
15-453 - Formal Languages, Automata, and Computability 
Spring 2015, Tuesday/Thursday 12:00-1:20 PM, Baker Hall 136A

cvFirst class I taught at CMU.  

This class will be a small variation of the 
Of Lenore Blum’s Spring 2014. (quizes)



INSTRUCTORS & TAs

Owen 
Kahn

Steven 
Rudich

Andy 
Smith

Asa 
Frank



Office Hours 

Prof. Rudich: Tuesday, 1:30-2:30 PM 
GHC 7219 

Asa: Monday, 6:30-8:00 PM 

Owen: Wednesday, 7:00-9:00 PM 

Andrew: TBD 

(Locations TBD)



http://www.contrib.andrew.cmu.edu/~okahn/flac-s15/index.html

http://www.contrib.andrew.cmu.edu/~okahn/flac-s15/index.html


15-453 - Formal Languages, Automata, and Computability 
Spring 2015, Tuesday/Thursday 12:00-1:20 PM, Baker Hall 136A



Project 
15%

Final 
20%

Midterm II 
15%

Midterm I 
15%

Quizzes 
5%

Participation 
5%

Homework 
25%



HOMEWORK

Homework will be assigned every Thursday and 
will be due one week later at the beginning of 
class. Late homework will be accepted only under 
exceptional circumstances.  

All assignments must be typeset (exceptions allowed 
for diagrams). Each problem should be done on a 
separate page. 



HOMEWORK

Homework will be assigned every Thursday and 
will be due one week later at the beginning of 
class. Late homework will be accepted only under 
exceptional circumstances.  

All assignments must be typeset (exceptions allowed 
for diagrams). Each problem should be done on a 
separate page. 

You must list your collaborators (including 
yourself) and all references in every homework 
assignment in a  References section at the end.



COURSE PROJECT

Meet with an instructor/TA once a 
month

Choose a (unique) topic 

Learn about your topic

Write progress reports  
(Feb 5, March 24)

Prepare an 8-minute presentation 
(April 21-30)

Final Report (April 30)



COURSE PROJECT
Suggested places to look for project topics 

Any paper that has appeared in the proceedings of FOCS or 
STOC in the last 5 years. FOCS (Foundations of Computer 
Science) and STOC (Symposium on the Theory of Computing) 
are the two major conferences of general computer science 
theory. The proceedings of both conferences are available at 
the E&S library or electronically. 

·  Electronic version of the proceedings of STOC 
  
·  Electronic version of the proceedings of FOCS 

• What's New]

http://portal.acm.org/toc.cfm?id=SERIES396&idx=SERIES396&type=series&coll=ACM&dl=ACM&part=series&WantType=Proceedings&title=STOC&CFID=36220143&CFTOKEN=50709087
http://portal.acm.org/toc.cfm?id=SERIES396&idx=SERIES396&type=series&coll=ACM&dl=ACM&part=series&WantType=Proceedings&title=STOC&CFID=36220143&CFTOKEN=50709087
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000292
http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000292
http://www.flac-spring-2013.blogspot.com
http://www.flac-spring-2013.blogspot.com


This class is about mathematical 
models of computation



Course Outline

PART 1
Automata and Languages: 
finite automata, regular languages, pushdown automata, context-free 
languages, pumping lemmas.

PART 2
Computability Theory:  
Turing Machines, decidability, reducibility, the arithmetic hierarchy,  the 
recursion theorem, the Post correspondence problem.

PART 3
Complexity Theory and Applications: 
time complexity, classes P and NP, NP-completeness, space complexity,  
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized 
complexity, classes RP and BPP. 



PART 1
Automata and Languages:  
finite automata, regular languages, pushdown automata, context-free 
languages, pumping lemmas.

PART 2
Computability Theory:  
Turing Machines, decidability, reducibility, the arithmetic hierarchy,  the 
recursion theorem, the Post correspondence problem.

PART 3
Complexity Theory and Applications:  
time complexity, classes P and NP, NP-completeness, space complexity,  
PSPACE, PSPACE-completeness, the polynomial hierarchy, randomized 
complexity, classes RP and BPP. 

Mathematical Models of Computation 

(predated computers as we know them)
1940’s-50’s (neurophysiology, 
linguistics)

1930’s-40’s (logic, decidability)

1960’s-70’s 
 (computers)



This class will emphasize PROOFS

A good proof should be:

Easy to understand

Correct



Suppose A ⊆ {1, 2, …, 2n}

TRUE or FALSE:  
There are always two numbers in A 
such that one divides the other

with |A| = n+1

TRUE



THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon

HINT 1:



THE PIGEONHOLE PRINCIPLE

If you put 6 pigeons in 5 holes 
then at least one hole will have 

more than one pigeon

HINT 1:



THE PIGEONHOLE PRINCIPLE

If you put n+1 pigeons in n holes 
then at least one hole will have 

more than one pigeon

HINT 1:

HINT 2:
Every integer a can be written as  

a = 2km, where m is an odd number



PROOF IDEA:

Given: A ⊆ {1, 2, …, 2n} and |A| = n+1 

Show: Use PHP to prove There is an 
integer m and elements   a1 = a2  in A 

such that a1 = 2im and a2 = 2jm



Suppose A ⊆ {1, 2, …, 2n} with |A| = n+1 

Write every number in A as a = 2km, where m 
is an odd number between 1 and 2n-1

How many odd numbers in {1, …, 2n}? n

Since |A| = n+1, there must be two numbers 
in A with the same odd part

Say a1 and a2 have the same odd part m. 
Then a1 = 2im and a2 = 2jm, so one must 
divide the other 

PROOF:



