Near Rationality and Competitive Equilibria in Networked Systems

Nicolas Christin, Jens Grossklags and John Chuang University of California, Berkeley
School of Information Management and Systems
{christin, jensg, chuang}@sims.berkeley.edu

Background

- Game: Model of interactions between
 - participants (players) in a network, who
 - □ (based on available info) select *strategies*, that
 - yield individual payoffs (utilities)
- Nash equilibrium: set of strategies from which no utility-maximizing user has any incentive to deviate

$$\forall \sigma_i' \in \Sigma_i \ , \ u_i(\sigma_i', \sigma_{-i}^*) - u_i(\sigma_i^*, \sigma_{-i}^*) \le 0$$

Traditional assumptions

- Each player has perfect knowledge of structure of the game
 - Strategies available to all other users
 - Payoffs associated with each strategy
- Each player is perfectly rational
- Players perfectly execute their strategies

Very stringent assumptions...
... especially in the context of large networks!

Thesis statement

Slightly expanding the (Nash) solution concept allows to:

- 1) evaluate the robustness of a model to small perturbations
- 2) help reconcile empirical data with predictions

For instance, by considering:

$$\exists \varepsilon > 0 : \forall \sigma'_i \in \Sigma_i , u_i(\sigma'_i, \sigma^*_{-i}) - u_i(\sigma^*_i, \sigma^*_{-i}) \leq \underline{\varepsilon}$$

(sometimes called € equilibrium)

Case studies

- Three case studies to illustrate our point
 - Network formation
 - Response to a security threat
 - TCP congestion control
- Methodology
 - Describe the game
 - Compare Nash and ε-equilibrium outcomes
 - Discuss findings

Case study 1: Network formation

Players

 Network nodes interested in creating peering connections to other nodes (e.g., ad-hoc network)

Utility of a player

- Parameterized function of
 - its distance to other nodes (hop count),
 - its connectivity (out degree), and
 - its path loading (number of routes passing through the node)

Strategies available to a player

Choose the set of connections maintained with other nodes

Case study 1: Network formation

Nash outcome

Nodes either organize in a star-shaped network, or in a fully connected network (classical result) ϵ -equilibrium outcome

For a range of parameters (depending on ε), any topology forms an ε -equilibrium

Findings

- Even with a small uncertainty ε, the outcome of the model may be significantly different
- Model needs to be refined for complex networks (e.g., the Internet)

Case study 2: Response to security threat

- Simplified model of first stage of a (manual or) semiautomated DDoS attack
- Players
 - Network users, all subject to a security threat of unknown severity
 - The least protected user(s) is (are) compromised
- Utility of a player
 - If not compromised, utility is characterized by a cost function C(s) increasing with their security level s
 - If compromised, utility is characterized by a large penalty
 P >> C(s) for any feasible s
- Strategies available to a player
 - Select security level s

Case study 2: Response to security threat

Nash outcome

All users choose the highest security level available

ϵ -equilibrium outcome

Dispersion of security levels between no security and highest security

Findings

- Empirical data doesn't corroborate predicted Nash outcome
- Simple refinement captures that users are not perfectly rational but instead "near rational"

Case study 3: TCP congestion control

- Model initially proposed by [Akella et al. '02]
- Players
 - □ TCP (SACK) flows sharing bottleneck link(s) in the network
- Utility of a player
 - Throughput (successful transmission rate) obtained by the flow
- Strategies available to a player
 - Change the TCP congestion control parameters
 - additive increase/multiplicative decrease coefficients

Case study 3: TCP congestion control

Nash outcome

Congestion control is completely disabled (no matter what)

ε-equilibrium outcome

No change to the default congestion control parameters for large number of flows

(assuming changes to congestion control parameters are bounded over finite time intervals)

Findings

- Empirical data doesn't corroborate predicted Nash outcome
 [Akella et al. '02]
 - ...otherwise the Internet would collapse due to congestion!
- Combining near rationality and model refinement enables us to match observed behavior
- Tweaking TCP stack not worth the hassle

Summary

- Model designers should test (or even allow) for slight deviations from Nash equilibrium (near rationality)
 - Can help assess the robustness of a model
 - Network formation
 - Response to security threat
 - Can help determine if a model is too simplistic
 - Network formation
 - Can help reconcile empirical data with predicted outcome
 - TCP congestion control
 - Response to security threat

Open questions and research agenda

- This is not a plea for using ε-equilibria!
 - Only a convenient (i.e., very simple) tool for our argument
 - Other types of equilibrium (e.g., QRE) potentially useful
- Model design methodology
 - Accuracy vs. complexity of a model
 - Refine the game definition or the equilibrium concept
- Mechanism design methodology
 - Impact of near rationality on mechanism performance
- Application: Security model
 - Refine our model (distinguish between different threats)
 - Gather empirical data (user behavior)

Questions?