Please print single-sided with each problem on its own pages and your name on every page.

List any collaborators or sources (including yourself) at the end of your submission.

1 Populating the Arithmetic Hierarchy

Prove that for every $n \in \mathbb{N}$, SUPERHALT^{*n*} is *m*-complete for Σ_{n+1}^0 and $\overline{\text{SUPERHALT}^n}$ is *m*-complete for Π_{n+1}^0 , and neither is in Δ_{n+1}^0 .

2 The Non-collapse of the Arithmetic Hierarchy

Let $n \in \mathbb{N}^+$. Let A be *m*-complete for Σ_n^0 , A' *m*-complete for Π_n^0 , and $B \in \Delta_n^0$. Prove that A and A' are both not Turing-reducible to B.

3 More About the Arithmetic Hierarchy

(It's a big topic this week.) For languages $A = \{\langle M \rangle \mid M \text{ is a Turing machine with property } P\}$ and B, M^B denotes an oracle Turing machine with an oracle for B and $A^B = \{\langle M^B \rangle \mid M^B \text{ is an oracle Turing machine (with an oracle for } B) \text{ with property } P\}$. For example, SUPERHALT could be written as HALTS^{HALTS}.

a Prove that $\text{FIN}^{A_{TM}}$ is *m*-hard for Σ_3^0 .

Optional: This statement can be generalized. For example, $\text{FIN}^{\text{SUPERHALT}^n}$ is *m*-hard for Σ_{n+3}^0 . Please see a staff member (preferably Asa) if you want to explore such generalizations!

b Prove that COF is *m*-complete for Σ_3^0 . Use the following mapping reduction from FIN^{A_{TM}} to COF. (You will need to prove that it is correct! That will require studying it carefully—it is subtle.) $M^{A_{TM}}$ maps to the following Turing machine:

```
def N(\langle h \rangle): #h is a computation history of K^{A_{TM}}
def \tilde{M}^{A_{TM}}(s):
     Simulate M^{A_{TM}} on s, but every time M^{A_{TM}} receives a YES answer from query_oracle (\langle P, x \rangle),
     run P on x and reject if it rejects. Finally, answer as M^{A_{TM}} on s.
def K^{A_{TM}}(s):
     dovetail over x with |x| > |s|:
           if \tilde{M}^{A_{TM}} on x accepts:
                accept
if h is not a valid and accepting computational history (assuming all its oracle answers are correct):
     accept
#we can use timesharing rather than dovetailing for the following loop,
#since there can only be finitely many occurrences
parallel for query_oracle (\langle P, x \rangle) returning NO in h:
     if P on x accepts:
           accept
reject
```