
Taking Advantage of Multihoming
with Session Layer Striping

Ahsan Habib
Siemens TTB, Berkeley

Email: habib@sims.berkeley.edu

Nicolas Christin
Information Networking Institute

and CyLab Japan
Carnegie Mellon University
Email: nicolasc@cmu.edu

John Chuang
School of Information

UC Berkeley
Email: chuang@sims.berkeley.edu

Abstract—
Striping is a resource aggregation technique that can improve

application performance for a multihomed host by utilizing
multiple interfaces. In this position paper, we argue in favor
of decoupling striping primitives from all of the traditional
layers of the networking protocol stack, and instead resurrecting
the session layer for striping. Session layer striping indeed
allows applications to take advantage of multihoming, while
avoiding most of the deployability issues traditionally linked with
modifiying application layer code. We illustrate our argument
with a strawman architecture for a session layer striping protocol,
and sketch how such a protocol could be implemented.

I. INTRODUCTION

As shown in measurement studies, e.g., [1], [2], simul-
taneously connecting to multiple service providers, or mul-
tihoming, can drastically improve the quality-of-service a
networked end host experiences. In addition, the differences
in peering relationships among different service providers
make it possible for multihomed hosts to use significantly
different routes to a same destination [3]. In other words,
besides circumventing last-mile congestion, multihoming can
theoretically allow for dynamically avoiding other points of
congestion in the network, by taking advantage of the choice
between different routes available at any given time [4], [5].

Furthermore, physical layer support for multihoming is
already available in metropolitan areas. Not only can users
in urban areas generally subscribe to both cable and DSL
services simultaneously, but they may also have access to
several wireless networks. Thus, multihoming is both desirable
and, at least in some instances, readily available. Yet, very few
applications take advantage of the service improvements multi-
homing potentially enables. Explicitly supporting multihoming
within an application is indeed far from straightforward, and
can actually result in performance degradation due to blocking
phenomena at lower layers [6].

From an economic perspective, application layer support
for multihoming requires significant networking expertise from
the application developer, which results in higher development
costs. Increased development costs for multihoming support
are hard to justify, considering the relatively low proportion
of multihomed hosts in the network at the present time. The
lack of support for multihoming is in turn one of the main

reasons why so few end-users have an economic interest in
multihoming their hosts.

One way to solve this dilemma is to have network or
operating system support for multihoming, thereby freeing
the application developer from the burden of implementing
multihoming primitives. That is, in an ideal world, any of the
layers situated below the application layer should manage the
(de)multiplexing of an application layer flow across several
physical links in a manner transparent to the application. Such
a resource aggregation is known as striping. As discussed in
[7], striping poses a number of challenges and trade-offs at
any of the physical, network, and transport layers.

Our main argument in this position paper is that session
layer striping allows applications to take full advantage of
multihoming, while avoiding the overhead of rewriting most
networking primitives at the application layer to support mul-
tihoming. We develop our argument by presenting a strawman
architecture for a session layer striping protocol, and sketch
how such a protocol could be implemented.

More precisely, we attempt to make the case that striping
at the session layer has several advantages. First, rather than
striping over multiple connections, applications only see a
single virtual “pipe,” and do not need specific mechanisms
to take advantage of multihoming. Second, by decoupling
striping from transport layer primitives, multihoming support
can be made independent of any specific transport protocol.
In fact, presented with a few application layer preferences,
a session protocol could even automatize transport protocol
selection on behalf of the application.

Existing literature addressing performance improvement
through multihoming can roughly be classified in two cat-
egories. A number of works (e.g., [2], [8]) look at how
multihoming can be used to improve the performance of a
whole stub network, dealing with the case where the stub
network under consideration is connected to two or more
service providers. These works are mostly considering traffic
engineering techniques to improve stub network metrics (e.g.,
overall cost, average latency, resilience to failures...), whereas,
in this paper, we are looking at individual application flows.

More closely related to our proposal are works discussing
how to multiplex flows over several logical or physical links,
e.g., [9], [10], [11], [12], [13]. The main difference between



our proposal and these related works is that we do not make
any assumption on the underlying transport protocol or the
number of available physical links.

The remainder of this paper is organized as follows. In
Section II, we quickly review the advantages and drawbacks
of performing striping at layers other than the session layer.
In Section III, we propose an architecture for session layer
striping. Finally, we conclude, in Section IV, by discussing
implementation issues, limitations, and open problems uncov-
ered by our approach.

