A Cost-Based Analysis of Overlay Routing Geometries

Nicolas Christin and John Chuang
University of California, Berkeley
School of Information Management and Systems
{christin, chuang}@sims.berkeley.edu

Problem statement

- Evaluate the amount of resources each peer contributes for being part of an overlay network
- Evaluate the benefits associated with participation
- Study independent of specific overlay protocol
 - Graph-theoretic approach
 - Focus on geometries: set of nodes and edges (topology) associated with a routing algorithm (shortest path in this talk)

Motivation

- Allows us to predict potential disincentives to collaborate
- Allows us to identify hot spots (e.g., routing)
- Allows us to help design load balancing algorithms
- Benchmark to characterize efficiency of network
 - Can be used to distinguish between proposals for overlays
- Methodology can be applied to other networks
 - e.g., ISP peering relationships

Related work

- Cost models
 - Socio-economic networks
 - Jackson and Wolinsky, 1996
 - (Overlay) networks and distributed systems
 - Fabrikant el al., 2003
 - Chun et al., 2004
 - Generally only consider connectivity (out-degree)
 - Not concerned with service or routing overhead, which may be important factors in a networked system
- Graph-theoretic properties of overlay topologies
 - □ Loguinov et al., 2003
 - □ Gummadi *et al.*, 2003
 - Look at the network as a whole and assume node obedience
 - How about individual nodes?
 - Incentives?

Example: Costs in a DNS lookup

+ all hosts/servers have to maintain records to know where to find "higher" DNS servers when needed

Example: Costs in a DNS lookup

+ all hosts/servers have to maintain records to know where to find "higher" DNS servers when needed

Cost model

- A given node u requests an item, serves a request, or route requests between other nodes
- Latency cost

$$L_u = \sum_{v \in V} \sum_{k \in K_v} l_{u,k} t_{u,v} \Pr[Y = k]$$

Service cost

$$S_u = \sum_{k \in K_u} s_{u,k} \Pr[Y = k]$$

Routing cost

$$R_u = \sum_{v \in V} \sum_{w \in V} \sum_{k \in K_w} r_{u,k} \Pr[X = v] \Pr[Y = k] \chi_{v,w}(u)$$

Maintenance cost

$$M_u = m_u \deg(u)$$

Individual and total cost

- Individual cost of node u
 - Sum of latency, routing, service and maintenance costs at node u

$$C_u = L_u + S_u + R_u + M_u$$

- Total cost (of the whole network)
 - Sum of all individual costs

$$C = \sum_{u} C_{u}$$

Analysis assumptions

- Homogeneous peers and homogeneous links (i.e., for any u and k, $l_{u,k}=l$, $s_{u,k}=s$, $r_{u,k}=r$ and $m_u=m$.)
- Steady-state regime (i.e., no churn)
- Sources of requests uniformly distributed over the set of nodes (i.e., Pr[X = u] = 1/N)
- Destinations of requests uniformly distributed over the set of nodes (implies $S_u = s/N$)
- Quite idealistic!

Social optimum

- Social optimum: geometry that minimizes total (network) cost C
 - Ideal geometry from the system perspective
- $m \le l/N + r/N^2$
- □ If number of nodes N is small and/or maintenance operations come cheap (i.e., m is small): **full mesh**
- Otherwise: star network
 - Always local optimum, social optimum if links are bidirectional
- Proof sketch: start from full mesh, and remove links

Nash equilibrium

- (Pure) Nash equilibrium: geometry in which no individual node u can decrease its individual cost C_u by (deterministically) creating or removing a link $m \le l/N$
 - Ideal geometry from a selfish node's perspective
 - ullet If number of nodes N is small and/of maintenance operations come cheap (i.e., m is small): **full mesh**
 - Otherwise: star network (not necessarily unique)
 - Proof sketch: start from topology, try to add and remove links

Social optimum vs. Nash equilibrium

Individual incentives not aligned with desirable social outcome

Social optimum vs. Nash equilibrium

The need for rules

Routing data for others is generally costly

(i.e.,
$$r \gg 0$$
)

- Social optimum and Nash equilibrium differ
- Optimal topologies (star, full mesh) can be impractical
 - Lack of resiliency or scalability
- Need for rules to realign incentives, ensure resiliency...
 - Monetary compensation
 - Protocol
 - Geometry/Topology
 - ...

