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Abstract

Expansion microscopy (ExPath) enables nanoscale resolution of tissue architec-
ture using conventional microscopes, offering a powerful alternative to traditional
histopathology. In this thesis, we present a deep learning pipeline that leverages
ExPath imaging combined with a biologically informed, four-channel multiplexed
staining panel: DAPI, TelC, CENPB, and WGA to classify tissue types and predict
chemotherapy response in muscle-invasive bladder cancer (MIBC). We propose that
nuclear morphology, when captured at high resolution and enriched by chromatin
and membrane-specific markers, contains sufficient information to compete with
H&E and generalize across diagnostic and prognostic tasks. To test this hypoth-
esis, we construct a preprocessing pipeline that transforms 16-bit 4-channel TIFF
WSIs into normalized, pseudo-RGB 1024x1024 patches compatible with ImageNet-
pretrained models. We evaluate multiple architectures (ResNet34, ResNet50, ViT-
tiny, EfficientNet) and demonstrate that ResNet-based models trained on ExPath
outperform simulated non-ExPath baselines and DAPI-only variants by a signifi-
cant margin. Through controlled ablation experiments, we quantify the contribution
of each channel and find that multiplexing substantially boosts classification accu-
racy. Our models achieve 89.52% tissue classification accuracy and 0.9 ROC-AUC
for drug response prediction. Furthermore, we observe cross-cancer generalizabil-
ity when applying MIBC-trained models to lung carcinoma ExPath images. This
work establishes the feasibility of compact, multiplexed, ExPath-driven classifica-
tion pipelines as a viable alternative to costly multi-modal diagnostics. It offers an
early step toward a DAPI-first foundation model for computational pathology, with
potential to scale across cancer types and tissue conditions using minimal staining
and high-content imaging.
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Chapter 1

Background

1.1 Digital Pathology and Computational Approaches

Digital pathology is the process of scanning tissue slides to create high-resolution images that
can be viewed, shared, and analyzed on a computer. This transformation has laid the foundation
for modern computational pathology, enabling the application of machine learning to large-scale
image datasets for diagnosis, prognosis, and biomarker discovery. By shifting pathology into
a digital format, it becomes possible to develop algorithms that systematically capture pheno-
typic patterns across thousands of patients, moving toward more data-driven healthcare. De-
spite this progress, most computational pathology pipelines today rely on hematoxylin and eosin
(H&E) staining as the dominant modality. H&E provides rich morphological context, but it is
limited in two ways: (1) it does not capture molecularly specific signals in the nucleus such
as chromatin organization or telomere integrity, and (2) it is fundamentally constrained by the
diffraction limit of light microscopy. DAPI-based models, which directly capture the nucleus,
are rare and typically used only in combination with other biomarkers, since they allow multi-
plexing. Meanwhile, multimodal pipelines that fuse histology with genomic or transcriptomic
data, for example, prognostic modeling frameworks developed by the Mahmood Lab [Lu et al.,
2022], offer molecular depth but require costly sequencing workflows and complex integration
strategies. This creates a gap between scalable, image-only methods and high-cost, resource-
intensive multimodal approaches. Our work addresses this gap by using Expansion Pathology
(ExPath) on DAPI stained tissue as an alternative to conventional H&E-driven computational
pathology. ExPath offers physical expansion of tissue and DAPI staining allows for co-staining
with targeted fluorescent labeling, providing nanoscale resolution and DNA-FISH like molec-
ular readouts (via DAPI, TelC, CENPB, and WGA). We hypothesize that this combination of
higher resolution and molecularly informative fluorescent labeling can generate image-derived
features that are both scalable and prognostically meaningful. The clinical problem we focus
on is Muscle-Invasive Bladder Cancer (MIBC), a highly aggressive form of bladder cancer for
which predictive biomarkers of treatment response remain lacking. In the following sections, we
first provide background on ExPath as a methodological innovation, and then on MIBC as the
motivating clinical context for our study.



1.2 Expansion Pathology

Expansion Pathology (ExPath) is a technique that leverages the principles of expansion mi-
croscopy (ExM) to physically magnify biological specimens, enabling nanoscale imaging of
tissues using conventional microscopes. Originally developed to visualize fine neuronal struc-
tures, ExM has since been adapted to pathological contexts to enable detailed spatial mapping of
cells and subcellular components in disease tissues [Chen et al., 2015; Zhao et al., 2017].

The core idea behind ExPath is to embed tissue sections in a swellable polymer matrix and
then isotropically expand them several-fold, usually by 4x or more. This physical expansion cir-
cumvents the diffraction limit of light microscopy, allowing researchers to observe structures at
an effective resolution of 70 nm with standard confocal or widefield microscopes. Notably, this
allows subcellular features like chromatin structure, protein complexes, and cell—cell junctions
to be visualized with high fidelity [Tillberg et al., 2016].

ExPath by itself is a physical technique: tissue is embedded in a swellable hydrogel and ex-
panded isotropically, enabling high-resolution imaging with conventional microscopes. When
combined with fluorescent labeling, this approach becomes particularly powerful for computa-
tional pathology. In our study, we use ExPath together with a four-channel panel designed to cap-
ture both structural coverage and biologically relevant nuclear features: DAPI (4’,6-diamidino-
2-phenylindole) for nuclear shape and chromatin texture, TelC (a telomeric repeat probe) as a
telomeric probe reflecting replicative potential and genome stability [Shay, 2016], CENPB (cen-
tromere protein B antibody) to highlight centromeric heterogeneity implicated in oncogenesis
[McGovern et al., 2012; Briasoulis et al., 2008; Wallander et al., 2021], and WGA (wheat germ
agglutinin) to outline cell membrane boundaries through glycoprotein binding. Together, these
markers provide a comprehensive view of nuclear and cellular organization, complementing the
resolution gains offered by expansion.