II. WHY SESSION LAYER STRIPING?

Striping is a general technique to aggregate multiple re-
sources for better performance. The aggregation of multiple
network interfaces can be done at different layers of the pro-
tocol stack. Adiseshu et al. [14] propose a general framework
for striping as a logical FIFO queue (defined as a channel)
at the link, network, or transport layers. IPv6 multihoming
can be performed at any layer ranging from the network to
the application layer, by assigning multiple provider-dependent
aggregatable IPv6 prefixes to each site [15]. In general, striping
at lower layers leads to a high striping point utilization, and
striping at higher layers leads to less head-of-line blocking [7],
i.e., a situation where a multihomed connection throughput
is limited by that of its slowest path. To justify the case
for session layer striping, we describe the advantages and
drawbacks of striping at different layers.

Link layer striping. Link layer striping aggregates available
physical links into a single communication path. Transmis-
sions are done on a byte-by-byte basis over the physical
interfaces, which improves the utilization of the links. Byte
ordering must be preserved in link layer striping, and padding
may be necessary when the number of bytes in a datagram is
not a multiple of the number of interfaces. Thus, there may be
significant overhead in striping at the link layer. In addition,
IP datagrams may need to be reconstructed before crossing
network boundaries, which makes link layer striping only truly
useful for local area communications.

Network layer striping. Even though network layer striping
should make multihoming transparent to the transport and
higher layers, network layer striping causes poor TCP per-
formance over heterogeneous paths [16]. While performance
can be improved by modifying TCP retransmission timers and
window sizes, such modifications essentially require changes
at the transport layer, which makes network layer striping a
relatively unattractive option.

Transport layer striping. Striping IP packets at the transport
layer requires a transport protocol that, unlike TCP, can control
multiple paths simultaneously. The SCTP protocol [17], for
instance, can handle multiple data streams across multiple
interfaces. However, SCTP only uses more than one interface
in case of failure of the “primary” interface. More recent work
on SCTP [10] investigates how one can use multihoming for
concurrent transfers. However, the application remains bound
to the SCTP semantics.

A few transport protocols, such as pTCP [6], are explicitly
designed with transport layer striping in mind. pTCP stripes
a connection over a set of (modified) TCP connections (one
per interface), and can achieve high throughput aggregation.
While pTCP is an excellent option for transport layer striping,
the disadvantage of transport layer striping is to impose a
specific set of transport layer semantics. The semantics, which,
in pTCP’s case, are close to those of TCP, may be unsuitable
for some applications such as media streaming.

Application layer striping. As applications know the
characteristics of the data being transferred, application layer
striping can theoretically provide fine-grained performance
tuning. For instance, an application may achieve high band-
width aggregation by sending data via multiple sockets on
multiple interfaces [18]. However, due to head-of-the-line
blocking phenomena at the transport layer [6], application
layer striping can also result in a throughput well below the
capacity of the slowest path when (1) in-order packet delivery
is a must, and (2) the underlying physical paths have a wide
range of delay-bandwidth products.

In summary, the main advantage of striping below the
application layer is to provide a single virtual “pipe” to the
applications, whose performance can then be improved by
taking advantage of multihoming without having to explicitly
consider multiple underlying physical interfaces. At the same
time, striping above the transport layer allows for exploiting
the semantics of the transport protocol most suitable for a
given application. In other words, a solution that appears like
the best of both worlds is to “squeeze in” the striping primi-
tives between the transport and application layers, effectively
resurrecting the session layer for striping.

We note that previous proposals, such as the Block Exten-
sible Exchange Protocol (BEEP, [11]), or the Mobile Access
Router [12], have investigated related session-layer based
architectures. Different from these previous works, we make
the case that using a session layer allows for supporting any
underlying transport protocol, over any number of channels,
even if there is a mismatch in the number of underlying
channels between both ends of a connection.

III. A STRAWMAN ARCHITECTURE FOR SESSION LAYER
STRIPING

Because the primary goal of session layer striping is to
improve application performance, applications should be able
to inform the session layer of their needs (e.g., reliability,
throughput maximization, ...). The session layer should ac-
cordingly determine which transport layer connections to set
up, and how to stripe the data over the different transport layer
connections to best meet the performance requirements of the
application. The objective of this section is to sketch our vision
for an architecture that meets these goals.