Topological rules: DHT geometries

- Spread load evenly on all nodes in the network while keeping acceptable overall performance
- How do DHT geometries compare with social optimum/Nash equilibrium?
- Are DHT geometries effective at avoiding blatant individual disincentives?
- Analyzed
 - □ PRR trees (Pastry, Tapestry, Bamboo, …)
 - □ *D*-tori (CAN)
 - de Bruijn graphs (Koorde, ODRI, Distance-Halving)

DHT geometries analysis

- Closed form expressions can be derived
- \blacksquare D tori (CAN)

$$\Box L_u = l \frac{DN^{1/D}}{4}$$

$$R_u = r \frac{\rho_{u,D}}{N^2}$$

$$\square$$
 $M_u = 2mD$

PRR trees (Pastry, Tapestry, ...)

$$L_u = l \frac{D\Delta^{D-1}(\Delta - 1)}{N}$$

$$R_u = r \frac{\Delta^{D-1}(D(\Delta - 1) - \Delta) + 1}{N^2}$$

$$\square \quad M_u = mD(\Delta - 1)$$

Same results for Chord rings (with Δ =2)

Asymmetry in de Bruijn graphs

Different nodes have different latency costs

$$L_{\min} \le L_u \le L_{\max}$$

Different nodes have different routing costs

$$0 \le R_u \le r \rho_{\text{max}}/N^2$$

Different nodes have different maintenance costs

$$M_u = m\Delta$$
 or $M_u = m(\Delta - 1)$

Asymmetry in de Bruijn graphs (cnt'd)

Δ: alphabet size

D: network diameter

$$L_{\max} = \max_{u} L_u$$

$$L_{\min} = \min_{u} L_u$$

$$R_{\text{max}} = \max_{u} R_u$$

$$R'_{\min} = \min_{u} \{R_u : R_u > 0\}$$

(Δ, D)	$\frac{L_{max}}{L_{min}}$	$\frac{R_{\max}}{R'_{\min}}$
(2,9)	1.11	4.51
(3,6)	1.04	4.41
(4,4)	1.03	2.71
(5,4)	1.02	2.78
(6,3)	1.01	1.86

Routing and latency costs

Numerical results

- Analysis relies on very stringent set of assumptions
- Use simulations to evaluate impact of
 - Asymmetry in item popularity on individual costs
 - Sparse population of the identifier space
 - e.g., Pastry has 2^{128} available identifiers, so that the number of nodes in the system at any time is $N \ll 2^{128}$
- 1,024 experimental runs
- 100,000 requests per run

Asymmetry in item popularity

Item popularity follows a Zipf distribution with $\alpha = 0.75$

	L_{max}/L_{min}	R_{max}/R'_{min}
3-torus	1.27 (± 0.04)	5.28 (± 0.35)
De Bruijn	1.25 (± 0.02)	30.73 (± 9.6)
PRR	1.26 (± 0.04)	9.22 (± 0.66)

- Little or no correlation between the different costs (see paper)
 - Some nodes just get a "rotten deal"

Sparse population of the ID space

- 512 nodes
- Vary number of identifiers
- Assign each unused identifier to closest node

Sparse population of the ID space

- 512 nodes
- Vary number of identifiers
- Assign each unused identifier to closest node

Summary

- General cost model for participating in overlay
 - Takes into account routing, latency, maintenance and service costs
 - Probably applicable beyond overlays (ISP-ISP peering?)
- Notion of routing cost is important
 - Explains why individual incentives are not necessarily aligned with overall welfare
- May need rules to realign incentives
 - DHT geometries: Implementing rules can be tough
 - Very balanced geometries in theory
 - Potentially large imbalances (esp. routing) in practice

Questions