Compared to traditional hematoxylin and eosin (H&E) staining, which offers a more gen-
eralized and morphologically rich overview of tissue context, ExPath emphasizes fine-grained
nuclear and subnuclear detail. While H&E is commonly used for clinical histopathology, it does
not support multiplexing or nanoscale imaging. In contrast, ExPath and DAPI enable both, mak-
ing it especially powerful for high-content, quantitative analysis of tissue microenvironments and
cellular phenotypes [Zhao et al., 2017].

This flexibility makes our approach particularly promising for computational pathology tasks
that rely on detailed nuclear morphology, such as segmentation, classification, and prognosis
prediction in cancer.

1.3 Muscle-Invasive Bladder Cancer (MIBC)

Bladder cancer is the tenth most common cancer worldwide and exhibits a dichotomy in clinical
behavior based on the depth of tumor invasion. Muscle-Invasive Bladder Cancer (MIBC) refers
to tumors that have invaded the detrusor muscle (muscularis propria) of the bladder wall, which
marks a shift toward more aggressive disease with a significantly worse prognosis than non-
muscle invasive forms [Siegel et al., 2024; Babjuk et al., 2022].

MIBC accounts for approximately 25-30% of newly diagnosed bladder cancer cases and re-
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quires more intensive treatment due to its propensity for metastasis. The current standard of
care involves neoadjuvant chemotherapy (typically cisplatin-based), followed by radical cystec-
tomy and lymph node dissection [Grossman et al., 2003]. Common first-line regimens include
MVAC (methotrexate, vinblastine, doxorubicin, and cisplatin) and dose-dense GC (gemcitabine
and cisplatin). However, therapeutic response varies widely, and there is currently no robust
imaging-based biomarker to predict patient response pre-operatively [Stein et al., 2001].

There is increasing interest in integrating histopathological and molecular data to stratify
MIBC patients and guide treatment decisions. Although molecular subtyping (e.g., luminal vs.
basal) has yielded predictive insights in some studies [Robertson et al., 2017], these approaches
often require costly and labor-intensive sequencing workflows. A more scalable alternative
would be to use computational analysis of pathology images, especially if such images could
be collected with minimal stain or modality burden and yet still capture prognostically relevant
phenotypes.

This sets the stage for imaging-based classifiers that can leverage the nuclear, chromosomal,
and glycoprotein features revealed by multiplexed expansion microscopy to predict treatment
response in MIBC. Unlike traditional approaches that depend on coarse morphological patterns
or require expensive multi-modal imaging, we hypothesize that the micro- and nano-scale fea-
tures captured in DAPI-based multiplexed ExPath images can serve as a rich basis for tissue- and
drug-response classification in bladder cancer and beyond.






Chapter 2

Related Work

Hematoxylin and eosin (H&E) staining remains the cornerstone of clinical histopathology, en-
abling visualization of tissue architecture, cellular morphology, and pathological abnormalities at
scale. Hematoxylin stains nuclei dark blue-purple by binding to DNA and nuclear proteins, while
eosin stains extracellular matrix and cytoplasmic components pink [Fischer et al., 2008]. This
combination provides rich contextual information about both cellular and stromal components,
making H&E suitable for diagnosis, subtyping, and prognosis across many cancer types.

Deep learning (DL) models trained on H&E-stained whole-slide images (WSIs) have demon-
strated high accuracy in classification, segmentation, and survival prediction tasks [Campanella
et al., 2019; Coudray et al., 2018; Lu et al., 2021]. These models benefit from the ubiquity
and generalizability of H&E data, which is standardized across most clinical labs. However, de-
spite its broad adoption, H&E has intrinsic limitations: it lacks molecular specificity and cannot
be easily multiplexed to track biomarkers beyond basic morphology. Moreover, H&E does not
capture subnuclear chromatin patterns or precise molecular states relevant to targeted treatment
strategies.

In response, many recent studies have turned to expensive multimodal workflows, combining
H&E with immunohistochemistry (IHC), RNA sequencing, or spatial transcriptomics, to extract
richer, more predictive features [He et al., 2021; Zhao et al., 2017]. While powerful, these
approaches are resource-intensive, require tissue consumption across modalities, and do not scale
well in clinical settings.

On the other hand, DAPI (4’,6-diamidino-2-phenylindole) is a fluorescent stain that binds
strongly to A-T-rich regions of DNA, providing a high-resolution view of nuclear morphology.
It is commonly used in fluorescence microscopy for identifying nuclei, segmenting cells, and an-
alyzing chromatin states [Kapuscinski, 1995]. In contrast to H&E, DAPI staining enables multi-
plexing with other fluorescence-based markers and is compatible with advanced imaging modal-
ities such as confocal microscopy, super-resolution microscopy, and expansion microscopy.

In digital pathology, DAPI has been leveraged for segmentation tasks, cell counting, and mor-
phometric analysis. For example, Cellpose [Stringer et al., 2021] and StarDist [Schmidt et al.,
2018] are two widely-used nucleus segmentation models trained on DAPI-stained images. The
simplicity and consistency of DAPI staining make it an ideal anchor channel for high-throughput
nucleus-based analysis. Moreover, because DAPI highlights nuclear shape, size, and chromatin
texture, it can serve as a basis for downstream classification tasks, particularly in cancers where
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nuclear morphology correlates with malignancy grade and prognosis [Zink et al., 2004].

However, DAPI alone lacks the tissue context and cytoplasmic or stromal information neces-
sary for generalized diagnosis or classification across organs. It is not sensitive to extracellular
matrix composition, immune infiltration, or spatial tissue architecture, features that H&E nat-
urally encodes. As such, DAPI-based classification models have often been limited to highly
controlled settings or narrowly-defined tasks.

Several deep learning models have been proposed for cell or tissue classification using only
morphological features, particularly from nuclear stains. These approaches typically rely on
instance-level segmentations followed by handcrafted or learned features (e.g., shape descriptors,
intensity texture) to distinguish between healthy and diseased cells or tissues [Sirinukunwattana
et al., 2016; Khoshdeli et al., 2017].

