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ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (constructive proof & subtle)

 Assume machine H semi-decides ATM (such exist, why?)

H( (M,w) ) =
Accept  if M accepts w 

Rejects or loops otherwise 

Construct a new TM DH as follows: on input M, 
run H on (M,M) and output the “opposite” of H 
whenever possible.



DH (  M  ) =

Reject if  M  accepts  M 
(i.e. if H(  M  ,  M  ) = Accept) 

Accept if  M  rejects  M 
(i.e. if H(  M  ,  M  ) = Reject) 

loops if  M  loops on  M 
(i.e. if H(  M  ,  M  ) loops)

DH

DH DH
DH DH

DH DH
DHDH

DH DH
DH DH

Note: It must be the case that DH loops on DH 

There is no contradiction here! 
Thus we have effectively constructed an instance 
which does not belong to ATM (namely, (DH, DH) )  
but H fails to tell us that.  



That is: 

Given any semi-decision machine H  for  ATM  

(and thus a potential decision machine for ATM ),  

we can effectively construct an instance which 
does not belong to ATM (namely, ( DH, DH ))  

but H fails to tell us that.   

So H cannot be a decision machine for ATM 



In most cases, we will show that a 
language L is undecidable by showing 

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding 
the language in question

ATM   “<“   L



HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE HALTING PROBLEM

Proof:   Assume, for a contradiction, that TM H 
decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w)
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts and  
Reject if M rejects



H

(M,w)

(M,w)

M

w

If M doesn’t 
halt: REJECT

If M halts

Does M 
halt on w?

D

ACCEPT if halts in accept state 
REJECT  otherwise



In most cases, we will show that a 
language L is undecidable by showing 

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding 
the language in question

ATM   “<“   L

So, ATM   “<“   HaltTM 
Is   HaltTM “<“   ATM  ?



ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w } (*)

ETM = { M | M is a TM and L(M) = ∅ } (*) 

REGTM = { M | M is a TM and L(M) is regular} (*)

ALLPDA = { P | P is a PDA and L(P) = Σ* } (*)

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} (*)

ALL UNDECIDABLE
(*) Use Reductions to Prove

Which are SEMI-DECIDABLE?
What about complements?



ETM = { M | M is a TM and L(M) = ∅ }
Theorem: ETM is undecidable
Proof:   Assume, for a contradiction, that TM Z 
decides ETM . 

s Erase s, run M(w)

Algorithm for deciding ATM: On input (M,w):

Mw

1. Create Mw

2. Run Z on Mw

Use Z as a subroutine to decide ATM

So, L (Mw) = ∅  ⇔  M(w) does not accept 
             L (Mw) ≠ ∅  ⇔  M(w) accepts  



Accepts if M does not accept w 
Rejects, otherwise

Z

s Erase s, run M(w)

Mw

(M,w)

L(Mw) = ∅?

So, L (Mw) = ∅  ⇔  M(w) 
does not accept

REVERSE accept/reject

Decision Machine  
for ATM

N

L(N) = ∅?

Mw



REGULARTM = { M | M is a TM and L(M) is regular}

Theorem: REGULARTM is undecidable
Proof:   Assume, for a contradiction, that TM R 
decides REGULARTM

Use R as a subroutine to decide ATM

s
M’w

1. Create M’w

2. Run R on M’w

So, L (M’w) = Σ*    ⇔  M(w) accepts 
                       L (M’w) = {0n1n} ⇔  M(w) does not accept

If s = 0n1n, accept
Else run M(w)



R

N

Is L(N) regular?

s If s = 0n1n, accept
Else run M(w)

Mwʹ′

L(Mwʹ′) = Σ*  if M(w) accepts 

              {0n1n } otherwise 

L(Mwʹ′)  is regular ⇔ M(w) accepts

Mwʹ′

Is L(Mwʹ′) regular?

Yes ⇔ M accepts w



MAPPING REDUCIBILITY
f : Σ* → Σ* is a computable function if some 
Turing machine M, on every input w, halts with 
just f(w) on its tape

A language A is mapping reducible to language B, 
written A ≤m B, if there is a computable function   
                    f : Σ* → Σ*, where for every w,

w ∈ A ⇔ f(w) ∈ B
f is called a reduction from A to B

Think of f as a “computable coding”



A Bf

f

A is mapping reducible to B,  A ≤m B,  

Σ* Σ*

Also, ¬ A ≤m ¬ B, why? 

