PM,w =

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

q2 x0x
:#q00000# q1000# xq300# x0q40# x0xq3# ... #

Given (M,w), we will construct an
instance PM,w of FPCP in 7 steps

Assume M on w never attempts to move off
left hand edge of tape

STEP 1

Put
#

#q0w1w2…wn#
into P

START

For start configuration

STEP 2

If δ(q,a) = (p,b,R) then add
qa

bp

STEP 3

If δ(q,a) = (p,b,L) then add
cqa

pcb
for all c ∈ Γ

RULES

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4

0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0 | n ≥ 0 }2n

q0 q1

q2

q3

q4#

#q00000#

q00

q1

q10

xq3

…
0q3

q20

xq3

q2x

q3

q2

0q20

q200

xq20

q2x0

q20

q2 0

STEP 4
add

a

a

STEP 5
add

#

#

for all a ∈ Γ

#

#

CONTINUE

For tape cells not
adjacent to head

For configuration
separator

To simulate the blanks on
the right hand side of tape

STEP 4
add

a

a

STEP 5
add

#

#

for all a ∈ Γ

#

#

STEP 6

add
aqacc

qacc

qacca

qacc

for all a ∈ Γ

Adds
pseudo-
steps after
TM halts
(catch up)

#

#q00000# q1

q00

xq3

q10

q20

0q3 xq3

q2x q2

q3

0q20

q200

xq20

q2x0

q20

q2 0

xq1

q1x q0x

xqr

q0

qr qa

q1 q2

q1

q3x

xq3

q30

0q4

q40

xq3

q4x

xq4

q4

qr

0q3x

q20x q2xx

xq3x q3x

q2 x

x

x

#

#

0

0

#

qacc

0qacc

qacc

qacc0

qacc

qaccx

qacc

xqacc

qacc

qacc

qacc

qacc

#

#q00000#

xq3

q10 0

0

0

0

#

#q00000# q1

q00

0

0

0

0

0

0

#

#

STEP 7
add

qacc##

#

END

0 → 0, R

 → , R

qaccept

qreject

0 → 0, R

 → , R
q0 q1

0q1

q00

0qrej

q10

qrej

q0 q1

qacc

0

0

#

#

#

#q00#

#

qacc

qacc

qacc

0qacc

qacc

qacc

qacc

qacc0

#

#q00# 0q1

q00 #

#

0

0

q1

qacc

#

#

0

0 qacc

qacc

#

qacc##

#

qacc

0qacc #

#

Given (M,w), we can construct an
instance of FPCP that has a match if

and only if M accepts w

Can convert an instance of FPCP into one of PCP:

Let u = u1u2…un, define:
★u = ∗ u1 ∗ u2 ∗ u3 ∗ … ∗ un

u★ 	
= u1 ∗ u2 ∗ u3 ∗ … ∗ un ∗
★u★ = ∗ u1 ∗ u2 ∗ u3 ∗ … ∗ un ∗

t1

b1
…

t2

b2

tk

bk

★t1

★b1★

★t1

b1★

★t2

b2★

★tk

bk★

∗♦

♦
…

FPCP:

PCP:

Given (M,w), we can construct an
instance of PCP that has a match if

and only if M accepts w