Biologically, the rationale behind morphology-only classification is rooted in the observation
that malignant transformation often manifests through nuclear atypia, such as irregular nuclear
contours, hyperchromasia, and increased nucleolar size. These traits have been used for decades
in manual cytopathological scoring systems. However, relying solely on nuclear features may
not distinguish between phenotypes that require stromal, vascular, or immune context, limiting
the accuracy and robustness of morphology-only models for prognosis or subtype prediction
[Aeffner et al., 2019].

We aim to address the limitations of both H&E-based and DAPI-only approaches by leverag-
ing Expansion Pathology (ExPath) on DAPI-stained tissue combined with DNA-FISH probes.
This integration unites nanoscale resolution with multiplexed fluorescent labeling to capture
structural and molecular features relevant across cancer types. DAPI serves as the multiplex-
ing anchor, consistently highlighting nuclear morphology while enabling co-staining. ExPath
expands tissues to achieve 70 nm effective resolution with standard microscopes, overcoming
diffraction limits. To enrich nuclear features, we incorporate biologically motivated markers:
TelC for telomere length (replicative potential and genome stability), CENPB for centromere
organization (chromosomal integrity and oncogenesis), and WGA for glycoprotein-rich cellular
boundaries. Together, these markers provide a richer molecular and structural context than H&E
alone and avoid the cost and complexity of multimodal sequencing workflows.

Our goals are fourfold: first, to build classification models for tissue and chemotherapy re-
sponse prediction in MIBC that perform competitively with state-of-the-art image-based meth-
ods; second, to demonstrate that ExPath confers a measurable performance edge compared to
standard-resolution pipelines; third, to quantify the contribution of each channel through system-
atic ablation experiments; and finally, to test the cross-cancer generalizability of MIBC-trained
models, using lung carcinoma as an initial case study. These efforts collectively lay the ground-
work for a DAPI-first foundation model in pathology, where ExPath-enabled nuclear detail and
multiplexed probes offer a scalable, generalizable alternative to H&E or costly multimodal di-
agnostics. The following sections describe the dataset, preprocessing pipeline, experimental
methods, results, and implications of this approach.



Chapter 3

Dataset

A central question in computational pathology is whether morphological information alone is
sufficient for accurate diagnosis, prognosis, or treatment prediction. Traditional H&E imaging
offers rich morphological and contextual features but is inherently limited in molecular speci-
ficity and multiplexing flexibility. In contrast, fluorescence imaging based on DAPI highlights
nuclear morphology at high resolution and allows multiplexing with additional markers, but lacks
cytoplasmic and stromal context. This creates a fundamental tradeoff between generalizability
and biological specificity.

To investigate whether nuclear morphology can be enriched and made generalizable through
selective multiplexing, we use expansion microscopy (ExPath) images generated by the Zhao Lab
at Carnegie Mellon University. These images are stained with a four-channel panel comprising:

DAPI: labels DNA and highlights nuclear shape and chromatin architecture
* TelC: a telomeric repeat probe indicating telomere integrity and nuclear aging patterns

* CENPB: a centromere protein that reveals chromosomal structure and nuclear organization

WGA: wheat germ agglutinin, a membrane/glycoprotein stain that outlines cell boundaries
and extracellular structures

This panel is designed to overcome the limitations of DAPI-only imaging by capturing bio-
logically informative markers relevant to cancer progression and cellular heterogeneity. Impor-
tantly, all four markers are compatible with expansion microscopy and were selected for their
ability to (1) retain structural integrity post-expansion, and (2) encode features that contribute to
classification and generalization.

The ExPath imaging protocol expands physical tissue sections by approximately 4x linearly,
resulting in 70 nm resolution with standard confocal microscopy. This level of detail enables
precise visualization of subnuclear and membrane-level features that are difficult to resolve in
standard 40x H&E slides. As aresult, a single 1024x1024 ExPath patch contains cellular features
analogous to a 256x256 H&E patch in terms of content density but at higher resolution and
specificity. To accommodate this, our pipeline operates on 1024x1024 patches instead of the
standard 224x224 or 256x256 used in typical WSIs.
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3.1 Preprocessing and Image Normalization

Raw images are stored as 16-bit grayscale TIFF files across four fluorescence channels. How-
ever, directly training on this format is computationally expensive and incompatible with most
pretrained image models (e.g., ImageNet-based ResNets). To address this, we implement a pre-
processing pipeline that includes: Bit Depth Reduction: From 16-bit to 8-bit per channel. De-
spite potential overflows, this simplification dramatically reduces memory usage and speeds up
downstream training without substantial performance loss. Previous work (e.g., [Siddiqui et al.,
2021]) suggests bit depth reduction can be effective when paired with normalization. Chan-
nel Normalization: Each channel is normalized both across the entire slide and individually to
control for staining variance and ensure numerical stability during training. RGB Conversion:
Channels are recombined into pseudo-RGB format for compatibility with pretrained CNN ar-
chitectures. While not physically meaningful in terms of color, this enables transfer learning
from conventional image models (e.g., ResNet34, ViT-tiny). Slide Tiling: WSIs are tiled into
non-overlapping 1024x1024 patches. Given the expanded size of ExPath cells, this patch size
captures sufficient tissue context for classification while avoiding excessive downsampling.

This pipeline reduces image storage size by over 150% and improves training speed by nearly
5x, making it feasible to scale learning experiments across full WSIs.

3.2 Data Composition and Annotation

The dataset includes multiple WSIs from patients with muscle-invasive bladder cancer, labeled
for two major tasks:
* Tissue-Type Classification: Each patch is assigned one of 3 classes based on expert anno-
tation and visual inspection: Cancerous, Lymphocyte, Smooth muscle.

