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Abstract—The Android platform has been deployed across a
wide range of devices, predominately mobile phones, bringing
unprecedented common software features to a diverse set of
devices independent of carrier and manufacturer. Modern digital
forensics processes differentiate collection and analysis, with
collection ideally only occurring once and the subsequent analysis
relying upon proper collection. After exploring special device
boot modes and Android’s partitioning schema we detail the
composition of an Android bootable image and discuss the
creation of such an image designed for forensic collection.The
major contribution of this paper is a general process for data
collection of Android devices and related results of experiments
carried out on several specific devices.

Index Terms—Android Framework, Mobile Devices, Digital
Forensics, Collection, Acquisition

I. INTRODUCTION

Traditionally, mobile forensics requires procedures that are
very specific to device manufacturer and/or model for both
collection and analysis. Not only do mobile phones employ a
diversity of cables, interfaces and form factors, but the devices
have unique software, memory layouts and storage techniques.
This amazing diversity has led to the digital forensics practi-
tioner being assaulted with complex kits containing a plethora
of cables and data collection techniques [37]. Mobile devices,
mobile phones in particular, are ever present in today’s society
containing a wealth of information for the analyst.

At the end of 2010, 31% of U.S mobile consumers owned
smartphones, with all the the top ten selling phones being
smartphones [5]. Android, the Google-backed mobile software
framework, is enjoying a larger market share and growth factor
than Apple’s iPhone [11], [26], quickly making Android a
major player in the mobile market. Many existing manufac-
tures produce Android based devices and all major carriers
sell said devices. Indeed, Android can now be found in the
living room powering GoogleTV, in upcoming Chevy and Ford
vehicles and Sony’s new “PlayStation Phone:” Xperia Play.
Smartphone prices are declining, shrinking the market share of
the less powerful “feature phones” which may also eventually
be powered by the free Android software.

The ubiquity of devices utilizing the Android framework
facilitates exploiting common properties to minimize the di-
versity required of digital forensics tools while simultaneously
maximizing the potential for sound data collection. Manufac-
tures and carriers tend to preserve competitive advantage by
adding additional features to and providing additional services

through mobile devices, yet Android based devices share
a common framework that we utilize to perform collection
(sometimes called “acquisition”). To our knowledge, this paper
represents the first work done toward a general collection
method for Android based devices.

II. RELATED WORK

While the adoption of smartphones is rising, mobile phones
themselves are not a particularly new technology. The array of
mobile phones and pricing plans available today is indicative
of the wide desires and needs of the user base, and must be
coped with by digital forensics practitioners. In this section we
present a progression of work related to digital forensics on
mobile devices from what would today be considered a cheap
“feature phone” to other work particularly targeting modern
smartphones.

Willassen, in 2003, outlines many items of interest for GSM
based mobile phone analysis: location, SMS, contacts, etc
(refer to Appendix I for a brief overview of this data as it
pertains to Android) [35]. In 2006 the same author explored
collection methods for commodity mobile phones, in particular
the use of physical access to the circuit board interface (e.g.,
JTAG port) or physically removing memory chips for later
data collection via a chip programmer. Also in 2006, Casadei
introduced a live collection technique, dubbed SIMbrush,
facilitating entire file system collection (for unprotected files)
particular to SIM devices [16].

In 2007, Al-Zarouni investigated the use of mobile phone
flashing tools in regard to digital forensics [12]. The author
concluded that while forensically sound, the primary use of
the tool was to write to, not read from, the device. Read
capability varied widely across device brands and models and
consequently flashing tools may prove problematic as a means
of collection.

Also in 2007, Mokhonoana and Oliver detailed a collection
method for Symbian OSv7 devices [27], and Distenfano in
2008 explored a Symbian OSv8 collection method in [17].
Indeed, due to the vast diversity in the mobile space, it is very
common for research to be scoped to particular operating sys-
tems or hardware platforms such as Blackberry [19], CDMA
[28], iPhone 3Gs [14], Nokia [36], etc.