if there is a computable f : Σ* → Σ* 
such that w ∈ A ⇔ f(w) ∈ B



Theorem: If A ≤m B and B is decidable,  
then A is decidable 

Proof:      Let M decide B and let f be a 
reduction from A to B 

We build a machine N that decides A as follows:

On input w:

1. Compute f(w)

2. Run M on f(w)



Theorem: If A ≤m B and B is (semi) decidable,  
then A is (semi) decidable 

Proof:      Let M (semi) decide B and let f be a 
reduction from A to B 

We build a machine N that (semi) decides A as 
follows:

On input w:

1. Compute f(w)

2. Run M on f(w)



All undecidability proofs from today can 
be seen as constructing an f that reduces 
ATM to the proper language 

(Sometimes you have to consider 
the complement of the language. )



All undecidability proofs from today can 
be seen as constructing an f that reduces 
ATM to the proper language 

ATM ≤m HALTTM  (So also, ¬ ATM ≤m¬ HALTTM): 
  

Map  (M, w) → (M’, w)  
where M’(w) = M(w) if M(w) accepts 
                       loops otherwise 

So (M, w) ∈ ATM   ⇔   (M’, w) ∈ HALTTM 



CLAIM: ATM ≤m ¬ ETM

f: (M,w) → Mw  where    Mw (s)  = M(w) 

So, (M, w ) ∈ ATM ⇔  Mw ∈ ¬ ETM

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = ∅ }

CONSTRUCT f : Σ* → Σ* 

So, M(w) accepts ⇔  L (Mw) ≠ ∅

¬ ATM ≤m ETM

So ¬ ETM is NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is ETM  SEMI-DECIDABLE?



CLAIM: ATM ≤m REGTM

f: (M,w) → M’w  where    M’w (s)  = accept if s = 0n1n 
                                                      M(w) otherwise

So, (M, w ) ∈ ATM ⇔ M’w ∈ REGTM 

REGTM = { M | M is a TM and L(M) is regular}

CONSTRUCT f : Σ* → Σ* 

So, L (M’w) = Σ*   if M(w) accepts 
          {0n1n}   if not

So REGTM is UNDECIDABLE

Is REG SEMI-DECIDABLE? (¬ REG is not. Why?)

ATM = { (M,w) | M is a TM that accepts string w }



CLAIM: ¬ ATM ≤m REGTM

f: (M,w) → M”w  where    M”w (s)  = accept if s = 0n1n 
                                                         and M(w) accepts 

                                                         Loop otherwise

So, (M, w ) ∉  ATM ⇔ M”w ∈ REGTM 

CONSTRUCT f : Σ* → Σ* 

So, L (M’w) = {0n1n} if M(w) accepts 
∅ if not

So,  REG  NOT SEMI-DECIDABLE 

So REGTM is NOT SEMI-
DECIDABLE

REGTM = { M | M is a TM and L(M) is regular}

ATM = { (M,w) | M is a TM that accepts string w }



ETM = { M | M is a TM and L(M) = ∅ }

REGTM = { M | M is a TM and L(M) is regular}

ALLPDA = { P | P is a PDA and L(P) = Σ* }

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE? 

What about complements?

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }



CLAIM: ETM ≤m EQTM

f : M → (M, M ∅ ) where M ∅ (s)  = Loops 

So, M ∈ E TM ⇔ (M, M ∅ ) ∈ EQTM 

ETM = { M | M is a TM and L(M) = ∅ }

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* → Σ* 

So EQTM is UNDECIDABLE

Is EQTM SEMI-DECIDABLE? NO, since, 

¬ ATM ≤m ETM ≤m EQTM What about ¬EQTM?       



CLAIM: ATM ≤m EQTM

f : (M,w) → (Mw, MA)  

Where for each s in Σ*, 

 Mw (s)  = M(w) and MA(s)  always accepts

So, (M,w) ∈ A TM ⇔ (Mw, MA) ∈ EQTM 

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT  f :    Σ* →   Σ* 

So ¬EQTM is not semi-decidable

ATM = { (M,w) | M is a TM that accepts string w }



ETM ≤m EQTM 

ATM ≤m ¬ ETM

ATM ≤m REGTM 
 
ATM ≤m ¬REGTM 
 

So, ¬ATM ≤m EQTM 

Undecidable given a TM to tell if the language it 
recognizes is empty. It’s not even semi-decidable, 
altho it is semi-decidable to tell if the language is 
non-empty.

Undecidable given a TM to tell if it is equivalent 
to a FSM. It’s not even semi-decidable, nor is it 
semi-decidable to tell if it is not equivalent to a  
FSM.

