UNIVERSITY of **VIRGINIA**

A Scalable Service Architecture for Providing Strong Service Guarantees

Nicolas Christin and Jörg Liebeherr

University of Virginia Department of Computer Science P.O. Box 400740 Charlottesville, VA 22904-4740

[nicolas|jorg]@cs.virginia.edu

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Outline

- Problem: strong QoS with low complexity
- Proposed approach
 - The Quantitative Assured Forwarding service
 - Reference Algorithm: Joint Buffer Management and Scheduling (JoBS)
- Heuristic realization of JoBS
- Current work
- Conclusions

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Problem and Context

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Previous Attempts at Strong QoS with Low Complexity

- Proportional Delay and Loss Differentiation (Dovrolis et al., 1999)
 - No absolute guarantees
- Mean-Delay Proportional Scheduler (Barghavan et al., 2000)
 - No guarantees on losses
- ► ABE Service (Hurley et al., 2001)
 - Strong guarantees but only two classes
- SCORE/CSFQ/DPS (Stoica & Zhang, 1999)
 - Strong guarantees, but high complexity at access points
- Dynamic Core Provisioning (Campbell and Liao, 2001)
 - No absolute guarantees on delays

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Quantitative Assured Forwarding

- Guarantees provided on a per-hop, per-class basis
- No admission control, no signaling, no traffic conditioning
 - No per-flow operations
- Proportional and absolute per-class guarantees for both loss and delay and lower bound on throughput

 $\frac{\text{Class-2 loss rate}}{\text{Class-1 loss rate}} \approx 2$

Class-2 delay \leq 5 ms

 Concession: service guarantees may need to be temporarily relaxed

None of the existing mechanisms can realize this service

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees SPIE ITCOM 2002

JoBS – Joint Scheduling and Buffer Management

- Key technique:
 - Buffer management and scheduling at the output link of a router are addressed by a single algorithm → JoBS
- JoBS mechanisms:
 - Service rate allocation to traffic classes
 - Service rate allocation is periodically adjusted
 - Rate allocation is based on projections of delays and loss rate
 - If no feasible rate allocation exists, drop traffic
 - If necessary, relax service guarantees
- JoBS can realize the Quantitative Assured Forwarding service

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Arrivals, Departures, Losses at a Node

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

JoBS

- Future delays are projected
- New rate allocations and drop decisions are obtained from an optimization

<u>Minimize:</u>	losses and changes to the rate allocation,
Subject to:	- absolute bounds on loss, and delay.
	- proportional service differentiation
	- system constraints (e.g., buffer size)

If constraint system becomes infeasible, relax constraints in a specified order

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Evaluation by Simulation

- Single node simulation
- Output link capacity = 1 Gbps,
- Buffer size = 6.25MB,
- Bursty arrival pattern: superposition of 200-550 Pareto sources (α=1.2).
- The offered load curve varies between 70% and 150% of the link capacity,
- 4 traffic classes,
- Each class contributes 25% of the total traffic.

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees SI

Simulation Results: Delay

 $\frac{\text{Class-4 delay}}{\text{Class-3 delay}} \approx 4$

 $\frac{\text{Class-3 delay}}{\text{Class-2 delay}} \approx 4$

Class-1 delay \leq 1 ms

 $\frac{\text{Class-(i+1) loss}}{\text{Class-i loss}} \approx 2$

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Simulation Results: Loss

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Implementation with Low Complexity: Feedback Loops

Service rate allocation and loss rates can be viewed in terms of a recursion:

$$r_{i}(n) = r_{i}(n-1) + \Delta r_{i}(n)$$

$$p_{i}(n) = p_{i}(n-1) \frac{A_{i}(n-1)}{A_{i}(n)} + \frac{l_{i}(n)}{A_{i}(n)}$$

Feedback loops

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

A Feedback Control Solution

Linearization of the non-linear system around an operating point.

- Allows to use linear control theory tools (e.g., derivation of a stability condition)
- Controller is simple: $\Delta r_i(n) = K(n) \cdot e_i(n)$
 - $e_i(n)$ is the deviation of the class-i delay from the desired proportional differentiation
 - *K*(*n*) is a proportional coefficient
- Losses are handled by a similar feedback mechanism

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Conditions on the Delay Controllers

Stability condition (proportional differentiation):

$$-2 \cdot \min_{i} \left\{ \frac{B_{i}(n)}{\prod_{j \neq i} m_{j} \cdot D_{i}^{2}(n)} \right\} \leq K(n) \leq 0$$

Saturation effects (absolute delay/throughput guarantees):

$$K(n) \ge \max_{i} \left(\frac{r_{i,\min}(n) - r_{i}(n-1)}{e_{i}(n)} \right)$$

with

$$r_{i,\min}(n) = \max\left\{\frac{B_i(n)}{d_i - D_i(n)}, \boldsymbol{m}_i \cdot \boldsymbol{c}_{B_i(n) \ge 0}\right\}$$

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Implementation

Implementation in FreeBSD kernel

- Testbed of 6 Pentium IIIs 1Ghz with multiple interfaces
- Allows testing at 100 Mbps (FastEthernet)
- Developed for ALTQ 3.0 (package allowing modifications to the network stack), now part of ALTQ 3.1

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Experimental Setup

100 Mbps, 200 pkts	Class	No. of Flows	Proto.	Traffic
	1	6	UDP	On-off
Router 1 Router 3	2	6	TCP	Greedy
	3	6	TCP	Greedy
Bottlenecks	4	6	TCP	Greedy

Class	d _i	Li	m	k _i	k' _i
1	8 ms	1 %	-	-	-
2	-	-	35 Mbps	2	2
3	-	-	-	2	2
4	-	-	-	N/A	N/A

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees SPIE ITCOM 2002

Delay Differentiation (at Router 1)

 \rightarrow Similar results can be observed at Router 2

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Loss Differentiation (at Router 1)

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees S

Throughput Differentiation (at Router 1)

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Current Work: Traffic Regulation

- No admission control and no policing:
 - Service guarantees can be infeasible (cf. delay violations in the example)
- Key observation:
 - Most traffic is TCP
 - Majority of traffic is generated by a limited number of flows ("heavy-hitters")
- Mechanisms:
 - Identify heavy-hitters via flow filtering
 - Estimate congestion window size and RTT of heavy-hitters
 - Control traffic from heavy-hitters via ECN marking

Does not require any changes to TCP!

Christin and Liebeherr

A Scalable Service Architecture for Providing Strong Service Guarantees

Conclusions

- Architecture w/ Low complexity/Strong guarantees
- Can be implemented at high-speeds
- Current work:
 - Avoid infeasible set of service guarantees by regulating traffic using TCP congestion control algorithms
- Software and more information is available at:

http://qosbox.cs.virginia.edu

A Scalable Service Architecture for Providing Strong Service Guarantees