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Software Dissemination

» The QoSbox. http://gosbox.cs.virginia.edu
» Simulation code included in ns-2 as of ns-2.26

» Kernel code included in extension packages for 4.4-
BSD based kernels (FreeBSD, OpenBSD, NetBSD)
« ALTQ-3.1.
http://www.csl.sony.co.jp/person/kjc/kjc/software.html
« KAME snap-kits. http://www.kame.net

 Inclusion in base distributions of the FreeBSD, OpenBSD,
and NetBSD kernels is under consideration
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Outline

» Background and thesis statement

» New service: Quantitative Assured Forwarding
» Main contributions

- Joint Buffer Management and Scheduling (JoBS)
A feedback-control design

« BSD kernel implementation (QoSbox)
« Quantitative Assured Forwarding for TCP traffic

» Conclusions
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Need for Quality-of-Service (QoS)

» What is QoS?

« Traffic control mechanisms to differentiate performance based on
network-operator or application requirements

» Delay, loss and throughput guarantees are considered most crucial
» Why is QoS needed?
« Different applications have different needs

« The Internet is now a commercial network = service differentiation
can create incentives for differentiated pricing

» Where is QoS needed?
« Core(s) vs. edge(s)

Network 2

Network 1 Network 4
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Granularity of Service Guarantees

» Per-flow guarantees
« Require per-flow reservations in the network
« Require per-flow classification at routers
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Granularity of Service Guarantees

y
‘& —

—= ;b,_
4 ’-E;N

» Per-class guarantees

Bundle traffic flows with similar service requirements into a small number of
aggregates (classes)

Per-flow reservations are not needed
Provide service differentiation to aggregates
Per-class guarantees do not immediately translate into per-flow guarantees
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Strength of Service Guarantees

» Absolute guarantees
« Generally require reservations of router resources
 Example:
« Class-1lossrate <1 %
» Flow-2 throughput = 2 Mbps

» Relative guarantees
« Generally do not require reservation of resources
1. Qualitative guarantees
» Class-1 loss rate < Class-2 loss rate
« Class-1 delay < Class-2 delay
2. Proportional guarantees
» Class-2 delay / Class-1 delay = 2
» Flow-3 throughput / Flow-2 throughput = &
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Problem and Context
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The scope of class-based service guarantees can be significantly
enhanced by using appropriate buffer management, scheduling
and feedback capabilities of the network
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Related Work

» Proportional Delay and Loss Differentiation (Dovrolis,
PhD thesis, 2001)

 Proportional guarantees

» Corelite (Barghavan et al., 2000)
» Absolute and proportional delay guarantees, no loss guarantees

» SCORE/CSFQ/DPS (Stoica, PhD thesis, 2001)

« Strong guarantees, but per-flow classification at access points

» ABE Service (Hurley, PhD thesis, 2002)
« Two classes (one with delay bounds, the other with lower losses)

» Dynamic Core Provisioning (Liao, PhD thesis, 2002)

« Throughput and loss differentiation, no absolute guarantees on
delays
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Quantitative Assured Forwarding

» Objective: Strongest possible class-based service without
reservations
» Service guarantees of QAF:

* Proportional and absolute per-class guarantees for loss and
delay

 Lower bounds on the throughputs of classes

» QAF can be used to express all existing class-based
architectures

» Characteristics:
« Guarantees provided on a per-hop, per-class basis
« No admission control, no signaling, no traffic conditioning
* No per-flow operations
« Important: Service guarantees may need to be temporarily relaxed
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Deployment of QAF service

Static configuration of
service guarantees

Delay Class 1 <5 ms
Loss Rate Class 2 < 3%

Throughput Class 1 > 10 Mbps
Delay Class 3

Delay Class 2

Network 4
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JOBS — Joint Buffer Management and
Scheduling

» JoBS (Joint Buffer Management and Scheduling):

» Defines any algorithm that tracks traffic arrivals to allocate service
rates and to drop traffic in a single step

» Operations:
« Service rate allocation to traffic classes
« Service rate allocation is periodically adjusted

» If no feasible rate allocation exists for meeting all service
guarantees, drop traffic

» If necessary, relax service guarantees according to a pre-specified
order

» JoOBS can realize the Quantitative Assured
Forwarding service
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Arrivals, Departures, Losses at an
Output Queue
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Rate Projections

Assumptions for projections at times s for delays at t>s:
« Current rate allocation does not change

Class-i Traffic4
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Optimization-Based Algorithm

» New rate allocations and drop decisions are obtained
from an optimization

» If constraint system becomes infeasible, relax
constraints in a specified order
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Formulation of the Optimization

Objective
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Evaluation by Simulation
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Simulation Results: Delay

Class-4 delay
Class-3 delay

Class-3 delay
Class-2 delay

Class-1 delay <1 ms

Class-(i+1) loss _ 2
Class-i loss
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Simulation Results: Loss Rate Ratios
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Feedback Control Solution to JOBS

Saturation
(Absolute
Bounds)

e;i(n) l Ar. D.

