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FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY




THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms
EQUALS
Turing Machines



UNDECIDABILITY Ii:

REDUCTIONS
TUESDAY Feb 18



Ay ={(M,w)| Mis a TM that accepts string w }

A, is undecidable: (constructive proof & subtle)

Assume machine H semi-decides Ay (such exist, why?)

Accept if M accepts w
H(Mw))=< |
Rejects or loops otherwise

Construct a new TM D, as follows: on input M,

run H on (M,M) and output the “opposite” of H
whenever possible.



Reject if D, accepts D,
(i.e. if H( D, , D, ) = Accept)

_ Accept if D,rejects D,
Du(Dy) =< (ie. if H( D, D, ) = Keject)

loops if D, Ioops on D
(i.e. if H( D, D )Ioopo,

Note: It must be the case that D,, loops on D,

There is no contradiction here!

Thus we have effectively constructed an instance
which does not belong to A, (namely, (D, D) )

but H fails to tell us that.



That is:

Given any semi-decision machine H for Ay,
(and thus a potential decision machine for A, ),

we can effectively construct an instance which
does not belong to A, (nhamely, ( Dy, D, ))

but H fails to tell us that.

So H cannot be a decision machine for A,



In most cases, we will show that a
language L is undecidable by showing
that if it is decidable, then so is Aq,

We reduce deciding A, to deciding
the language in question

ATM “<“ L



THE HALTING PROBLEM
HALT;, ={(M,w) | Mis a TM that halts on string w }

Theorem: HALT;,, is undecidable

Proof:Assume, for a contradiction, that TM H
decides HALT

We use H to construct a TM D that decides Ay,

On input (M,w), D runs H on (M,w)
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts and
Reject if M rejects



(M,w)
| If M halts

Does M
H

If M doesn’t
halt: REJECT

ACCEPT if halts in accept state
REJECT otherwise




In most cases, we will show that a
language L is undecidable by showing
that if it is decidable, then so is Aq,

We reduce deciding A, to deciding
the language in question

ATM “<“ L

So, Ay “<“ Haltg,
Is Haltyy, “<* Ay ?




Ay ={(M,w) | Mis a TM that accepts string w }
HALT,, = { (M,w) | M is a TM that halts on string w } (*)

Erw={M|MisaTMand L(M) =2} (*)

REGy ={ M| M is a TM and L(M) is regular} (*)
EQqy ={( M, N) | M, N are TMs and L(M) =L(N)} (*)
ALLpp, ={P|Pis aPDAand L(P) = Z* } (*)

ALL UNDECIDABLE

(*) Use Reductions to Prove

Which are SEMI-DECIDABLE?
What about complements?



E.n={M|MisaTMand L(M)=J}
Theorem: E;, is undecidable

Proof:Assume, for a contradiction, that TM Z
decides E; . Use Z as a subroutine to decide Aqy

Algorithm for deciding Ay: On input (M,w):
1. Create M,

Erase s, run M(w)

So,L(M,)=9 < M(w) does not accept
L(M,) = J < M(w) accepts
2.RunZon M,



So, L (M,) =0 < M(w)
does not accept

Decision Machine Z (L) F32?

for Ay

Accepts if M does rlot accept w
Rejects, otherwise

REVERSE accept/reject




REGULAR,,={M | Mis a TM and L(M) is regular}
Theorem: REGULAR;, is undecidable

Proof:Assume, for a contradiction, that TM R
decides REGULAR,

Use R as a subroutine to decide Ay
1. Create M’

M,
If s = 0", accept

S —»
Else run M(w)

So,L(M°,)=2* < M(w)accepts
L (M, )={0"M"} «~ M(w) does not accept
2.RunRon W,



If s = 0", accept

Else run M(w)

L(M,,) = f* if M(w) accepts

0"} otherwise

L(M,,') is regular < M(w) accepts

Yes < M accepts w



MAPPING REDUCIBILITY

f:2* — 2% is a computable function if some

Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A <_ B, if there is a computable function

f:2* — 2% where for every w,

weEA<f(w)eB
f is called a reduction from Ato B

Think of f as a “computable coding”



A is mapping reducible to B, A <_ B,
if there is a computable f: 2* — 2*
suchthatwe A < f(w) B

Also, - A < - B, why?



Theorem: If A < B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from A to B

We build a machine N that decides A as follows:

On input w:
1. Compute f(w)
2. Run M on f(w)



Theorem: If A < B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from Ato B

We build a machine N that (semi) decides A as

follows:
On input w:

1. Compute f(w)
2. Run M on f(w)



All undecidability proofs from today can
be seen as constructing an f that reduces
A, to the proper language

(Sometimes you have to consider
the complement of the language. )



All undecidability proofs from today can
be seen as constructing an f that reduces
A, to the proper language

ATM =m HALTTM (SO a|SO, — ATM Smﬁ HALTTM):

Map (M, w) — (M’, w)
where M’(w) = M(w) if M(w) accepts
loops otherwise

So (M, w) € ATM < (M, w) & HALTTM



Ay ={(M,w) | Mis a TM that accepts string w }
E.nm={M|MisaTMand L(M) =}

CLAIM: Ay, < - Eq,,

= A =m Etm

CONSTRUCT f: 2* — 2~

f: (M,w) — M, where M, (s) = M(w)

So, M(w) accepts < L(M,) = &

So,(M,w)ceA;, = M, € - Eqy

So - Eyis NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is E;,, SEMI-DECIDABLE?