The demand for mobile forensics combined with the di-
versity of the mobile device market has led to a myriad of
mobile forensics tools. In 2006, Ayers et al. compared existing



tools according to their acquisition, examination and reporting
functions concluding that typical mobile phone information
such as the IMEI and SMS/MMS could be discovered by
existing tools [13]. The same year Williamson et al. studied
the performance of mobile forensic tools particular to Nokia
phones [36]. In 2007, Jansen and Ayers again compared
existing tools on contemporary mobile phones and collected
their work into a NIST report [24]. Later, in [37] Yates notes
the diversity of the mobile device market and the associated
complexity presented to a practitioner attempting to select the
appropriate digital forensics tool. Just the comparison papers
mentioned here cover: Cell Seizure, GSM.XRY, MOBILedit!
Forensic, TULP 2G, Forensic Card Reader, ForensicSIM,
SIMCon, SIMIS and Oxygen Phone Manager.

Specifically addressing Android devices, in 2009 Hoog
discussed Android forensics including collection methods for
Android mobile phones such as retrieving files on an active
phone using an application debugging feature provided in the
Android SDK, commercial tools such as Paraben’s Device
Seizure and “rooting” the HTC G1 [23]. Rooting is common
vernacular for gaining administrative(root) access to a device
where the user is intended to only have unprivileged access,
such as a mobile phone. We explore the rooting further in
section V-B.

In 2010, Thing et al. explore live memory forensics on
Android to collect process memory [33]. Thing utilized the
PTRACE_ATTACH method of invoking ptrace to trace
existing processes. This technique is often used for debugging
[31] but often repurposed for malware analysis [15].

III. BACKGROUND

Built upon a Linux kernel, Android uses operating system
primitives (such as processes and user IDs) as well as a Java
Virtual Machine (Dalvik) to isolate apps providing a safety
sandbox [32].

Android applications are typically written in JAVA and
interact with the Android framework through a well defined
API. For performance reasons, developers can create software
that runs natively on the hardware avoiding overhead induced
by the JAVA virtual machine. An SDK(Software Development
Kit) and NDK(Native Development Kit) are made available
for application development (not intended for lower level
development such as kernel modifications). The SDK makes
high level software development very approachable by pro-
viding features such as a full featured emulator, an Eclipse
(the preferred Integrated Development Environment) add-on
specific to Android and a special Android Debug Bridge (adb)
to enable debugging information from an emulator instance or
USB connected physical device [1].

The Android Debug Bridge consists of software components
on the device (or emulator instance) and on the developer’s
machine connected via USB or TCP. Using the feature, the
developer can not only observe debug information, but also
perform an assortment of other actions such as installing
software (bypassing the Market application) reboot the device,
and even open an interactive remote shell. Note that adb

is typically not enabled in production devices and must be
enabled by the user1. For low level experimentation, Android
is open source, the code can be easily obtained and compiled
[10].

Some vendors, such the manufacturer of the G1 phone:
HTC, embrace developers with a rich web site providing not
only documentation but also pre-built tools and even phone
images [6]. Contrarily, other manufactures never release such
information to the public and protect phone images closely as
coveted intellectual property.

For the rest of this paper we assume a more strict case
when the device is “obstructed” via a screen lock mechanism
as defined in [24]. While the technique described in the paper
will work equally as well on an “unobstructed” device and is
capable of a more comprehensive collection, it may be deemed
simpler to simply enable adb on an unobstructed device and
perform an unprivileged, logical collection. Such a collection
would strictly contain less information due to the inaccessibil-
ity of unallocated storage locations and permissions enforced
by the running Android system (the adb process does not
execute with root privileges).

IV. COLLECTION OBJECTIVES

Since our data collection is intended for forensics purposes,
we must consider several constraints and desirable qualities on
the technique. Ideally, an “exact copy” of the device and it’s
data can be obtained, even though by simply interacting with
the device we alter it’s state somewhat2 we strive to obtain as
close to an exact copy as possible [20]. Here we enumerate
desirable criteria for the collection process.

