15 - 453FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

THE CHURCH-TURING THESIS

Intuitive Notion of Algorithms EQUALS Turing Machines

UNDECIDABILITY II: REDUCTIONS TUESDAY Feb 18 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ A_{TM} is undecidable: (constructive proof & subtle)

Assume machine H semi-decides A_{TM} (such exist, why?)

Construct a new TM D_H as follows: on input M, run H on (M,M) and output the "opposite" of H whenever possible.

 $D_{H}(D_{H}) = \left\{ \begin{array}{l} \text{Reject if } D_{H} \text{ accepts } D_{H} \\ (\text{i.e. if } H(D_{H}, D_{H}) = \text{Accept}) \\ \text{Accept if } D_{H} \text{ rejects } D_{H} \\ (\text{i.e. if } H(D_{H}, D_{H}) = \text{Reject}) \\ (\text{i.e. if } H(D_{H}, D_{H}) = \text{Reject}) \\ \text{Ioops if } D_{H} \text{ loops on } D_{H} \\ (\text{i.e. if } H(D_{H}, D_{H}) = 0 \\ (\text{i.e. if } H(D$

Note: It must be the case that D_H loops on D_H

There is no contradiction here!

Thus we have effectively constructed an instance which does not belong to A_{TM} (namely, (D_H, D_H)) but H fails to tell us that.

That is:

- Given any semi-decision machine H for A_{TM}
- (and thus a potential decision machine for A_{TM}),
- we can effectively construct an instance which does not belong to A_{TM} (namely, (D_{H} , D_{H}))
- but H fails to tell us that.
- So H cannot be a decision machine for A_{TM}

In most cases, we will show that a language L is undecidable by showing that if it is decidable, then so is A_{TM}

We reduce deciding A_{TM} to deciding the language in question

A_{TM} "<" L

THE HALTING PROBLEM HALT_{TM} = { (M,w) | M is a TM that halts on string w } **Theorem: HALT_{TM} is undecidable Proof:**Assume, for a contradiction, that TM H decides HALT_{TM} We use H to construct a TM D that decides A_{TM} On input (M,w), D runs H on (M,w) If H rejects then reject If H accepts, run M on w until it halts: Accept if M accepts and **Reject if M rejects**

(M,w) ____

ACCEPT if halts in accept state **REJECT** otherwise In most cases, we will show that a language L is undecidable by showing that if it is decidable, then so is A_{TM}

We reduce deciding A_{TM} to deciding the language in question

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ HALT_{TM} = { (M,w) | M is a TM that halts on string w } (*) $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \} (*)$ $REG_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} (*)$ $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\} (*)$ $ALL_{PDA} = \{ P | P \text{ is a PDA and } L(P) = \Sigma^* \} (*)$ ALL UNDECIDABLE (*) Use Reductions to Prove Which are SEMI-DECIDABLE? What about complements?

 $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$ Theorem: E_{TM} is undecidable Proof:Assume, for a contradiction, that TM Z decides E_{TM} . Use Z as a subroutine to decide A_{TM} Algorithm for deciding A_{TM} : On input (M,w):

So, L (M_w) = $\emptyset \Leftrightarrow M(w)$ does not accept L (M_w) $\neq \emptyset \Leftrightarrow M(w)$ accepts 2. Run Z on M_w

REGULAR_{TM} = { M | M is a TM and L(M) is regular} Theorem: REGULAR_{TM} is undecidable Proof:Assume, for a contradiction, that TM R decides REGULAR_{TM}

Use R as a subroutine to decide A_{TM}

1. Create M'_w

w s → M'_w If s = 0ⁿ1ⁿ, accept Else run M(w)

So, L $(M'_w) = \Sigma^* \iff M(w)$ accepts L $(M'_w) = \{0^n 1^n\} \iff M(w)$ does not accept 2. Run R on M'_w

 $L(M_w')$ is regular \Leftrightarrow M(w) accepts

R Is L(M), negeglatar?

Yes ⇔ M accepts w

MAPPING REDUCIBILITY

f: $\Sigma^* \rightarrow \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just f(w) on its tape

A language A is *mapping reducible* to language B, written A \leq_m B, if there is a computable function f: $\Sigma^* \rightarrow \Sigma^*$, where for every w,

 $w \in A \Leftrightarrow f(w) \in B$ f is called a *reduction* from A to B Think of f as a "computable coding" A is mapping reducible to B, $A \leq_m B$, if there is a computable $f : \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Let M decide B and let f be a reduction from A to B

We build a machine N that decides A as follows:

On input w:

Compute f(w)
Run M on f(w)

Theorem: If $A \leq_m B$ and B is (semi) decidable, then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a reduction from A to B

We build a machine N that (semi) decides A as follows: On input w:

> 1. Compute f(w) 2. Run M on f(w)

All undecidability proofs from today can be seen as constructing an f that reduces A_{TM} to the proper language

(Sometimes you have to consider the complement of the language.) All undecidability proofs from today can be seen as constructing an f that reduces A_{TM} to the proper language

 $A_{TM} \leq_m HALT_{TM}$ (So also, $\neg A_{TM} \leq_m \neg HALT_{TM}$):