* Drug Response Prediction: Patches are aggregated at the slide level to infer response to
neoadjuvant chemotherapy (progressive, partial, or complete), serving as a supervised sig-
nal for treatment outcome classification.

Annotation was performed using expert review.

3.3 From Dataset to Proof-of-Concept

While our long-term goal is to develop a general-purpose DAPI-based foundation model, the
current dataset is not yet sufficient in scale or diversity to support self-supervised pretraining.
Instead, we propose a proof-of-concept model that tests the core hypothesis: that a carefully
selected DAPI + multiplex panel imaged under ExPath can enable accurate tissue classification
and drug response prediction, potentially replacing more expensive multi-modal systems.

To this end, we train both patch-wise and slide-wise classifiers to evaluate the impact of
individual markers, the effectiveness of ExPath imaging, and the generalizability of our approach.
These experiments are designed to validate the value of our dataset and motivate further data
collection for full foundation model training.



Chapter 4
Methods

Our pipeline is designed to transform high-resolution, multiplexed ExPath whole-slide images
(WSIs) into patch-based inputs suitable for classification tasks such as tissue-type labeling and
chemotherapy response prediction. We evaluate several deep learning architectures on this task
and compare their performance to identify models best suited for downstream experiments.

The core of our computational pipeline follows an end-to-end workflow comprising:

1. WSI Tiling: Full slides are divided into non-overlapping patches of size 1024x1024 pixels.

2. Preprocessing and Normalization: Images are converted to pseudo-RGB format, reduced
from 16-bit to 8-bit, and channel-normalized.

3. Model Inference: Each patch is passed through a deep learning model (e.g., ResNet34,
ResNet50, ViT-tiny).

4. Prediction Aggregation: Patch-wise predictions are aggregated for downstream slide-level
tasks (e.g., drug response).
This design allows for scalable inference across full slides and compatibility with ImageNet-
pretrained models while preserving subcellular resolution.

4.1 Data Processing

O—-—00 -0 -0

Channel

Bit Depth Reduction Normalization RGB Conversion Slide Tiling
16-bit to 8-bit TIFF Slide-wise Dapi as a baseline, Non overlapping
markers are added as 1024x1024 patches

red - blue - green
Figure 4.1: Data Processing Pipeline
Raw ExPath images are stored as 16-bit grayscale TIFFs across four fluorescence channels:
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DAPI, TelC, CENPB, and WGA. These images are first preprocessed as follows:

* Bit Depth Reduction: We convert from 16-bit to 8-bit per channel, which reduces memory
usage and file size by 50%. While overflows may occur during reduction, the effect is
mitigated by robust downstream normalization.

* Channel Normalization: For each patch, we normalize pixel intensities per channel using
min-max scaling across the slide. We also explore dataset-wide channel normalization to
standardize global intensity statistics.

* RGB Conversion: To enable compatibility with pretrained RGB-based models, we con-
vert the four grayscale channels into a three-channel pseudo-RGB format. Unlike simple
one-to-one channel mappings, we overlay the DAPI signal uniformly across all three RGB
channels to preserve nuclear morphology as a consistent background feature. The remain-
ing markers (e.g., TelC, WGA, CENPB) are then selectively added to individual channels
(R, G, or B) depending on the permutation. Various combinations are explored in our
ablation studies to assess the impact of marker-channel assignments.

Most histopathology models operate on 224x224 or 256x256 patches. However, due to the
4x linear expansion in ExPath, cells appear significantly larger than in conventional H&E slides
at the same magnification. A 224x224 patch in ExPath typically contains only a few nuclei and
lacks sufficient context for reliable classification.

To mitigate this, we tile the WSIs into 1024x1024 pixel patches, which provide roughly
equivalent cellular coverage to 256x256 patches in H&E. This patch size strikes a balance be-
tween resolution, field-of-view, and GPU memory constraints. Patches are extracted without
overlap to maximize coverage and computational efficiency.

This transformation allows us to directly use ImageNet-pretrained weights for initialization,
improving convergence and reducing training time. It also allows us to streamline our ablation
experiments.

Figure 4.2: Images after processing steps
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4.2 Model Architectures and Training

We evaluate several commonly used architectures to identify the most effective model for classi-
fying ExPath patches:
* ResNet34: A moderately deep convolutional neural network (CNN) with skip connections.
Well-suited for medium-sized datasets and provides strong baselines for tissue classifica-
tion tasks.

* ResNet50: A deeper variant that offers improved representation capacity. It is slower to
train but often achieves better accuracy.

* EfficientNet-BO: A parameter-efficient CNN with compound scaling. However, in our
setting, it consistently underperforms ResNet models likely due to the difference in image
statistics between natural images and fluorescence WSIs.

* ViT-tiny: A transformer-based architecture with global self-attention. We use the ViT-tiny
variant for its computational feasibility on 1024x1024 inputs. While it captures long-range
dependencies, it does not outperform CNNs in this task, likely due to limited data size.

Model Initialization and Input Processing: All models are initialized with ImageNet-pretrained
weights. For ViT, we use HuggingFace’s vit_tiny_patch16_224 checkpoint, initially upsampling
input patches to 224x224 to match the expected input shape. This upsampling is used only dur-
ing the model selection phase to identify the most promising architecture. Once selected, the
original patch resolution is retained, and the model is fine-tuned to adapt to the native input size.
For ResNets and EfficientNet, patches are resized and normalized using the standard ImageNet
statistics (mean and standard deviation).

Although pretrained on natural RGB images, ImageNet models have proven useful in medical
imaging tasks when input channels are mapped appropriately. In our pipeline, we exploit this by
converting ExPath grayscale channels into pseudo-RGB inputs and adapting intensity distribu-
tions via normalization. Empirically, pretrained ResNet models converge faster and outperform
models trained from scratch on our ExPath dataset.