• Data Preservation. Data storage locations that house
user data are of primary importance, as this type of
data is likely to be more valuable to investigation than
system files common to many devices. This view does not
completely discount the collection of storage less likely
to house user data, it only places more value on user
data. The ability to capture system information may, in
fact, be very useful in tandem with user data. Though
quite likely less common, particular cases may dictate that
cache information, firmware and kernel crash information
be critical. Again, ideally, everything can be collected as
an “exact copy.”

• Atomic Collection. Data should be collected as atomically
as possible with respect to the device being collected. If
a device is currently executing instructions and manip-
ulating storage the collected state may not be a valid.
Consider a disk that is defragmenting while an external
process is copying the same disk. Given that the copy will
take some amount of time, it’s perfectly reasonable that
a file is moved by defragmentation to a cluster that has
already been copied by the external process. In this case,
the copy will not contain the file! A simple solution is to

1via Settings - Applications - Development - USB Debugging, or similar
2In [20] this is dubbed the “Heisenberg principle of data gathering in

systems” after the famous physicist and associated principle.



copy the disk while no other actions are being performed
to the disk. Similar situations may arise relating to the
validity of the file system when meta information such
as allocation tables are altered during the copy process.

• Correctness. In relation to the atomicity criteria men-
tioned above, there is an obvious need for correctness.
Even given the ability to copy atomically with respect to
the device, the data must be copied correctly. Software
must truly copy the data from source to destination and
integrity must be preserved in transit.

• Determinism. The process must be repeatable so that the
practitioner has a expectation that the process will indeed
collect the data in question. Subsequent collections on the
same device, in the same state, should ideally produce
identical results.

• Usability. The process must be usable, and occur in a
feasible amount of time.

Depending on the hardware characteristics of the device,
other precautions may be required. For example, somehow
jamming or otherwise preventing a mobile phone from re-
ceiving network communication may be desirable as incoming
data will certainly change the state of the phone, potentially
deleting valuable data.

V. COLLECTION PROCESS

Our technique repurposes the recovery partition and as-
sociated recovery mode of an Android device for collection
purposes. For any device, collection is going to be a multi-step
process that requires a collection recovery image. An outline
on how to create such an image is outlined in section V-C.

Once a recovery image has been obtained, it is flashed to
the device using the device specific instructions such as those
outlined in section VI below. After a collection recovery image
is loaded on the device, the device is rebooted into recovery
mode and connected to a computer that has adb (from the
Android SDK) installed. The adb program can then be used
to verify that the device is connected ./adb devices),
and remotely execute programs from the recovery image now
executing on the device (./adb shell).

At this point the recommended procedure for collection is
to port forward TCP ports from the device using adb, start
a receiving process on the computer and transfer data from
the storage devices to the local device TCP port using a data
dumping utility and a simple program that writes the output of
the data dumping utility to a socket. The TCP transfer software
written by the authors also calculates an integrity hash as data
is written to the socket. The display of an integrity hash allows
for the verification of correct transfer by checking the hash
displayed in the adb shell with one calculated independently
on the collected image on the computer.

The data dumping utility employed depends somewhat on
the characteristics of the device. Many Android based devices
utilize Memory Technology Devices (MTD). The MTD system
is “an abstraction layer for raw flash devices” [8] that allows
software to utilize a single interface to access a variety of flash

technologies. For MTD devices, nanddump3 can be used to
collect NAND data independent of the higher level filesystem
deployed on the memory. For devices that do not employ MTD
other collection techniques must be employed. For example,
the dd utility can be used to copy data. It is also important to
note that not all data is necessarily stored in onboard memory.
It is very common for Android devices to support one or more
SDcards. Not only can the user elect to store some applications
and data on such a device, some manufacturers may choose
to store the entire user data partition on this media.