Map $(M, w) \rightarrow (M', w)$ where M'(w) = M(w) if M(w) accepts loops otherwise

So (M, w) $\in A_{TM} \Leftrightarrow (M', w) \in HALT_{TM}$

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $\textbf{CONSTRUCT} \ f: \Sigma^* \to \Sigma^*$

f: (M,w) \rightarrow M_w where M_w (s) = M(w)

So, M(w) accepts \Leftrightarrow L (M_w) $\neq \emptyset$

So, (M, w)
$$\in$$
 A_{TM} \Leftrightarrow M_w \in ¬ E_{TM}

So $\neg E_{TM}$ is NOT DECIDABLE, but it is SEMI-DECIDABLE (why?) Is E_{TM} SEMI-DECIDABLE?

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $REG_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \}$ CLAIM: $A_{TM} \leq_m REG_{TM}$ So REG_{TM} is UNDECIDABLE CONSTRUCT $f : \Sigma^* \rightarrow \Sigma^*$ f: $(M,w) \rightarrow M'_w$ where $M'_w(s) = accept$ if $s = 0^n 1^n$ **M(w)** otherwise

> So, L (M'_w) = Σ^* if M(w) accepts {0ⁿ1ⁿ} if not

So, (M, w) \in A_{TM} \Leftrightarrow M'_w \in REG_{TM}

Is REG SEMI-DECIDABLE? (¬ REG is not. Why?)

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $REG_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \}$ CLAIM: $\neg A_{TM} \leq_m REG_{TM}$ So REG_{TM} is NOT SEMI-DECIDABLE CONSTRUCT $f: \Sigma^* \to \Sigma^*$ f: $(M,w) \rightarrow M''_w$ where $M''_w(s) = accept$ if $s = 0^n 1^n$ and M(w) accepts **Loop** otherwise So, L (M'_w) = { 0^n1^n } if M(w) accepts \varnothing if not So, (M, w) \notin A_{TM} \Leftrightarrow M"_w \in REG_{TM} So, REG NOT SEMI-DECIDABLE

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ HALT_{TM} = { (M,w) | M is a TM that halts on string w } $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$ $REG_{TM} = \{ M \mid M \text{ is } a TM and L(M) \text{ is regular} \}$ $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$ $ALL_{PDA} = \{ P | P \text{ is a PDA and } L(P) = \Sigma^* \}$ **ALL UNDECIDABLE** Which are SEMI-DECIDABLE? What about complements?

 $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$ $EQ_{TM} = \{ (M, N) \mid M, N \text{ are TMs and } L(M) = L(N) \}$ $CLAIM: E_{TM} \leq_m EQ_{TM} \quad So EQ_{TM} \text{ is UNDECIDABLE}$ $CONSTRUCT f: \Sigma^* \rightarrow \Sigma^*$

f : **M** \rightarrow (**M**, **M** $_{\varnothing}$) where **M** $_{\varnothing}$ (**s**) = Loops

So, $M \in E_{TM} \Leftrightarrow (M, M_{\varnothing}) \in EQ_{TM}$

Is EQ_{TM} SEMI-DECIDABLE? NO, since,

$$\neg A_{TM} \leq_m E_{TM} \leq_m EQ_{TM}$$

What about ¬EQ_{TM}?

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$ CLAIM: A_{TM} ≤_m EQ_{TM} **So** ¬ EQ_{TM} is **not semi-decidable** $\overline{\text{CONSTRU}} \overline{\text{CT f}} : \underline{\Sigma^*} \rightarrow \underline{\Sigma^*}$ $f: (M,w) \rightarrow (M_w, M_{\Delta})$ Where for each s in Σ^* , M_w (s) = M(w) and M_A (s) always accepts

So, (M,w)
$$\in$$
 A _{TM} \Leftrightarrow (M_w, M_A) \in EQ_{TM}

Undecidable given a TM to tell if the language it recognizes is empty. It's not even semi-decidable, altho it is semi-decidable to tell if the language is non-empty.

Undecidable given a TM to tell if it is equivalent to a FSM. It's not even semi-decidable, nor is it semi-decidable to tell if it is not equivalent to a FSM.

Also, A_{TM} ≤_m EQ_{TM}

Undecidable given 2 TMs to tell if they are equivalent. It's not even semi-decidable, nor is it semi-decidable to tell If they are not $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

 $ALL_{PDA} = \{ P | P \text{ is a PDA and } L(P) = \Sigma^* \}$

CLAIM: $A_{TM} \leq_m \neg ALL_{PDA} \neg A_{TM} \leq_m ALL_{PDA}$

CONSTRUCT $f : \Sigma^* \rightarrow \Sigma^*$ Idea! More subtle construction

Map (M,w) to a PDA P_w that recognizes Σ^* if and only if M does not accept w

So, (M, w) \notin A_{TM} \Leftrightarrow P_w \in ALL_{PDA}

P_w will recognize all (and only those) strings that are NOT accepting computation histories for M on w

CONFIGURATIONS 110100700110

COMPUTATION **HISTORIES** An accepting computation history is a sequence of configurations $C_1, C_2, ..., C_k$, where