Undecidable given 2 TMs to tell if they are 
equivalent.  It’s not even semi-decidable, nor is 
it semi-decidable to tell If they are not

Also,   ATM ≤m EQTM 



CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ* 

¬ ATM ≤m ALLPDA

If M(w) does not accept, then there is no accepting 
computation for M on input w. Then any string of 0’s 
and 1’s will fail to be (a code for) an accepting 
computation.   

So, map (M, w) to a PDA  P that accepts  
non-accepting computations of M on w.  

Then, M(w) does not accept ⇔ L(P) = Σ* 

Idea!

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* } 

More subtle construction 

Map (M,w) to a PDA Pw that recognizes Σ*  
if and only if M does not accept w 

Pw will recognize all (and only those) strings that are 
NOT accepting computation histories for M on w

So, (M, w ) ∉  ATM ⇔ Pw ∈ ALLPDA 



CONFIGURATIONS

11010q700110
q7

1 0 0 0 0 01 1 1 1



COMPUTATION HISTORIES
An accepting computation history is a 
sequence of configurations C1,C2,…,Ck, where

An rejecting computation history is a sequence 
of configurations C1,C2,…,Ck, where 
  1. C1 is the start configuration,  
 2. Ck is a rejecting configuration,  
 3. Each Ci follows from Ci-1

3. Each Ci follows from Ci-1

2. Ck is an accepting configuration,
1. C1 is the start configuration, 



COMPUTATION HISTORIES
An accepting computation history is a 
sequence of configurations C1,C2,…,Ck, where

An rejecting computation history is a sequence 
of configurations C1,C2,…,Ck, where 
  1. C1 is the start configuration,  
 2. Ck is a rejecting configuration,  
 3. Each Ci follows from Ci-1

3. Each Ci follows from Ci-1

2. Ck is an accepting configuration,
1. C1 is the start configuration, 

M accepts w if and only if there exists an accepting 
computation history that starts with C1=q0w



1. Do not start with C1 or 

2. Do not end with an accepting configuration or 
3. Where some Ci does not properly yield Ci+1

P will recognize all strings (read as sequences 
of configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3. 



1. Start with C1 and 

2. End with an accepting configuration and 
3. Where each Ci properly yields Ci+1

P will reject all strings (read as sequences of 
configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3. 



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

q2 x0x



P recognizes all strings except  
accepting computation histories :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R 

follows properly: 

For example,  

If =uaqibv and δ (qi,b) = (qj,c,R),  

then Ci properly yields Ci+1 ⇔  Ci+1 = uacqjv



#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R 

follows properly: 

For example,  

If =uaqibv and δ (qi,b) = (qj,c,L),  

then Ck properly yields Ck+1 ⇔  Ck+1 = uqjacv

P recognizes all strings except  
accepting computation histories :



#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is even, put Ci
R

 on stack and see if Ci+1 
follows properly. 

P recognizes all strings except  
accepting computation histories :



q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

0 0 0 q1

0
0
0
0
q0

ODD

:



q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

0 0 0 q1

0
0
0
0
q0

ODD

:



q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

0 0 0 q1

0
0
0
0
q0

ODD

:



q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

x q3 0 0

q1

0
0
0

EVEN

:



q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

#q00000#000q1 # xq300#0q40x # x0xq3# ... #

q1

0
0
0

EVEN

x q3 0 0

:



f: (M,w) → Pw  where     

Pw (s) = accept iff s  is NOT an accepting computation of M(w)

So, (M, w ) ∉  ATM ⇔ Pw ∈ ALLPDA 

So, (M, w ) ∈ ATM ⇔ Pw ∈ ¬ ALLPDA 

EXPLAIN THE PROOF TO YOUR NEIGHBOR

CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ* 

¬ ATM ≤m ALLPDA

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* } 



ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }

ETM = { M | M is a TM and L(M) = ∅ }

REGTM = { M | M is a TM and L(M) is regular}

ALLPDA = { P | P is a PDA and L(P) = Σ* }

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE? 

What about complements?



WWW.FLAC.WS
Read chapter 5.1-5.3 of the book for next time



THE PCP GAME

ba

a

a

ab

b

bcb

b

a

ba

a

a

ab



a

aa

aaa

a

a

c

a

aa

c

a

aaa

a

a

aa



a

ab

ca

a

b

ca

a

ab

abc

c

a

ab

b

ca

ca

a

abc

c



ca

a

acc

ca

abc

ab



GENERAL RULE #1
If every top string is longer than the 

corresponding bottom one, there can’t be a match



aab

aa

acc

a

b

b

c

a

caa

a

b

b



GENERAL RULE #2
If there is a domino with the same string on the top 

and on the bottom, there is a match



POST CORRESPONDENCE PROBLEM
Given a collection of dominos, is there a match?
PCP = { P | P is a set of dominos with a match }

PCP is undecidable!