However, we note that this benefit is diminished when training directly on raw TIFFs or high-
bit-depth formats. TIFF loading overhead, memory usage, and the lack of pretrained 4-channel
models contribute to this performance gap. Our preprocessing pipeline thus serves as both a
computational optimization and a domain adaptation step for model compatibility.

4.2.1 Training Details
* Loss Function: We use cross-entropy loss for both multi-class classification and binary
response prediction tasks.

* Optimizer: Adam optimizer is used with an initial learning rate of le-4 and weight decay
of le-5.

* Batch Size: Batch size is set to 16 for ResNet models and 8 for ViT due to GPU memory
limits.

* Early Stopping: Training is monitored using validation accuracy with early stopping after
10 epochs of no improvement.
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Chapter 5

Experiments Setup

To evaluate the utility of multiplexed DAPI-based ExPath images for classification and treatment
response prediction, we design a sequence of experiments grounded in three core hypotheses:
* ExPath imaging provides superior morphological information compared to non-ExPath
fluorescence microscopy.

* The combination of DAPI with TelC, CENPB, and WGA offers a biologically meaningful
and discriminative feature space for classification.

* Our data composition enables generalization across tasks such as tissue classification, drug
response prediction, and cross-cancer inference.

This section outlines how we validate these claims using controlled experiments and ablation
studies across multiple models, tissue types, and evaluation metrics.

5.1 Experimental Tasks

We define three primary classification tasks:

5.1.1 ExPath vs. Simulated Non-ExPath Imaging

We test whether the physical resolution gains from expansion microscopy result in better model
performance. To simulate non-ExPath images, we artificially downsample and blur the original
images to match conventional microscopy resolution and quality. We train identical models on
both versions and compare classification accuracy and visual separability.

5.1.2 Marker Contribution via Ablation Studies

To assess the contribution of individual markers (DAPI, TelC, CENPB, WGA), we conduct both
channel ablation and combination experiments:

* Ablation Study: We train and evaluate models after removing one channel at a time from
the 4-channel input. For instance, comparing DAPI+Tel C+CENPB+WGA (full input) to
DAPI+TelC+CENPB (without WGA) allows us to quantify WGA’s marginal contribution.
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* Subset Combinations: We test all relevant 1-, 2-, and 3-channel combinations (e.g., DAPI
only, DAPI+CENPB, TelC+WGA) to explore performance trade-offs and guide future
panel design.

This allows us to measure not only the overall importance of multiplexing, but also the bio-

logical informativeness of each channel in isolation.

5.1.3 Classification Generalizability

We evaluate whether our composed dataset supports generalization across tasks:
* Tissue Classification: We train models to classify each patch into one of seven tissue
classes: progressive disease, partial response, complete response, lymphocyte, squamous,
smooth muscle, and empty.

* Drug Response Classification: We train models to predict the drug response label of a slide
(complete, partial, or progressive) based on its aggregated patch predictions.

* Cross-Cancer Generalization: To test generalizability, we apply our trained MIBC models
to lung carcinoma ExPath images. The goal is to determine whether features learned from
the bladder tissue context retain predictive utility in a different cancer type.

5.2 Data Splits and Sampling

To ensure robust evaluation, we employ a strict patient-level split between training, validation,
and test sets. No patches from the same WSI or patient are shared across sets. We use an 80/10/10
split unless otherwise noted.

To address class imbalance in tissue-type labels (e.g., fewer healthy or lymphocyte-rich
patches), we implement:

* Downsampling of majority classes (e.g., cancer)

* Oversampling of minority classes using weighted sampling during training

* Patch Aggregation for drug response to preserve clinical labels at the slide level

5.3 Evaluation Metrics

We report both patch-wise and patient-wise metrics: Patch-Level Metrics:
* Accuracy, AUC
* Confusion matrices to visualize misclassifications
Patient-Level Metrics (for drug response):
* Majority vote and softmax averaging across patches
* ROC-AUC and balanced accuracy for each drug response class
Visual Metrics:
* UMAP plots of learned representations to assess clustering and separability
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Chapter 6

Results

This section presents the outcomes of the experiments defined in the previous section. We evalu-
ate our pipeline’s ability to (1) leverage the enhanced resolution of ExPath, (2) utilize the discrim-
inative power of multiplexed nuclear and membrane markers, and (3) generalize across tissue
classification and treatment prediction tasks. We present both quantitative metrics and qualita-
tive visualizations.

6.1 ExPath Outperforms Simulated Non-ExPath Imaging

In our first experiment, we evaluated the effect of physical expansion on classification perfor-
mance by comparing models trained on simulated non-ExPath images downsampled to 224x224
against those trained on full-resolution ExPath patches at 1024x1024. While the downsampled
non-ExPath models converged more rapidly, their performance plateaued at approximately 83%
accuracy, suggesting a limitation in the morphological detail available at this resolution. In
contrast, ExPath models trained on larger patches exhibited slower convergence but ultimately
achieved close to 93.33% accuracy, demonstrating that the additional subcellular resolution af-
forded by expansion microscopy provides a measurable performance gain despite increased train-
ing complexity.

6.2 Marker Contribution Analysis via Ablation Studies

To quantify the contribution of individual channels in our multiplexed panel, we performed two
sets of ablation experiments: (1) post-hoc evaluation ablations using previously trained mod-
els, and (2) training-time ablations in which models were retrained with systematically reduced
channel inputs.

6.2.1 Post-hoc Evaluation Ablations

In the first experiment, we ablated channels during evaluation of previously trained models and
summarized the effects using heatmaps across multiple aggregation baselines (mean, max, min,
median). Among these, the median baseline produced the most reliable and stable results, so we
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Figure 6.1: Accuracy Confusion Matrix for Model trained with ExPath

focus on it here. The x-axis of the heatmaps represents the channels ablated, while the y-axis
shows the corresponding change in accuracy or loss. Across all settings, removal of the DAPI
channel caused the most pronounced accuracy drop, with the entire left panel of the heatmap
collapsing highlighting its essential role as the anchor channel.