A. Android Partitioning

Android devices typically consist of several partitions typ-
ically mapped to MTD devices. Exact partitioning schema
depend upon vendor implementation, but a typical scheme
can be found in Table I. There are typically six partitions
found on Android devices the most common being system,
userdata, cache, boot, and recovery. As also seen in the table,
many Android based devices utilize the YAFFS2 (Yet Another
Flash File System 2) file system which was designed for use
on flash memory. Newer devices may be found to utilize the
EXT4 file system [29]. As one may expect, the “bootimg”
denoted in Table I is a “bootable image” which is detailed
further in section V-C. SDcard locations, sometimes marketed
as “internal” or “external” are both typically identified by
/dev/block/mmcblkXpY where X is the card ID and Y
is the partition ID on the card. The SDcard device is typically
mounted to /sdcard or /mnt/sdcard.

Those interested in exploring the forensic analysis on An-
droid devices will likely be most interested in the userdata and
system partitions. It is important to note that during normal
operation, no user data is stored in the recovery partition, so
corruption or overwriting of data in this partition is unlikely to
change content on the device that may subsequently be relied
upon in court. The recovery partition, and associated recovery
boot mode, are critical to the collection technique explored in
this paper.

B. To Root or not to Root

Some have suggested via presentations [23], blogs posts
[3], or mobile phone “modding” forums [9] methods of data
collection that require “rooting” a device. Rooting a device
typically involves exploiting a security vulnerability (which
is typically device and software version dependent) with the
intention of installing unsupported software on the device.
The motivation for rooting a device ranges from ideological
desire to have control over the device that the user owns,
to circumventing carrier specific controls preventing the use
of particular software, to upgrading to a more recent version
of Android than the carrier currently supports (some carriers
have very long update cycles), and many other reasons not
mentioned here. “Rooting” a device for the purpose of forensic
collection is not exemplary for several reasons, among them:

3a NAND dump utility written in 2000 by David Woodhouse and Steven
Hill



Path Name File System Mount Point Description
/dev/mtd/mtd0 pds yaffs2 /config Configuration data
/dev/mtd/mtd1 misc - N/A Memory Partitioning data
/dev/mtd/mtd2 boot bootimg N/A Bootable (typical boot)
/dev/mtd/mtd3 recovery bootimg N/A Bootable (recovery mode)
/dev/mtd/mtd4 system yaffs2 /system System files, Applications, Vendor additions, Read-Only,
/dev/mtd/mtd5 cache yaffs2 /cache Cache Files
/dev/mtd/mtd6 userdata yaffs2 /data User data (Applications)
/dev/mtd/mtd7 kpanic - N/A Crash Log

TABLE I
PARTITION INFORMATION TYPICAL OF AN ANDROID DEVICE

• Rooting a device typically leverages a software flaw often
particular to specific model and software versioning on a
device. If the device is locked, an investigator may not
be able to verify software versions running on the device.
The inability to verify software versioning decreases the
changes of successfully rooting the device and increases
the chances of inflicting damage upon the device and/or
the data to be collected.

• Rooting the device alters portions of the device that
may store user data. If avoidable, collection methods
should not change the content on the device that “may
subsequently be relied upon in court [24].” In some
areas of digital forensics this is unavoidable, for example
collection of memory from a running machine [34]. In
instances where collection can be performed without
modifying the data to be collected, collection should be
done in such a manner [20].

• Rooting a device undermines Android’s security model.
A rooted device often permits easy escalation of privi-
lege. With the device in a normal operating mode, the
combination of easy privilege escalation with typical app
execution and general network access can lead to mali-
cious remote code execution as shown with the iPhone
in [30].

