15-453

FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms
EQUALS
Turing Machines

UNDECIDABILITY Ii:

REDUCTIONS
TUESDAY Feb 18

Ay ={(M,w)| Mis a TM that accepts string w }

A, is undecidable: (constructive proof & subtle)

Assume machine H semi-decides Ay (such exist, why?)

Accept if M accepts w
H(Mw))=< |
Rejects or loops otherwise

Construct a new TM D, as follows: on input M,

run H on (M,M) and output the “opposite” of H
whenever possible.

Reject if D, accepts D,
(i.e. if H(D, , D,) = Accept)

_ Accept if D,rejects D,
Du(Dy) =< (ie. if H(D, D,) = Keject)

loops if D, Ioops on D
(i.e. if H(D, D)Ioopo,

Note: It must be the case that D,, loops on D,

There is no contradiction here!

Thus we have effectively constructed an instance
which does not belong to A, (namely, (D, D))

but H fails to tell us that.

That is:

Given any semi-decision machine H for Ay,
(and thus a potential decision machine for A,),

we can effectively construct an instance which
does not belong to A, (nhamely, (Dy, D,))

but H fails to tell us that.

So H cannot be a decision machine for A,

In most cases, we will show that a
language L is undecidable by showing
that if it is decidable, then so is Aq,

We reduce deciding A, to deciding
the language in question

ATM “<“ L

THE HALTING PROBLEM
HALT;, ={(M,w) | Mis a TM that halts on string w }

Theorem: HALT;,, is undecidable

Proof:Assume, for a contradiction, that TM H
decides HALT

We use H to construct a TM D that decides Ay,

On input (M,w), D runs H on (M,w)
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts and
Reject if M rejects

(M,w)
| If M halts

Does M
H

If M doesn’t
halt: REJECT

ACCEPT if halts in accept state
REJECT otherwise

In most cases, we will show that a
language L is undecidable by showing
that if it is decidable, then so is Aq,

We reduce deciding A, to deciding
the language in question

ATM “<“ L

So, Ay “<“ Haltg,
Is Haltyy, “<* Ay ?

Ay ={(M,w) | Mis a TM that accepts string w }
HALT,, = { (M,w) | M is a TM that halts on string w } (*)

Erw={M|MisaTMand L(M) =2} (*)

REGy ={ M| M is a TM and L(M) is regular} (*)
EQqy ={(M, N) | M, N are TMs and L(M) =L(N)} (*)
ALLpp, ={P|Pis aPDAand L(P) = Z* } (*)

ALL UNDECIDABLE

(*) Use Reductions to Prove

Which are SEMI-DECIDABLE?
What about complements?

E.n={M|MisaTMand L(M)=J}
Theorem: E;, is undecidable

Proof:Assume, for a contradiction, that TM Z
decides E; . Use Z as a subroutine to decide Aqy

Algorithm for deciding Ay: On input (M,w):
1. Create M,

Erase s, run M(w)

So,L(M,)=9 < M(w) does not accept
L(M,) = J < M(w) accepts
2.RunZon M,

So, L (M,) =0 < M(w)
does not accept

Decision Machine Z (L) F32?

for Ay

Accepts if M does rlot accept w
Rejects, otherwise

REVERSE accept/reject

REGULAR,,={M | Mis a TM and L(M) is regular}
Theorem: REGULAR;, is undecidable

Proof:Assume, for a contradiction, that TM R
decides REGULAR,

Use R as a subroutine to decide Ay
1. Create M’

M,
If s = 0", accept

S —»
Else run M(w)

So,L(M°,)=2* < M(w)accepts
L (M,)={0"M"} «~ M(w) does not accept
2.RunRon W,

If s = 0", accept

Else run M(w)

L(M,,) = f* if M(w) accepts

0"} otherwise

L(M,,') is regular < M(w) accepts

Yes < M accepts w

MAPPING REDUCIBILITY

f:2* — 2% is a computable function if some

Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A <_ B, if there is a computable function

f:2* — 2% where for every w,

weEA<f(w)eB
f is called a reduction from Ato B

Think of f as a “computable coding”

A is mapping reducible to B, A <_ B,
if there is a computable f: 2* — 2*
suchthatwe A < f(w) B

Also, - A < - B, why?

Theorem: If A < B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from A to B

We build a machine N that decides A as follows:

On input w:
1. Compute f(w)
2. Run M on f(w)

Theorem: If A < B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from Ato B

We build a machine N that (semi) decides A as

follows:
On input w:

1. Compute f(w)
2. Run M on f(w)

All undecidability proofs from today can
be seen as constructing an f that reduces
A, to the proper language

(Sometimes you have to consider
the complement of the language.)