Ay ={(M,w) | Mis a TM that accepts string w }
REG;,={M|Mis aTM and L(M) is regular}

CLAIM: Ay <., REG, So REG, is UNDECIDABLE
CONSTRUCT f: I* — &*

f: (M,w) = M’ , where M’ (s) =acceptifs=0"1n"
M(w) otherwise

So, L (M’°,) =2* if M(w) accepts
{0} if not

So, (M, w ) € Ay < M, € REGy,,

Is REG SEMI-DECIDABLE? (- REG is not. Why?)



Ay ={(M,w) | Mis a TM that accepts string w }
REG;,={M|Mis a TM and L(M) is regular}

CLAIM: - ATM =m REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* = 2*

f: (M,w) = M”, where M” (s) =acceptifs=0"1n"
and M(w) accepts
Loop otherwise

So, L (M’,) = {0} if M(w) accepts
& if not

So, (M, w) & Ay <> M, € REGy,
So, REG NOT SEMI-DECIDABLE




Ay ={(M,w) | Mis a TM that accepts string w }
HALT,, = { (M,w) | M is a TM that halts on string w }

E.y={M|MisaTMand L(M)=J}
REG;,={M|Mis a TM and L(M) is regular}
EQ;y, ={(M, N) | M, N are TMs and L(M) =L(N)}
ALL,,,={P|PisaPDAandL(P)=2*}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?



E.ym={M|MisaTMand L(M) =& }
EQ;, ={(M, N) | M, N are TMs and L(M) =L(N)}

CLAIM: Ery <, EQpy  So EQqy, is UNDECIDABLE
CONSTRUCT f: =* — =*

f:M— (M, M )where M, (s) =Loops

SO,MEETM<=>(M,M@)EEQTM

Is EQy,y SEMI-DECIDABLE? since,

- Ay =m Etm =m EQqp What about -EQ,?



Ay ={(M,w) | Mis a TM that accepts string w }
EQ;, ={(M, N) | M, N are TMs and L(M) =L(N)}
CLAIM: A, <., EQy

So -EQqy is semi-decidable

CONSTRUCT f: 2*— 2*

f: (Mw)— (M, M,)
Where for each s in Z*,

M, (s) = M(w)and M,(s) always accepts

SO, (M,W) €A ™ <& (MW’ MA) - EQTM




A E Undecidable given a TM to tell if the language it
™ =m — E1m recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is

non-empty.

ATM =m REGTM Undecidable given a TM to tell if it is equivalent
to a FSM. It's not even semi-decidable, nor is it

mi-decidable to tell if it is not equivalent to a
A <.. "REG e
™ —m T™M |FSM.

Erm=m EQry _ , _
Undecidable given 2 TMs to tell if they are

SO, _'ATM <m EQTM _equwa_lent.. It's not even semi-decidable, nor is
it semi-decidable to tell If they are not

Also, Aqy =<, EQ:y



Ay ={(M,w) | Mis a TM that accepts string w }
ALL,,,={P|PisaPDAand L(P)=2"}

CONSTRUCTf: 2* = 2*
Idea! More subtle construction

32
\y

Map (M,w) to a PDA P, that recognizes 2*
if and only if M accept w

So, (M,w) & Ay <> P, € ALLoos

P, will recognize all (and only those) strings that are
accepting computation histories for M on w




CONFIGURATIONS

11010400110

\4



COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,.,...,C,, where

1. C, is the start configuration,
2. C, is an accepting configuration,

3. Each C, follows from C_ ,

An rejecting computation history is a sequence
of configurations C,,C,.,...,C,, where

1. C, is the start configuration,
2. C, is a rejecting configuration,
3. Each C, follows from C. ,



COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,.,...,C,, where

1. C, is the start configuration,
2. C, is an accepting configuration,
3. Each C, follows from C_ ,

M accepts w if and only if there exists an accepting
computation history that starts with C,=q,w



P will recognize all strings (read as sequences
of configurations) that:

1. Do not start with C, or

2. Do not end with an accepting configuration or
3. Where some C,; does not properly yield C,,,

{

- €€ — €
\ 4

Non-deterministic checks for 1, 2, and 3.




P will all strings (read as sequences of
configurations) that:

1. Start with C,

2. End with an accepting configuration
3. Where each C; properly yields C.,,

{

- €€ — €
\ 4

Non-deterministic checks for 1, 2, and 3.