C. Recovery Partition

Personal computers commonly allow users to configure
BIOS boot time password passwords or even stronger security
with Trusted Platform Modules (TPM) now available on an
estimated 250 million systems [22]. The Android framework is
commonly deployed on small devices such as mobile phones,
tablets, and televisions which do not enjoy any kind of pro-
tected boot. Android devices ship with a partitioning scheme
similar to those in Table I including a recovery partition. The
recovery partition has special properties ostensibly used for
recovery purposes. By booting a device into “recovery mode,”
the normal boot process is circumvented and the boot target is
the bootimg currently loaded in the recovery partition. As seen
Figure 1, common features found in a manufacturer installed
recovery image include, wiping user data and updating the
device. Similar to the normal operating mode, the factory
recovery mode image commonly does not support adb, but
also does not commonly enable the RF component of a

Fig. 1. Recovery Mode Motorola Droid booted to a typical recovery image.

device. Here we begin to craft a special collection oriented
recovery bootimg. Such a bootimg will have unfettered access
to memory not inhibited by access control as in [25] or varied
memory access capabilities as in [12].

An Android bootimg consists of header, a kernel, ramdisk
(initrd) and optional secondary image each page aligned. The
bootimg header, defined in bootimg.h found in the Android
source [10], contains the magic signature “ANDROID!”, an
ID field 4 and meta information about the size and memory
locations in which to load the kernel, ramdisk and secondary
image.

The ramdisk portion of the bootimg is a compressed (gzip
or lmza) cpio file containing an initial ram disk (initrd)
directory structure for the kernel. This directory structure can
be amended to include additional binary programs in order

4the ID field is typically a SHA1SUM of the kernel, kernel size, ramdisk,
ramdisk size, secondary image, and secondary image size used to uniquely
identify the bootimg based solely on the first page of the bootimg



to modify the behavior of the bootimg. In addition to adding
the desired binary programs, some other modifications from a
standard bootimg are necessary.

A practitioner, using an existing bootimg as a collection
tool, may never intend to create a bootimg from scratch. In
this case it is still useful to understand the file structure of
a bootimg in order to verify the operation of the collection
tool. Using common Linux commands a bootimg may be split
into its respective pieces and the ramdisk may be ungzipped
and “unCPIOed” for inspection. Once a custom, collection
oriented recovery image has been created or obtained it must
be “flashed” onto the device.

Proof of concept bootimgs created by the authors
include modifying the ramdisk by modifying the
default.prop properties file, init.rc file
and adding adbd, su, nanddump, and custom
transfer binaries. The primary modifications to the
properties file include enabling ro.debuggable and
persist.service.adb.enable to enable the use of
adb. The init.rc file is used to start the adbd service
(on property:persist.service.adb.enable=1
start adbd) and set permissive permissions on the added
binaries and MTD devices to be collected.

When possible, we prefer the use of nanddump over
other data duplication software since nanddump was designed
specifically to dump the contents of flash devices. This allows
for as close to a physical duplication as possible, containing
more information than a file system level copy. There are
currently no procedures for garnering valuable information
from this extra data, but it is prudent to collect such data in
anticipation of future techniques. Having this extra data causes
no harm as subsequent analysis of the collected data will still
provide at least as much information as a file system level
copy would have provided.

It is desirable to create a small set of collection recovery
images that together support a wide range of devices. To this
end, the compilation process for a recovery image should tar-
get the older processor types so that the resulting applications
will correctly execute on all backward compatible devices.

VI. DEVICE SPECIFICS

While the Android framework does provide some desirable
common qualities, it is unlikely that a single all-encompassing
bootimg that properly handles all devices can be created. Even
though the Android framework provides a common interface
at the application level and presents a familiar UI to the user,
the devices are still unique at the hardware level employing
different connectors, processors, etc. For this reason bootimg’s
that support several, similar devices can be created, but the
creation of a universal bootimg is improbable.

Devices may be booted into different modes which are
invoked via hardware key combinations during boot. These
modes allow special functionality such as the ability to clean
the phone of user data or flash new software onto the device.
Each device has unique physical characteristics: number of
physical keys, touchscreen, SD card slot, physical keyboard,

etc. which in turn cause the key combinations required for
special modes to not be uniform across devices. Table II shows
a key combinations and their associated modes for a small set
of devices.