We provide a very high-level overview of a session layer
striping architecture in Figure 1, for a host with n network
interfaces, running k networked applications. Each application
starts a session by providing the session layer with a set of
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Fig. 1. Session layer striping architecture.

preferences. At the session layer, each session in turn selects
the appropriate transport protocols and network interfaces to
initiate the connection(s). The session layer can act as a
mere pass-through filter for a transport layer connection (e.g.,
Session 1 opens a single TCP connection on interface 1),
start multiple transport-level flows on several interfaces (e.g.,
Session 2 starts an UDP flow on interface 1 and a TCP flow on
interface 2), or even rely on a transport protocol that supports
multihoming (e.g., SCTP flow over interfaces 2 and n).

In the remainder of this section, we elaborate on the
session layer semantics we envision, before discussing how
the semantics are realized through transport layer connection
management, and sketching a possible implementation and
API. We stress that rather than a complete solution, our
(significantly more modest) goal is to propose a strawman
architecture and outline the objectives for which we believe a
session layer striping protocol should strive.

A. Session layer semantics

At the very minimum, the session layer must be able to
generalize to multihomed connections the reliability semantics
that the transport layer offers to single-homed connections.
That is, the session layer should provide a choice between:
(1) no guarantees on losses or ordering, (2) lossless delivery
without guarantees on ordering, (3) in-order delivery without
guarantees on losses, and (4) in-order and lossless delivery. In
addition to (1) and (4), which mirror possible transport layer
semantics for single-homed connections, (2) can be useful
for applications, such as file transfer, that can accommodate
out-of-order delivery as long as they can reconstruct packet
ordering at the application layer, while (3) may benefit media
streaming applications.

Clearly, the above semantics do not ensure that multihom-
ing results in application performance improvement. Thus,
in addition, the session layer should select how to stripe
traffic over the different (transport layer) connections to meet
one or more of the following objectives, averaged over the
length of the session: (1) throughput maximization, (2) latency
minimization, (3) jitter (i.e., latency variations) minimization,
and (4) loss minimization. Note that trying to minimize losses
only applies when the session layer is requested to provide
unreliable delivery.
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Fig. 2. Discordance ratios. Using loss rates (a) as an indicator of end-to-
end latency and (b) as an indicator of jitter performance fails only 10% of
the time for more than 90% of the hosts we probed. (c) indicates that using
a tolerance as small as 5 ms in the optimization greatly reduces the conflicts
between end-to-end latency and jitter.

Conflicting semantics. One may wonder what the session
layer should do when it is asked to fulfill conflicting objectives.
Consider the example of an application that asks the session
layer to both minimize packet losses and jitter at the same
time. It is conceivable that using a given interface consistently
provides a lower loss rate than using the other interfaces, if
the interface leads to network paths that traverse routers with
larger buffers. At the same time, large router buffers may result
in larger variations in queue sizes, which cause the applications
to experience larger end-to-end jitter. In such a case, it is
unclear which performance metric the session layer should
favor.

We attempt to grasp the potential magnitude of the problem
by running a very simple set of end-to-end measurements from
a dual-homed residential host to over 100,000 remote hosts.
For each measurement interval, and for each remote host, we
measure the latency, jitter and loss rates experienced between
each interface and the remote host. We define the discordance
ratio between two metrics as the fraction of time during which
it is impossible to select a single interface to optimize for both
metrics simultaneously.

In Figure 2 we plot the cumulative probability distribution of
the discordance ratios between latency and loss, jitter and loss,
and latency and jitter, and we observe that, in an overwhelming
number of cases, conflicts resulting from trying to optimize for
different metrics can be avoided. Even when the outcome is
bleaker, as is the case in Figure 2(c), we see that if we omit
optimizations that result in improvements of less than 5 ms in
either end-to-end latency or jitter, conflicts remain relatively
rare.

This experiment is very simple (a single source host was
used), and, as such, by no means provides a definitive answer
to the potential problem of conflicting semantics. However, our
measurements hint that different semantics are so unlikely to



conflict, that, at this point in our design, we simply advocate
to use a static priority order; for instance, if an application
wants to optimize for both loss and throughput, loss should
be given precedence.

Fairness. Because the operating system (through rate-
limiting of individual connections), or the network (through
enforcement of TCP-friendliness [19]) can punish flows that
are unfair to other flows, the session layer must, in addition
to reliability and performance semantics, provide an interface
to specify the fairness objectives of the application. Com-
plementary to transport layer congestion control on a single
stripe (e.g., [20]), the session layer has to be able to distribute
traffic fairly over multiple stripes if so desired. Examples of
flow/congestion control mechanisms over multiple links can
be found in [6], [16], and could be adapted to a session layer
architecture. Likewise, the techniques used in the Congestion
Manager [9], or in TCP control block sharing [13], for
improving performance over multiple concurrent connections
at a single-homed host may form an interesting basis for
session-layer multihoming support.