When examining class-specific sensitivity, we observed heterogeneous dependencies on the
markers. For complete response, performance was particularly sensitive to ablation of combina-
tions of markers, suggesting that reliable identification of this class requires integrated nuclear
and chromatin context. For progressive disease, accuracy dropped most sharply when DAPI was
ablated, followed by combined removal of TelC and CENPB, with accuracy falling to 62%. This
likely reflects the biological relevance of these markers: DAPI encodes general nuclear morphol-
ogy, while TelC and CENPB provide information on telomeric and centromeric organization,
both of which are tightly coupled to malignant transformation and genomic instability in cancer.
In contrast, the marker with the least perturbation effect for complete response was WGA, where
class performance dropped to 34% accuracy upon ablation. This is consistent with WGA primar-
ily capturing membrane glycoproteins, which are less central to nuclear-level processes driving
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Figure 6.2: Overall Post-hoc Ablation Results

class separation. Interestingly, for lymphocytes, accuracy was more scattered: ablating TelC,
CENPB, or WGA reduced performance substantially (to 35%), while ablating DAPI alone still
maintained 63% accuracy. Moreover, ablating CENPB alone had minimal effect, with lympho-
cyte classification retaining 93% accuracy. One potential explanation is that lymphocyte identity
is strongly determined by cell shape and boundary delineation, features captured by WGA and
to some extent TelC, rather than centromeric structure, which is less variable in non-malignant
immune cells.

6.2.2 Training-Time Ablations

In the second experiment, we trained separate models on reduced channel sets to directly evaluate
the effect of marker exclusion during learning. As expected, the all-channel model achieved the
highest accuracy (93%), outperforming all other channel subsets. A DAPI-only model reached
85% accuracy, confirming DAPT’s role as a strong baseline but highlighting the value of mul-
tiplexing. Notably, even the weakest multi-channel combination excluding DAPI still outper-
formed the DAPI-only baseline, achieving 90% accuracy. This result underscores that while
DAPI is indispensable, complementary markers (TelC, CENPB, WGA) encode sufficient dis-
criminative information to elevate performance beyond what nuclear morphology alone provides.

Taken together, these experiments demonstrate that (1) DAPI remains the single most critical
channel, anchoring both nuclear detail and overall performance, (2) TelC and CENPB provide
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strong complementary signals for cancer-related phenotypes, and (3) WGA contributes less to
classification accuracy overall, but plays a subtle role in delineating non-cancerous classes such
as lymphocytes.

val/acc

— dapi-telc-cenpb dapi-telc dapi-wga = dapi-wga-cenpb — dapi-cenpb
dapi-only = all-channels

trainer/global_step

5k 10k 15k

Figure 6.4: Training Ablation Results

6.3 Classification Tasks

To evaluate the broader utility of multiplexed ExPath imaging, we assessed model performance
across three levels of generalization: tissue classification, drug response prediction, and cross-
cancer transfer. All experiments were conducted under strict patient-level splits to prevent data
leakage, with models trained on slide-level labels and final predictions aggregated to the patient
level.

6.3.1 Tissue Classification

We first trained models to distinguish among three major tissue classes: cancerous tissue, lym-
phocytes, and smooth muscle. Patient-level aggregation yielded an accuracy of 89.52% and an
ROC-AUC of 0.95, underscoring the discriminative power of ExPath-enabled nuclear and sub-
nuclear features. These results highlight that even with minimal staining and no stromal context,
nuclear morphology enriched by TelC, CENPB, and WGA suffices for accurate tissue stratifica-
tion.

6.3.2 Drug Response Prediction

We next examined the ability of the model to predict neoadjuvant chemotherapy response (com-
plete, partial, or progressive disease) using aggregated slide-level predictions. Despite the chal-
lenge of weak supervision and heterogeneous patient responses, the model achieved 85.66%
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Figure 6.5: Accuracy Confusion Matrix for Tissue Classification (3-way and 4-way)

accuracy and an ROC-AUC of 0.90 at the patient level. This suggests that multiplexed ExPath
captures treatment-relevant morphological signals, offering a scalable imaging-based alternative
to costly molecular profiling.
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Figure 6.6: Accuracy Confusion Matrix for Drug Response Prediction

6.3.3 Cross-Cancer Generalization (MIBC — Lung)

Finally, we tested the generalizability of MIBC-trained models by applying them to lung carci-
noma ExPath images. Here, the task was simplified to binary classification (cancerous vs. non-
cancerous). Remarkably, the transferred model achieved 72% accuracy, despite no retraining on
lung data. While performance was lower than in bladder-specific tasks, this result demonstrates
that nuclear and chromatin features learned from MIBC are at least partially conserved across
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cancer types, pointing to the feasibility of training broader, cross-organ foundation models. To-
gether, these findings establish that multiplexed ExPath models not only achieve high accuracy in
MIBC-specific classification but also extend to treatment prediction and cross-cancer inference,
highlighting their potential as a generalizable platform for computational pathology.

6.4 UMAP Visualization of Patch Embeddings

To complement quantitative performance metrics, we examined the latent feature space of our
trained model using UMAP dimensionality reduction. The resulting 2D embedding (Figure
above) illustrates how patches from different tissue classes cluster in the learned representa-
tion space. We observe that certain classes, such as those corresponding to cancerous regions,
form relatively dense and well-separated clusters, while others, particularly those involving
lymphocyte-rich or smooth muscle regions, appear more intermixed with neighboring classes.
This suggests that the model captures discriminative features that align with biological distinc-
tions, but also highlights areas of overlap where morphology alone may not suffice for clean
separation. Notably, the large contiguous cluster of yellow points (label 6 — progressive dis-
ease) indicates a dominant tissue class that the model consistently embeds in a compact region
of feature space, reflecting strong intra-class consistency. Conversely, smaller peripheral clusters
reflect minority classes and suggest heterogeneity in their representation. Overall, the UMAP
plot supports the model’s ability to learn biologically meaningful separations while also reveal-
ing the boundaries where multiplexed information may need to be further leveraged to improve
class distinction.