1. C₁ is the start configuration,

2. C_k is an accepting configuration,

3. Each C_i follows from C_{i-1}

An rejecting computation history is a sequence of configurations $C_1, C_2, ..., C_k$, where

- **1.** C₁ is the start configuration,
- 2. C_k is a rejecting configuration,
- 3. Each C_i follows from C_{i-1}

COMPUTATION **HISTORIES** An accepting computation history is a sequence of configurations $C_1, C_2, ..., C_k$, where

1. C_1 is the start configuration,

2. C_k is an accepting configuration,

3. Each C_i follows from C_{i-1}

An rejecting computation history is a sequence of configurations $C_1, C_2, ..., C_k$, where

1. C_1 is the start configuration,

2. C_k is a rejecting configuration,

3. Each C_i follows from C_{i-1}

M accepts w if and only if there exists an accepting computation history that starts with $C_1 = q_0 w$

P will recognize all strings (read as sequences of configurations) that:

1. Do not start with C_1 or

2. Do not end with an accepting configuration or

3. Where some C_i does not properly yield C_{i+1}

Non-deterministic checks for 1, 2, and 3.

P will reject all strings (read as sequences of configurations) that:

- 1. Start with C₁ and
- 2. End with an accepting configuration and
- 3. Where each C_i properly yields C_{i+1}

Non-deterministic checks for 1, 2, and 3.

P recognizes all strings except accepting computation histories :

 $\#C_{1}\#C_{2}^{R}\#C_{3}\#C_{4}^{R}\#C_{5}\#C_{6}^{R}\#....\#C_{k}$

If i is odd, put C_i on stack and see if C_{i+1}^R follows properly:

For example,

If $=uaq_ibv$ and $\delta(q_i,b) = (q_j,c,R)$,

then C_i properly yields C_{i+1} \Leftrightarrow C_{i+1} = uacq_iv

P recognizes all strings except accepting computation histories :

 $\#C_1 \# C_2^R \#C_3 \#C_4^R \#C_5 \#C_6^R \#....\# C_k$

If i is odd, put C_i on stack and see if C_{i+1}^R follows properly:

For example,

If $=uaq_ibv$ and $\delta(q_i,b) = (q_j,c,L)$,

then C_k properly yields $C_{k+1} \Leftrightarrow C_{k+1} = u(q_j a c)$

P recognizes all strings except accepting computation histories :

 $\#C_1 \# C_2^R \#C_3 \#C_4^R \#C_5 \#C_6^R \#....\# C_k$

If i is even, put C_i^R on stack and see if C_{i+1} follows properly.

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $ALL_{PDA} = \{ P | P \text{ is a PDA and } L(P) = \Sigma^* \}$ $CLAIM: A_{TM} \leq_{m} \neg ALL_{PDA} \neg A_{TM} \leq_{m} ALL_{PDA}$ $\overline{\text{CONST}RU}\overline{\text{CT}} f: \Sigma^* \to \Sigma^*$ f: (M,w) $\rightarrow P_w$ where

P_w (s) = accept iff s is NOT an accepting computation of M(w)

So, (M, w)
$$\notin$$
 A_{TM} \Leftrightarrow P_w \in ALL_{PDA}

So, (M, w)
$$\in$$
 A_{TM} \Leftrightarrow P_w \in ¬ ALL_{PDA}

EXPLAIN THE PROOF TO YOUR NEIGHBOR

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ HALT_{TM} = { (M,w) | M is a TM that halts on string w } $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$ $REG_{TM} = \{ M \mid M \text{ is } a TM and L(M) \text{ is regular} \}$ $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$ $ALL_{PDA} = \{ P | P \text{ is a PDA and } L(P) = \Sigma^* \}$ ALL UNDECIDABLE Which are SEMI-DECIDABLE? What about complements?

THE PCP GAME

GENERAL RULE #1

If every top string is longer than the corresponding bottom one, there can't be a match

GENERAL RULE #2

If there is a domino with the same string on the top and on the bottom, there is a match POST CORRESPONDENCE **PROBLEM** Given a collection of dominos, is there a match? PCP = { P | P is a set of dominos with a match }

PCP is *undecidable*!

THE FPCP GAME

... is just like the PCP game except that a match has to start with the first domino

FPCP

Theorem: FPCP is undecidable Proof: Assume machine C decides FPCP We will show how to use C to decide A_{TM}

Given (M,w)

we will construct a set of dominos $P_{M,w}$ where a match is an accepting computation history for M on w

Given (M,w), we will construct an instance P_{M,w} of FPCP in 7 steps

Assume M on w never attempts to move off left hand edge of tape

STEP 1

Put

For start configuration

If $\delta(q,a) = (p,b,R)$ then add

STEP 3

If $\delta(q,a) = (p,b,L)$ then add

for all $c \in \Gamma$

RULES

For configuration separator

To simulate the blanks on the right hand side of tape

CONTINUE

Given (M,w), we can construct an instance of FPCP that has a match if and only if M accepts w

Given (M,w), we can construct an instance of PCP that has a match if and only if M accepts w