Finally, given the difficulty of designing session layer primi-
tives general enough to satisfy the needs of all applications, we
must ensure that means of partially or completely bypassing
the session layer exist, even though all layering principles
oppose such “overriding mechanisms.” For instance, an ap-
plication may want to rely on TCP connections exclusively,
and the session layer should not prevent it from doing so.

B. Connection establishment and management

The session layer implements the semantics discussed above
by managing transport layer connections through (1) con-
nection establishment, (2) path evaluation, (3) connection
management, and (4) data delivery.

Connection establishment. An application wishing to
establish a connection to a remote host sends a message to
the session layer instructing it of its desired semantics, and of
the destination of the connection (specified by an IP address,
and a port number). Using a reliable transport protocol, the
session layer accordingly sends a message to the remote host
advertising the IP addresses of the m interfaces that it will be
using, and its performance objectives, including a proposed list
of transport protocols it can use to meet the desired reliability
semantics: For instance, when no guarantees on losses are
requested, the session layer only needs to demultiplex an ap-
plication layer flow over multiple unreliable (e.g., UDP) flows.
Alternatively, the session layer can use reliable transport-level
flows to implement lossless semantics.

If the session semantics match those desired by the remote
host, the remote session replies with a list of IP addresses of
its own n interfaces, and the list of transport protocols that
will be used. Subsequently, each session can establish up to
n × m transport layer connections (or paths) to the remote
session.

We note the implementation of the connection establishment
primitive presents several challenges. In particular, we need to

ensure backwards compatibility with single-homed hosts; that
is, we need to have a mechanism that determines whether
session layer support is available on the remote end. This
could be solved by simply sending an initial “HELLO” packet
to the remote destination and check whether any reply is
coming back. In addition, we need to guarantee IP addresses
and connection properties are securely exchanged, to prevent
connection hijacking attacks. While discussing the specifics of
a handshake mechanism are beyond the scope of this paper, we
believe that a mechanism inspired by the SSL/TLS handshake
protocol [21] would be suitable. Such a handshake mechanism
comes with the added benefit of allowing a cryptographic
secret (e.g., symmetric key) to be shared, which allows the
subsequent connection is to be encrypted if so desired. The
Block Extensible Exchange Protocol uses similar mechanisms.

Path evaluation. Once transport layer paths have been
established, the session layer periodically evaluates the service
received on each path by assessing network metrics such
as round-trip delay, achievable throughput, packet loss, or
fraction of link overlap between different paths. Some of these
metrics may be evaluated by piggybacking on the packets
used for session establishment (e.g., round-trip time evaluation
through SYN-ACK measurements for TCP traffic [22]), or can
be estimated using transport layer variables (e.g., the conges-
tion window size in TCP gives an indication of the achievable
throughput). Alternatively, the session layer may resort to
active measurements such as packet-pair dispersion, or even
use application feedback regarding the service experienced
at the application layer. In an effort to reduce the overhead
associated with path evaluation for short-lived connections
such as HTTP, the session layer could use a “scoreboard” of
recently used paths across all sessions.

Connection management. Selecting an appropriate transport
layer protocol can guarantee losslessness and packet ordering
across a single stripe. To maintain packet ordering across
all stripes, as required by in-order delivery semantics, we
need to introduce sequence numbers at the session layer, and
reorder packets coming from different interfaces according to
their session sequence number, before passing them to the
application layer. Thus, the session layer needs to insert a
session header in each packet. The session header should at
least contain the IP address of the interface used and the
session sequence number.

In addition to implementing reordering primitives, the
session layer should continuously monitor the state of the
underlying transport layer connections. In particular, stateful
protocols such as TCP may require peeking into state variables
such as the congestion window size to ensure that no head-
of-the-line blocking phenomena occur at the transport layer.
When the session layer suspects head-of-the-line blocking is
occurring at the transport layer, a simple solution is to close the
faulty transport layer connection and reopen a new connection
on a different path.