All undecidability proofs from today can
be seen as constructing an f that reduces
A, to the proper language

ATM =m HALTTM (SO a|SO, — ATM Smﬁ HALTTM):

Map (M, w) — (M’, w)
where M’(w) = M(w) if M(w) accepts
loops otherwise

So (M, w) € ATM < (M, w) & HALTTM

Ay ={(M,w) | Mis a TM that accepts string w }
E.nm={M|MisaTMand L(M) =}

CLAIM: Ay, < - Eq,,

= A =m Etm

CONSTRUCT f: 2* — 2~

f: (M,w) — M, where M, (s) = M(w)

So, M(w) accepts < L(M,) = &

So,(M,w)ceA;, = M, € - Eqy

So - Eyis NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is E;,, SEMI-DECIDABLE?

Ay ={(M,w) | Mis a TM that accepts string w }
REG;,={M|Mis aTM and L(M) is regular}

CLAIM: Ay <., REG, So REG, is UNDECIDABLE
CONSTRUCT f: I* — &*

f: (M,w) = M’ , where M’ (s) =acceptifs=0"1n"
M(w) otherwise

So, L (M’°,) =2* if M(w) accepts
{0} if not

So, (M, w) € Ay < M, € REGy,,

Is REG SEMI-DECIDABLE? (- REG is not. Why?)

Ay ={(M,w) | Mis a TM that accepts string w }
REG;,={M|Mis a TM and L(M) is regular}

CLAIM: - ATM =m REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* = 2*

f: (M,w) = M”, where M” (s) =acceptifs=0"1n"
and M(w) accepts
Loop otherwise

So, L (M’,) = {0} if M(w) accepts
& if not

So, (M, w) & Ay <> M, € REGy,
So, REG NOT SEMI-DECIDABLE

Ay ={(M,w) | Mis a TM that accepts string w }
HALT,, = { (M,w) | M is a TM that halts on string w }

E.y={M|MisaTMand L(M)=J}
REG;,={M|Mis a TM and L(M) is regular}
EQ;y, ={(M, N) | M, N are TMs and L(M) =L(N)}
ALL,,,={P|PisaPDAandL(P)=2*}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?

E.ym={M|MisaTMand L(M) =& }
EQ;, ={(M, N) | M, N are TMs and L(M) =L(N)}

CLAIM: Ery <, EQpy So EQqy, is UNDECIDABLE
CONSTRUCT f: =* — =*

f:M— (M, M)where M, (s) =Loops

SO,MEETM<=>(M,M@)EEQTM

Is EQy,y SEMI-DECIDABLE? since,

- Ay =m Etm =m EQqp What about -EQ,?

Ay ={(M,w) | Mis a TM that accepts string w }
EQ;, ={(M, N) | M, N are TMs and L(M) =L(N)}
CLAIM: A, <., EQy

So -EQqy is semi-decidable

CONSTRUCT f: 2*— 2*

f: (Mw)— (M, M,)
Where for each s in Z*,

M, (s) = M(w)and M,(s) always accepts

SO, (M,W) €A ™ <& (MW’ MA) - EQTM

A E Undecidable given a TM to tell if the language it
™ =m — E1m recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is

non-empty.

ATM =m REGTM Undecidable given a TM to tell if it is equivalent
to a FSM. It's not even semi-decidable, nor is it

mi-decidable to tell if it is not equivalent to a
A <.. "REG e
™ —m T™M |FSM.

Erm=m EQry _ , _
Undecidable given 2 TMs to tell if they are

SO, _'ATM <m EQTM _equwa_lent.. It's not even semi-decidable, nor is
it semi-decidable to tell If they are not

Also, Aqy =<, EQ:y

Ay ={(M,w) | Mis a TM that accepts string w }
ALL,,,={P|PisaPDAand L(P)=2"}

CONSTRUCTf: 2* = 2*
Idea! More subtle construction

32
\y

Map (M,w) to a PDA P, that recognizes 2*
if and only if M accept w

So, (M,w) & Ay <> P, € ALLoos

P, will recognize all (and only those) strings that are
accepting computation histories for M on w

CONFIGURATIONS

11010400110

\4

COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,.,...,C,, where

1. C, is the start configuration,
2. C, is an accepting configuration,

3. Each C, follows from C_ ,

An rejecting computation history is a sequence
of configurations C,,C,.,...,C,, where

1. C, is the start configuration,
2. C, is a rejecting configuration,
3. Each C, follows from C. ,

COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,.,...,C,, where

1. C, is the start configuration,
2. C, is an accepting configuration,
3. Each C, follows from C_ ,

M accepts w if and only if there exists an accepting
computation history that starts with C,=q,w

P will recognize all strings (read as sequences
of configurations) that:

1. Do not start with C, or

2. Do not end with an accepting configuration or
3. Where some C,; does not properly yield C,,,

{

- €€ — €
\ 4

Non-deterministic checks for 1, 2, and 3.

P will all strings (read as sequences of
configurations) that:

1. Start with C,

2. End with an accepting configuration
3. Where each C; properly yields C.,,

{

- €€ — €
\ 4

Non-deterministic checks for 1, 2, and 3.