X — X, L

{02"|n20} 0—>0L

O > O.R
X—xR / \ x—>xR
u©
0_)D!R 0—>XR

A
X—>X,R D—>D,R 0—>0R
0 — O,R 0-x,R
\ 4
O
v X—>X,R
D—)D,R



X — X, R




P recognizes all strings except
accepting computation histories :

#C. # C_R#C,#C R#C . #CR#...#C,

If i is odd, put C, on stack and see if C R
follows properly:

For example,

If =uady and o (q,b) = (4;c.R),

then C, properly yields C,,;, < C,,; = u @/



P recognizes all strings except
accepting computation histories :

#C. # C_R#C,#C R#C . #CR#...#C,

If i is odd, put C, on stack and see if C R
follows properly:

For example,

If =GBy and 5 () = (g,c.L)
then C, properly yields C,,, < C,,, =



P recognizes all strings except
accepting computation histories :

#C. # C_R#C,#C R#C . #CR#...#C,

If i is even, put CRon stack and see if C,,
follows properly.



|00 |O

@OO#OO@DX%OO#O%OX THOXOXQH .. #




|00 |O

@OO#OO@DX%OO#O%OX THOXOXQH .. #




|00 |O

@OO#OO@DX%OO#O%OX THOXOXQH .. #




#q,0000#000q, D#D@O%Ox OROXOXQH ... #




#9,0000#000q, D#D)@‘O%Ox OROXOXQH ... #




Ay ={(M,w) | Mis a TM that accepts string w }
ALL,,,={P|PisaPDAand L(P)=2"}

CONSTRUCT f: 2* — 2~

f: (M,w) — P, where

P, (s) = accept iff s is NOT an accepting computation of M(w)

So, (M, w) & Ay <> P, € ALLopa

So, (M,w) E Ay < P, € = ALLppa




Ay ={(M,w) | Mis a TM that accepts string w }
HALT,, = { (M,w) | M is a TM that halts on string w }

E.y={M|MisaTMand L(M)=J}
REG;,={M|Mis a TM and L(M) is regular}
EQ.y, ={(M, N) | M, N are TMs and L(M) =L(N)}
ALL,,,={P|PisaPDAandL(P)=2*}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?



WWW.FLAC.WS

Read chapter 5.1-5.3 of the book for next time



THE PCP GAME



ddd
d






| EE



GENERAL RULE #1

If every top string is longer than the
corresponding bottom one, there can’t be a match



aab
aa



GENERAL RULE #2

If there is a domino with the same string on the top
and on the bottom, there is a match



POST CORRESPONDENCE PROBLEM

Given a collection of dominos, is there a match?
PCP ={P | Pis aset of dominos with a match }

PCP is undecidable!



THE FPCP GAME

... is just like the PCP game except that a
match has to start with the first domino



FPCP

ddd
d




—

K

FPCP

bcb

&

Lo



Theorem: FPCP is undecidable
Proof: Assume machine C decides FPCP

We will show how to use C to decide A,



Given (M,w)

we will construct a set of
dominos P, , where a match

IS an accepting computation
history for M on w

M,w

Br

Puw has a match?



X — X, L

{02"|n20} 0—>0L

O > O.R
X—xR / \ x—>xR
u©
0_)D!R 0—>XR

A
X—>X,R D—>D,R 0—>0R
0 — O,R 0-x,R
\ 4
O
v X—>X,R
D—)D,R



X — X, R
0 - 0O, R

#q o>@§

X —> X, R
0O — U, R



Given (M,w), we will construct an
instance Py, , of FPCP in 7 steps

Assume M on w never attempts to move off
left hand edge of tape



STEP 1

Put into P

For start configuration

START



STEP 2

ga
If 5(g,a) = (p,b,R) then add
bp
STEP 3
cqa
If 5(g,a) = (p,b,L) then add forallcel
pcb

RULES



X — X, L

{02"|n20} 0—>0L

O > O.R
X—xR / \ x—>xR
u©
0_)D!R 0—>XR

A
X—>X,R D—>D,R 0—>0R
0 — O,R 0-x,R
\ 4
O
v X—>X,R
D—)D,R






STEP 4

add forallacerl

For tape cells not
adjacent to head

STEP S5
add
For configuration To simulate the blanks on
separator the right hand side of tape

CONTINUE



STEP 4

add forallacTl
STEP 5
add Adds
pseudo-
steps after
— TM halts

STEPOG (catch up)
aqacc qacc

add forallacTl
qacc qacc






END






Given (M,w), we can construct an
instance of FPCP that has a match if
and only if M accepts w



Can convert an instance of FPCP into one of PCP:
Let u = u,u,...u , define:
KU = Uy # Uy Ug ¥ .o U
UK = Ug# Uy Ug s ... U %

UK =k Ug# Uy Ug ¥ .o % U %

PCP:
*b *




Given (M,w), we can construct an
instance of PCP that has a match if
and only if M accepts w