Data delivery. The choice of a specific scheduling algorithm
to govern how data is sent over the different transport layer



Function Parameters Purpose
session socket Desired semantics Create comm. endpoint
session bind Session descriptor, Port

number
Listen to a local port

session connect Session descriptor, re-
mote address and port
number

Establish session with
remote host

session read Session descriptor,
blocking flag

Request data from ses-
sion layer

session write Session descriptor, data
chunk, blocking flag

Provide data to session
layer

session close Session descriptor Terminate session

TABLE I
Example of session layer API.

connections is likely to depend on the desired performance se-
mantics. For the strawman architecture discussed in this paper,
we do not advocate a specific (set of) scheduling algorithm(s).
We however conjecture that a number of algorithms proposed
in the context of adaptive scheduling for service differentiation
in the Internet (see [23] for a survey) may apply to session
layer scheduling with minor modifications. For instance, to
maximize throughput, one could envision a modified deficit-
round-robin algorithm [24], where quanta are a function of the
achievable throughput on each path.

C. Toward a session layer implementation

For the implementation of our proposed session layer prim-
itives, we have to determine where we implement the session
layer primitives (i.e., kernel vs. user space), and to specify the
interface (i.e., API) we provide to applications.

User vs. kernel space. A user-space implementation of
session layer striping seems more appealing from a deploy-
ability perspective, but does not provide access to transport
layer state variables, which, as described in Section III-B, may
be necessary to guarantee acceptable performance. Hence, we
advocate to implement our session layer primitives in kernel
space, and more precisely, to implement session layer services
(i.e., striping) in a kernel daemon.

API specification. We propose an API between the session
layer daemon and applications that is highly inspired by the
BSD sockets interface. The API we describe is deliberately
simple; indeed, we conjecture that applications interested
in a very fine-grained control of multihomed interfaces are
probably rare, and probably prefer to directly open connections
at lower layers of the network stack.

The API we suggest consists of six functions: ses-
sion socket, session bind, session connect, session read, ses-
sion write, and session close. Table I summarizes the purpose
of each function, and the parameters it takes as input. ses-
sion socket is used by an application to create a new session
layer socket, and to specify the desired performance, reliabil-
ity, and congestion control semantics. Similar to the socket
call in BSD sockets, session socket does not initiate any form
of communication. To that effect, one uses session bind or
session connect. session bind binds an existing session layer

socket to a local port number on all available interfaces; once a
session layer socket is bound to a local port number, incoming
connections to that port (on any interface) can be processed by
the session layer. session connect is used to connect a session
layer socket to a remote session, and takes, as parameters,
a local session socket and a remote address (i.e., IP and port
number). If the remote session is multihomed, session connect
should be able to use any of the multihomed remote IP
addresses. As soon as session connect is called, connection
establishment is performed as discussed in Section III-B. In
other words, session connect is used by hosts to inform each
other of their multihoming capabilities, including the absence
of any multihoming support, in the case of a single-homed
host, and of the parameters of the multihomed session.

Once two sessions have established a communication chan-
nel, session read, session write and session close implement
the connection management and data delivery primitives we
discussed in Section III-B, to write to/read from the session
layer socket, in a blocking or non-blocking mode depending
on the application preference. Last, session close is used to
close a session layer socket and terminate any (transport layer)
connection still active within the session.

Last, we point out that the API presented here is only a
minimal set of primitives. One could reasonably augment this
API with functions allowing applications for providing some
feedback to the session, for instance, primitives to convey the
level of service experienced by the application back to the
session layer.

IV. DISCUSSION

We argued that decoupling striping primitives from all of
the traditional layers of the networking protocol stack helps
improve application performance for multihomed hosts. We
illustrated our case by showing how a session layer striping
architecture significantly enhances the connection semantics
offered to applications, without requiring drastic changes in
application code or transport-layer implementations.

The optimist in us is tempted to argue that, considering the
significant service improvements multihoming can provide [1],
[2], [3], [4], [5], a deployable striping architecture may finally
offer a practical solution to address the absence of quality-of-
service support from the network.

The pessimist in us, however, acknowledges that deploy-
ment difficulties subside. For instance, even though our ses-
sion layer architecture only imposes minor rewrites of the
communication primitives used at the application layer, the
associated deployment cost is not inexistent. However, con-
sidering that “zero-cost alternatives,” such as intercepting all
socket system calls in the kernel to exploit multiple interfaces,
only provide marginal performance improvements over single-
homed connections, we believe that our solution provides
a good compromise between limited deployment cost and
potentially significant performance improvement. In addition,
session-layer striping may drive forward multihoming support
by application developers, thereby giving end users stronger
economic incentives to invest in multihoming.
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