Suppose A ⊆ {1, 2, …, 2n} with |A| = n+1 

Write every number in A as a = 2km, where m 
is an odd number between 1 and 2n-1 

Put pigeon a in hole m <= 2n-1  
n holes = odd numbers in {1, 3…, 2n-1}

There exists a hole m with 2 pigeons 
T2im and 2jm, so one must divide the other 

PROOF:



DETERMINISTIC FINITE 
AUTOMATA 

and  
REGULAR LANGUAGES



0
0,1

00

1

1

1

0111 111

11

1 

The automaton accepts a string if the 
process ends in a double circle

Read string left to right
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ANATOMY OF A DETERMINISTIC 

FINITE AUTOMATON
states

states

q0

q1

q2

q3start state (q0) 

accept states (F)
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ANATOMY OF A DETERMINISTIC 
FINITE AUTOMATON



An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of 
elements of Σ

For string x, |x| is the length of x

The unique string of length 0 will be denoted by 
ε and will be called the empty or null string

SOME VOCABULARY

A language over Σ is a set of strings over Σ  
In other words:  a language is a subset of Σ* 

Σ* = the set of strings over Σ 



Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q  is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept/final states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F) 
deterministic  DFA

Suppose  w1, ... , wn ∈ Σ and  w = w1... wn ∈ Σ*  
Then M accepts w iff there are r0, r1, ..., rn ∈ Q, s.t. 
• r0 = q0  
•  δ(ri, wi+1) = ri+1,   for  i = 0, ..., n-1, and  
• rn ∈ F



Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q  is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept/final states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F) 

M accepts ε iff q0  ∈ F 

deterministic  DFA



Q is the set of states (finite)

Σ is the alphabet (finite)

δ : Q × Σ → Q  is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept/final states

A ^ finite automaton ^ is a 5-tuple M = (Q, Σ, δ, q0, F) 

L(M)  = set of all strings that M accepts  
   = “the language recognized by M”       

deterministic  DFA
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L(M) = ?

0,1



0,1q0

L(M) = {0,1}*∅



q0 q1

0 0
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L(M) = { w | w has an even number of 1s}



q0 q1

0 0
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L(M) = { w | w has an odd number of 1s}



Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q
q q p0

1

1

0

p q
THEOREM: 

L(M) = {w | w has odd 
                   number of 1s }

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n, 
                                   w ∈ L(M) iff w has odd number of 1s. 

Induction step: Any string of length n+1 has the form w0 or w1.   
Now w0 has an odd # of 1’s ⇔  w has an odd # of 1’s⇔             
M is in state q after reading w (why?) ⇔ 
M is in state q after reading w0 (why?) ⇔w0 ∈ L(M)

Proof: By induction on n, the length of a string.
Base Case: n=0: ε ∉ RHS and ε ∉ L(M). Why?



Q Σ q0 F
M = ({p,q}, {0,1}, δ, p, {q}) δ 0 1

p p q
q q p0
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THEOREM: 

L(M) = {w | w has odd 
                   number of 1s }

Induction Hypothesis: Suppose for all w ∈ Σ*, |w| = n, 
                                   w ∈ L(M) iff w has odd number of 1s. 

Induction step: Any string of length n+1 has the form w0 or w1.   
Now w1 has an odd # of 1’s ⇔  w has an even # of 1’s⇔                         
M is in state p after reading w (why?) ⇔  
M is in state q after reading w1 (why?) ⇔w1 ∈ L(M)    QED

Proof: By induction on n, the length of a string.
Base Case: n=0: ε ∉ RHS and ε ∉ L(M). Why?



Invariant Condition

If M in state p, M has read a W with an even number of 1s. 
If M in state q, M has read a W with an odd number of 1s. 

Base Case, Invariant is true at start: 
Initially, M has seen 0 1s, and starts in state p. 

Inductive step: 
M has read W with even number of 1s and is in p. 

OR 
M has read W with odd number of 1s and is in q. 

Next M sees 0, remains in same state, maintaining parity. 
OR 
M sees 1, changing state, maintaining parity invariant.  

Thus, the invariant condition is always true.
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What the little machine is thinking: 

If I am in p, I have seen an even number of 1s 
If I am in q, I have seen an odd number of 1s
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Build a DFA that accepts all and only those 
strings that contain 001

PROVE



Steven Rudich: www.cs.cmu.edu/
~rudich rudich0123456789

L = all strings containing ababb as a 
consecutive substring

b
a,b

a a

b

b

bb

a
a

a

a ab aba ababe
Invariant: I am state s exactly when s is the 
longest suffix of the input (so far) that forms a 
prefix of ababb.



DEFINITION: A language L is regular 
if it is recognized by a DFA,  

i.e. if there is a DFA M s.t. L = L(M).

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

L = { w | w has an odd number of 1s} is regular



UNION THEOREM
Given two languages, L1 and L2, define 
the union of L1 and L2 as  

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 } 

Theorem: The union of two regular 
languages is also a regular language



Theorem: The union of two regular 
languages is also a regular language

Proof: Let  
M1 = (Q1, Σ, δ1, q0, F1)  be finite automaton for L1 

 and  
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton  
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2 

1

2



Idea: Run both M1 and M2 at the same time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }
= Q1 × Q2

q0 = (q0, q0)1 2

F = { (q1, q2) | q1 ∈ F1  or  q2 ∈ F2 }

δ( (q1,q2), σ) = (δ1(q1, σ), δ2(q2, σ)) 



Theorem: The union of two regular 
languages is also a regular language
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q0,p0 q1,p0
1
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1

1

00
00

INTERSECTION?



Intersection THEOREM
Given two languages, L1 and L2, define 
the intersection of L1 and L2 as  

L1 ∩ L2 = { w | w ∈ L1  and  w ∈ L2 } 

Theorem: The intersection of two 
regular languages is also a regular 
language