Set Point ! Effect of !
(Proportional — ’(:) » Controller | adjustment

Differentiation)

v

A

Measurement

» Proportional controller: Ar;(n) = K(n)-e;(n)
* e,n) is the deviation of the class-i delay from the desired proportional
differentiation

« K(n) is a proportional coefficient
» Linearization of the non-linear system around an operating point.
« Allows to use linear control theory tools (e.g., derivation of a stability condition)

» Losses are handled by a similar feedback mechanism
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Feedback Control Solution to JOBS
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» Proportional controller: Ar;(n) = K(n)-e;(n)
* e,n) is the deviation of the class-i delay from the desired proportional
differentiation

« K(n) is a proportional coefficient
» Linearization of the non-linear system around an operating point.
« Allows to use linear control theory tools (e.g., derivation of a stability condition)

» Losses are handled by a similar feedback mechanism
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Conditions on the Delay Controllers

» Stability condition (proportional differentiation):

2
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Evaluation in Testbed Network

» Implementation in
FreeBSD kernel

« Testbed of 6 Pentium llIs
1Ghz with multiple
Ethernet interfaces

* Routers connected by
100 Mbps point-to-point
Ethernet links

» Software is now part of
ALTQ 3.1

Quantifiable Service Differentiation for Packet Networks
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Experimental Setup

C=100 Mbps, B=200 pkts Class | No. of | Proto. | Traffic
Flows
‘v ‘ 1 6 UDP | On-off
.—._"" B | == o Routr 4..—"" 2 6 | TCP | Greedy
; ‘ 3 6 TCP | Greedy
Bottlenecks . ‘ 4 6 TCP | Greedy
Class Abs. Delay | Abs. Loss Abs. Proportional | Proportional
Guarantee | Guarantee | Throughput Delay Diff. Loss Diff.
Guarantee Factor Factor
1 8 ms 1% - L .
2 - - 35 Mbps
3 - - ) 2 2
2 12—
4 , - B}
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Delay Differentiation (at Router 1)

Ratios of Delays Delays (ms)
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- Similar results can be observed at Router 2
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Loss Differentiation (at Router 1)

Ratios of Loss Rates
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Throughput Differentiation (at Router 1)

Throughput (Mbps)

.i “T——— Aggregate
| ! i :
|

Class 2
60 L

Class 2

/ guarantee

Class 3

40 freom

20 ¢ o / —— Class 4

Quantifiable Service Differentiation for Packet Networks 28



Extending JoBS to TCP traffic

» JoBS drops traffic if necessary

« TCP ftraffic is sensitive to losses
» JoBS is a hop-by-hop scheme

« TCP is an end-to-end protocol

« Somehow must reduce traffic input to the network to avoid
losses and service violations

» TCP congestion control:

« Classical TCP congestion control: reduce traffic when there is a
loss

» Explicit Congestion Notification (ECN): routers can signal
congestion to TCP sources when congestion is impending

» Key ldea:
» Exploit congestion control mechanisms of TCP to reduce traffic

« Combine ECN with JoBS scheme to control rate of TCP traffic
(UDP traffic is just dropped at routers)
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Controlling End-to-End TCP Traffic

TCP Sender Router

Traffic must be reduced

Mark packet(s) with
congestion signal (ECN bit)

Router

IIIIIIII Router
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Avoiding Per-Flow Operations

» TCP congestion control operates on a per-flow basis
 Violation of our design constraints

» Key observation:

« Majority of TCP traffic is generated by a limited number of
flows (“heavy-hitters”)

» Mechanisms:
+ |dentify heavy-hitters via flow filtering
« Control traffic from heavy-hitters via ECN marking

» Properties:

« Can be used for loss avoidance and traffic regulation for
service guarantees

» Does not require any changes to TCP
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ns-2 Simulation Setup

Round-trip times between 44 and 80 ms
Class No. of No. of
On-Off Greedy
@ TCP TCP
Flows Flows
Simulated _| Simulated
Router 1 / "| Router 2 5 3
2 10 3
Bottleneck link
C=45 Mbps, B=250KB 3 15 3
4 20 3
Class Abs. Delay | Abs. Loss Abs. Proportional | Proportional
Guarantee Factor Factor
1 10 ms 1% 5 Mbps - -
2 - - s
4 2
3 - - ]
4 2
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Class-1 Delay Guarantees

Delays (ms) Delays (ms)
100 7 ] 100 : : : : :
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Loss Rate (%)

Loss Differentiation
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Throughput Di
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Summary

» Quantitative Assured Forwarding
 Subsumes all class-based architectures

» Key scheme: Joint Buffer Management and
Scheduling
« Reference algorithm (optimization)
- Feedback-control algorithm
* Implementation
« Demonstrated efficiency by analysis, simulation, and
measurements
» Reconcile end-to-end service with per-hop
differentiation
« ECN marking allows for avoiding losses in TCP
« Fairness at the flow level without per-flow reservations

« Can be a viable alternative to admission control and traffic
policing
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Future Work

» Class selection policies
« Class selection by the network
» Raise inter-domain cooperation issues
« Class selection by applications
* Need to enforce collaboration

» Extending the architecture to provide market
iIncentives

* “One of the impediments to the deployment of new services
on the Internet is the lack of market incentives to improve
network services and applications and to use them
efficiently.” (NSF workshop report, 2003)
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Questions?
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