Summary of Key Findings

1. ExPath imaging enhances classification performance due to higher effective resolution.

2. Multiplexing with TelC, CENPB, and WGA improves both accuracy and interpretability.

3. Patient-level models trained on bladder tissue generalize to lung, suggesting potential for
broader foundation modeling.
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Chapter 7

Discussion and Limitations

Our experiments demonstrate that multiplexed DAPI-based imaging using expansion microscopy
(ExPath) provides a powerful alternative to traditional histopathological approaches for tissue
classification and drug response prediction. The combination of nuclear and sub-nuclear markers
(DAPI, TelC, CENPB) with a membrane stain (WGA) enables models to learn discriminative
and generalizable features from a minimal set of channels, offering strong performance even
without cytoplasmic or stromal context. In this section, we discuss the broader implications
of our findings, the challenges we encountered, and key limitations of our current dataset and
pipeline.

7.1 Biological and Clinical Implications

The success of our pipeline in distinguishing fine-grained tissue classes and predicting chemother-
apy response suggests that nuclear morphology and chromatin organization when captured at
high resolution encode information that is both biologically meaningful and clinically actionable.
Traditional H&E-based workflows, while more general-purpose, do not afford the subnuclear or
telomeric resolution necessary to extract such features.

Our results also reinforce the idea that certain molecular signatures (e.g., telomere organiza-
tion, centromeric alignment) are tightly coupled with treatment response phenotypes in muscle-
invasive bladder cancer (MIBC). Moreover, we observe that models trained exclusively on Ex-
Path patches from MIBC generalize well to lung carcinoma tissue, implying that these nuclear
features may be conserved across cancer types, an encouraging sign for building broader foun-
dation models.

7.2 Dataset Limitations

The dataset exhibits significant imbalance in tissue-type labels: cancer patches are overrepre-
sented, while lymphocytes and smooth muscle are underrepresented. We addressed this via
downsampling and oversampling during training; however, imbalance may still influence feature
learning and model calibration. This effect is particularly evident in misclassifications between
biologically similar or transition-state classes (e.g., partial vs. complete response).
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The dataset was also only weakly-supervised, whole slides were attributed a single label
(responsive, partially responsive, on-responsive).

Additionally, our current dataset size is insufficient to train a full DAPI-based foundation
model in a self-supervised manner. All models in this study were trained in a supervised setting
with explicit labels, limiting our ability to explore transfer learning or contrastive pretraining
paradigms. More slides from diverse cancer types, multiple organs, and varying marker panels
will be necessary to move toward a general-purpose feature extractor.

7.3 Training and Evaluation Constraints

While slide-level labels were used for drug response prediction, some models were trained patch-
wise without enforcing patient- or slide-level disjointness. This could lead to leakage of patient-
specific features and artificially inflate accuracy. However, we mitigate this by reporting only
slide-level metrics for treatment prediction tasks and by using patient-level splitting for evalua-
tion.

To enable faster training and reduce memory usage, we convert 16-bit TIFFs to 8-bit images.
This can cause information loss, especially in dimmer channels or when signal intensities are
concentrated in narrow dynamic ranges. Although normalization partially mitigates this, over-
flow and saturation effects remain a concern. In the future, we propose exploring hybrid 12-bit
representations or intensity-aware compression to preserve information while maintaining com-
patibility with RGB-based pretrained models.

7.4 Pipeline-Level Limitations

The TelC, CENPB, and WGA markers used in this study were chosen based on literature knowl-
edge and availability, but may not be optimal for all cancer types or tissue states. It is possible
that other combinations (e.g., epigenetic markers, cell-cycle indicators, immune-specific stains)
could outperform our current set. Our ablation results are a step toward understanding marker
utility, but more systematic marker selection strategies (e.g., marker attribution, information gain)
are warranted.

While effective, our reliance on pseudo-RGB conversion and ImageNet-pretrained backbones
is a compromise. These models are not optimized for bioimaging and may fail to fully exploit
fluorescence intensity distributions, spatial correlation across channels, or nuclear substructures.
Future work should explore bio-specific pretraining or architectures designed for multi-channel
imaging.

7.5 Interpretability and Trustworthiness

Although saliency maps and Grad-CAM overlays offer some interpretability, deeper analysis is
needed to ensure trust in model decisions especially in clinical contexts. For example, attention-
based models could be paired with domain-specific priors (e.g., nuclear morphology scoring
systems) to ensure that models attend to biologically meaningful regions.
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In summary, our findings provide a compelling proof-of-concept that multiplexed DAPI-
based imaging under expansion microscopy can support accurate and generalizable computa-
tional pathology. Nonetheless, this work is an early step in a broader vision toward lightweight,
interpretable, and biologically grounded imaging models especially in contexts where tissue is
limited and multiplexing is preferred over multi-modal pipelines.
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Chapter 8