THE FPCP GAME
… is just like the PCP game except that a 
match has to start with the first domino



a

aa

aaa

a

a

c

a

aa

c

a

aaa

a

a

aa

FPCP



ba

a

a

ab

b

bcb

b

a

FPCP



Theorem: FPCP is undecidable

Proof: Assume machine C decides FPCP

We will show how to use C to decide ATM



PM,w  has a match?

C

caa

c

aba

bb

a

d
…

Given (M,w)

we will construct a set of 
dominos PM,w where a match 
is an accepting computation 
history for M on w PM,w  =



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4

q00000
q1000
xq300
x0q40
x0xq3

x0q2x
xq20x
q2x0x

q2 x0x
:#q00000# q1000# xq300# x0q40# x0xq3# ... #



Given (M,w), we will construct an 
instance PM,w of FPCP in 7 steps

Assume M on w never attempts to move off 
left hand edge of tape



STEP 1

Put 
#

#q0w1w2…wn#
into P

START

For start configuration



STEP 2

If δ(q,a) = (p,b,R) then add
qa

bp

STEP 3

If δ(q,a) = (p,b,L) then add
cqa

pcb
for all c ∈ Γ

RULES



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4



0 → , R

 → , R

qacceptqreject

0 → x, R

x → x, R  → , R

x → x, R

0 → 0, L
x → x, L

x → x, R
 → , L → , R

0 → x, R
0 → 0, R

 → , R
x → x, R

{ 0   | n ≥ 0 }2n

q0 q1

q2

q3

q4#

#q00000#

q00

q1

q10

xq3

…
0q3

q20

xq3

q2x

q3

q2

0q20

q200

xq20

q2x0

q20

q2 0



STEP 4
add

a

a

STEP 5
add

#

#

for all a ∈ Γ

#

#

CONTINUE

For tape cells not 
adjacent to head

For configuration 
separator 

To simulate the blanks on 
the right hand side of tape



STEP 4
add

a

a

STEP 5
add

#

#

for all a ∈ Γ

#

#

STEP 6

add
aqacc

qacc

qacca

qacc

for all a ∈ Γ

Adds 
pseudo-
steps after 
TM halts 
(catch up)



#

#q00000# q1

q00

xq3

q10

q20

0q3 xq3

q2x q2

q3

0q20

q200

xq20

q2x0

q20

q2 0

xq1

q1x q0x

xqr

q0

qr qa

q1 q2

q1

q3x

xq3

q30

0q4

q40

xq3

q4x

xq4

q4

qr

0q3x

q20x q2xx

xq3x q3x

q2 x

x

x

#

#

0

0

#

# qacc

0qacc

qacc

qacc0

qacc

qaccx

qacc

xqacc

qacc

qacc

qacc

qacc

#

#q00000#

xq3

q10 0

0

0

0

#

#q00000# q1

q00

0

0

0

0

0

0

#

#



STEP 7
add

qacc##

#

END



0 → 0, R

 → , R

qaccept

qreject

0 → 0, R

 → , R
q0 q1

0q1

q00

0qrej

q10

qrej

q0 q1

qacc

0

0

#

#

#

#q00#

#

# qacc

qacc

qacc

0qacc

qacc

qacc

qacc

qacc0

#

#q00# 0q1

q00 #

#

0

0

q1

qacc

#

#

0

0 qacc

qacc

#

qacc##

#

# qacc

0qacc #

#



Given (M,w), we can construct an 
instance of FPCP that has a match if 

and only if M accepts w



Can convert an instance of FPCP into one of PCP:

Let u = u1u2…un, define:
★u  = ∗ u1 ∗ u2 ∗ u3 ∗ … ∗ un

u★ 	
= u1 ∗ u2 ∗ u3 ∗ … ∗ un ∗
★u★  = ∗ u1 ∗ u2 ∗ u3 ∗ … ∗ un ∗

t1

b1
…

t2

b2

tk

bk

★t1

★b1★

★t1

b1★

★t2

b2★

★tk

bk★

∗♦

♦
…

FPCP:

PCP:



Given (M,w), we can construct an 
instance of PCP that has a match if 

and only if M accepts w