X — X, L

{02"|n20} 0—>0L

O > O.R
X—xR / \ x—>xR
u©
0_)D!R 0—>XR

A
X—>X,R D—>D,R 0—>0R
0 — O,R 0-x,R
\ 4
O
v X—>X,R
D—)D,R

X — X, R

P recognizes all strings except
accepting computation histories :

#C. # C_R#C,#C R#C . #CR#...#C,

If i is odd, put C, on stack and see if C R
follows properly:

For example,

If =uady and o (q,b) = (4;c.R),

then C, properly yields C,,;, < C,,; = u @/

P recognizes all strings except
accepting computation histories :

#C. # C_R#C,#C R#C . #CR#...#C,

If i is odd, put C, on stack and see if C R
follows properly:

For example,

If =GBy and 5 () = (g,c.L)
then C, properly yields C,,, < C,,, =

P recognizes all strings except
accepting computation histories :

#C. # C_R#C,#C R#C . #CR#...#C,

If i is even, put CRon stack and see if C,,
follows properly.

|00 |O

@OO#OO@DX%OO#O%OX THOXOXQH .. #

|00 |O

@OO#OO@DX%OO#O%OX THOXOXQH .. #

|00 |O

@OO#OO@DX%OO#O%OX THOXOXQH .. #

#q,0000#000q, D#D@O%Ox OROXOXQH ... #

#9,0000#000q, D#D)@‘O%Ox OROXOXQH ... #

Ay ={(M,w) | Mis a TM that accepts string w }
ALL,,,={P|PisaPDAand L(P)=2"}

CONSTRUCT f: 2* — 2~

f: (M,w) — P, where

P, (s) = accept iff s is NOT an accepting computation of M(w)

So, (M, w) & Ay <> P, € ALLopa

So, (M,w) E Ay < P, € = ALLppa

Ay ={(M,w) | Mis a TM that accepts string w }
HALT,, = { (M,w) | M is a TM that halts on string w }

E.y={M|MisaTMand L(M)=J}
REG;,={M|Mis a TM and L(M) is regular}
EQ.y, ={(M, N) | M, N are TMs and L(M) =L(N)}
ALL,,,={P|PisaPDAandL(P)=2*}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?

WWW.FLAC.WS

Read chapter 5.1-5.3 of the book for next time

THE PCP GAME

ddd
d

| EE

GENERAL RULE #1

If every top string is longer than the
corresponding bottom one, there can’t be a match

aab
aa

GENERAL RULE #2

If there is a domino with the same string on the top
and on the bottom, there is a match

POST CORRESPONDENCE PROBLEM

Given a collection of dominos, is there a match?
PCP ={P | Pis aset of dominos with a match }

PCP is undecidable!

THE FPCP GAME

... is just like the PCP game except that a
match has to start with the first domino

FPCP

ddd
d

—

K

FPCP

bcb

&

Lo

Theorem: FPCP is undecidable
Proof: Assume machine C decides FPCP

We will show how to use C to decide A,

Given (M,w)

we will construct a set of
dominos P, , where a match

IS an accepting computation
history for M on w

M,w

Br

Puw has a match?

X — X, L

{02"|n20} 0—>0L

O > O.R
X—xR / \ x—>xR
u©
0_)D!R 0—>XR

A
X—>X,R D—>D,R 0—>0R
0 — O,R 0-x,R
\ 4
O
v X—>X,R
D—)D,R

X — X, R
0 - 0O, R

#q o>@§

X —> X, R
0O — U, R

Given (M,w), we will construct an
instance Py, , of FPCP in 7 steps

Assume M on w never attempts to move off
left hand edge of tape

STEP 1

Put into P

For start configuration

START

STEP 2

ga
If 5(g,a) = (p,b,R) then add
bp
STEP 3
cqa
If 5(g,a) = (p,b,L) then add forallcel
pcb

RULES

X — X, L

{02"|n20} 0—>0L

O > O.R
X—xR / \ x—>xR
u©
0_)D!R 0—>XR

A
X—>X,R D—>D,R 0—>0R
0 — O,R 0-x,R
\ 4
O
v X—>X,R
D—)D,R

STEP 4

add forallacerl

For tape cells not
adjacent to head

STEP S5
add
For configuration To simulate the blanks on
separator the right hand side of tape

CONTINUE

STEP 4

add forallacTl
STEP 5
add Adds
pseudo-
steps after
— TM halts

STEPOG (catch up)
aqacc qacc

add forallacTl
qacc qacc

END

Given (M,w), we can construct an
instance of FPCP that has a match if
and only if M accepts w

Can convert an instance of FPCP into one of PCP:
Let u = u,u,...u , define:
KU = Uy # Uy Ug ¥ .o U
UK = Ug# Uy Ug s ... U %

UK =k Ug# Uy Ug ¥ .o % U %

PCP:
*b *

Given (M,w), we can construct an
instance of PCP that has a match if
and only if M accepts w