Future Work

While this work provides a strong proof-of-concept demonstrating the potential of multiplexed
DAPI-based ExPath imaging for computational pathology, several avenues remain for further re-
finement, expansion, and clinical translation. A first priority concerns improving image fidelity
and preserving dynamic range. Our current preprocessing pipeline reduces all 16-bit TIFF chan-
nels to 8-bit images to ensure compatibility with pretrained RGB-based backbones. Although
this simplification facilitates rapid prototyping, it inevitably discards information through dy-
namic range compression and channel overflow. Future iterations of the pipeline should therefore
explore hybrid representations such as 12-bit or adaptive bit-depth encodings that strike a balance
between information preservation and computational feasibility. Complementary normalization
schemes, including histogram equalization or log-transformed intensity scaling, may further en-
hance weak signals in low-intensity channels such as WGA or TelC, thereby strengthening the
biological informativeness of the data. A second direction is the development of a DAPI-based
foundation model. This study has shown that a carefully selected DAPI + multiplex panel, when
paired with ExPath, can serve as a robust supervised testbed. However, the long-term vision is to
extend beyond task-specific supervised models and instead establish a general-purpose feature
extractor trained through large-scale self-supervised learning (SSL). Such a model would learn
representations of nuclear morphology, chromatin texture, and membrane organization across
diverse cancer types, offering a modular foundation that can later be fine-tuned for downstream
tasks such as tissue classification, segmentation, and drug response prediction. The advantage of
this approach is its scalability: unlike H&E, which is difficult to multiplex, DAPI-based imag-
ing can flexibly integrate additional fluorescence markers depending on the biological ques-
tion, making it well suited for foundation-level modeling. The robustness and scalability of
the computational pipeline also require attention. Current preprocessing assumes standardized,
high-quality ExPath TIFF images, yet real-world deployments must accommodate variability in
staining quality, illumination, imaging resolution, and sample preparation. Future work should
therefore include the development of adaptive normalization strategies capable of automatically
detecting and correcting for artifacts such as uneven illumination, staining variability, or blur.
Automated quality control pipelines could further ensure that problematic slides or patches are
flagged prior to model training, improving reliability in both research and clinical workflows. In
addition, it will be important to explore alternative computational approaches beyond standard
CNNs and transformer baselines. Architectures tailored for multi-channel biomedical images
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such as multi-branch CNNs, channel-attention networks, or hybrid vision transformer models
may prove more effective at exploiting correlations across nuclear and membrane markers than
ImageNet-pretrained RGB backbones. Self-distillation frameworks and graph-based methods
that encode cell-cell interactions also hold promise, particularly in capturing spatial relation-
ships between nuclei in tissue microenvironments. Future computational directions could thus
combine morphology-aware architectures with biologically informed priors to maximize both
accuracy and interpretability.

A key limitation of this study is dataset scale and diversity. The current dataset, while suf-
ficient for supervised proof-of-concept modeling, lacks the size, heterogeneity, and annotation
depth needed to support large-scale pretraining or robust evaluation across cancer subtypes. An
ideal dataset for this line of work would comprise thousands of ExPath-prepared whole-slide
images spanning multiple cancer types and tissue conditions, annotated at both the patch and
slide level for diagnosis, treatment response, and molecular subtyping. Such a dataset would ide-
ally include balanced representation across tissue classes (tumor, immune cells, smooth muscle,
etc.), curated clinical metadata (treatment regimens, survival outcomes), and longitudinal sam-
ples capturing treatment progression. Crucially, it would also incorporate diverse staining panels,
enabling systematic evaluation of which multiplex markers generalize best across cancers. The
assembly of such a dataset would allow for the training of a true DAPI-first foundation model
capable of generalization across both biological and clinical domains.

In summary, advancing this work will require parallel progress on imaging fidelity, computa-
tional methods, and data scale. Improvements in preprocessing and representation will preserve
critical biological signals, while the development of a DAPI-based foundation model will enable
general-purpose representation learning. Enhanced robustness and quality control will make the
pipeline clinically viable, and the creation of a large-scale, diverse ExPath dataset will unlock
the potential for scalable, generalizable models. Together, these steps chart a path from the
current proof-of-concept toward a clinically deployable ExPath-driven computational pathology
framework.
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Chapter 9

Conclusion

In this work, we demonstrated that multiplexed Expansion Microscopy (ExPath) combined with
a biologically informed four-channel panel (DAPI, TelC, CENPB, WGA) provides a powerful
and scalable alternative to traditional H&E-based computational pathology. By physically ex-
panding tissue to nanoscale resolution and anchoring analysis on DAPI, we showed that it is
possible to extract subnuclear and chromatin-level features that are both discriminative and clin-
ically meaningful. Our preprocessing pipeline transformed high-bit-depth, multi-channel whole-
slide images into pseudo-RGB patches suitable for ImageNet-pretrained architectures, enabling
efficient training and evaluation across multiple classification tasks.

Through systematic experiments, we established three core findings. First, ExPath imag-
ing delivers a measurable performance edge over simulated non-ExPath baselines, with models
achieving nearly 90% accuracy in tissue classification. Second, ablation studies revealed that
while DAPI is indispensable, complementary markers such as TelC and CENPB significantly
enhance performance, particularly for cancer-related phenotypes, whereas WGA plays a more
limited but non-negligible role in delineating non-cancerous cell types. Third, our models gen-
eralized across tasks and domains: achieving 89.5% accuracy and 0.95 AUC in three-way tissue
classification, 85.7% accuracy and 0.90 AUC in drug response prediction, and 72% accuracy
when transferred to lung carcinoma data, demonstrating cross-cancer portability of learned fea-
tures.

Together, these results support the central hypothesis that nuclear morphology, when captured
at high resolution and enriched with targeted fluorescent markers, contains sufficient information
to match and even surpass traditional H&E workflows for diagnostic and prognostic modeling.
Moreover, our findings establish a proof-of-concept for the long-term vision of a DAPI-first foun-
dation model in pathology: a general-purpose, scalable representation trained on ExPath-enabled
multiplexed imaging, capable of adapting across tissue types, cancer contexts, and downstream
clinical tasks.

While this study is constrained by dataset size, class imbalance, and reliance on RGB-adapted
pretrained backbones, it provides a clear framework for scaling. Future work should focus on
assembling larger and more diverse datasets, improving image fidelity through adaptive bit-depth
and normalization strategies, and exploring architectures optimized for multi-channel biomedical
imaging. By advancing along these directions, multiplexed ExPath has the potential to transform
computational pathology into a high-resolution, biologically grounded, and clinically impactful
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discipline.
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