The method of “flashing” the recovery partition will likely
always be somewhat unique to different devices, though man-
ufactures tend to re-use similar sequences across a product
line. A lab that regularly encounters Android devices may
wish to compile a comprehensive list of key combinations
and modes similar to existing lists for computer BIOS’ [2].
Flashing a device is a destructive process, the storage area that
is “flashed to” will be irreversibly overwritten. The remainder
of this section explores “flashing” methods for several devices,
in each case only the recovery partition is overwritten with all
other existing partition and data within remaining intact.

The low level bootloader and software that powers flashing
modes is designed for specific uses typically reserved for the
carrier or manufacturer, not the end user. These modes are not
particularly robust in features and the user should exercise
caution when accessing a device in this manner. Improper
use can easily result in hindering data collection. Similarly,
software features like USB negotiation are not as robust as
other devices with which the user may be familiar. Using
flashing software in VMWare, while possibly desirable, is not
possible due to the device not properly negotiating with virtual
machine’s virtual USB controller.

A. Example: Motorola Droid

The Motorola Droid is a Verizon device with screen that
slides to the right revealing a full QWERTY keyboard and D-
Pad (Directional Pad). In addition to the keyboard the Droid
has volume up/down, power and a camera button around the
outside edge of the device. The Droid has a build in microSD
card, a port for an additional microSD card, and has an ARM
Cortex A8 550 mHz processor. It originally shipped with
Android 2.0 [4].

Fig. 2. Flash Mode Motorola Droid booted to flash mode.



Device Mode Key Combination Description
Motorola Droid flash D-Pad UP + power Mode that allows flashing via RSDLite
Motorola Droid flash camera + power Mode that allows flashing via RSDLite
Motorola Droid recovery power + x Boot to recovery partition (then camera + volup to display menu)

HTC G1 flash power + back Fastboot mode
HTC G1 flash power + camera Boot mode (switch to fastboot via ‘back’)
HTC G1 recovery power + home Boot to recovery partition

Samsung Captivate flash volup + voldn (then insert USB) Boot to Samsung ”force download” mode
Samsung Captivate recovery power + volup + voldn Boot to recovery partition

Samsung Galaxy Tab flash power + voldn Boot to Samsung ”force download” mode
Samsung Galaxy Tab recovery power + volup Boot to recovery partition

TABLE II
BOOT MODES FOR SELECT ANDROID DEVICES

The Droid has a special flash bootmode (shown in Fig-
ure 2) that can be entered by holding the camera button
while powering on the device. This special boot mode allows
flashing of the device’s recovery partition. Motorola RSD Lite
software (Windows only) can facilitate flashing of the recovery
partition, but does not accept a bootimg file in it’s native form:
an RSD Lite compatible .sbf file containing the bootimg must
be created. An .sdf file is comprised5 of a header with file
magic and a count of the parts in the file, each part also
contains a header specifying the destination address, flash size,
checksum and, of course, the image to flash, in this case the
bootimg. Once an .sbf file containing the bootimg has been
created the Droid, booted in flash mode, can be attached to
a computer running RSD Lite and the device can be flashed
with the .sbf file (and thus the contained bootimg). While not
strictly required, re-booting the Droid into flash mode while
connected the RSD Lite will allow RSD Lite to register a
success message.

B. Example: HTC G1

The HTC G1 (shown in Figure 3) has a Qualcomm
MSM7210A 528 mHz processor (ARMv6 instruction set),
a full QWERTY keyboard, and an external microSD card
port. In addition to the keyboard the G1 has a track ball,
and physical volume up/down, camera, send, home, menu,
back, and end/power buttons. One hardware feature germane
to collection is that the G1’s has a special HTC USB+Audio
port (ExtUSB) in lieu of the more common microUSB port
[7]. If the special ExtUSB cable that shipped with the device
is not available, a standard miniUSB cable can be used for
both recovery and fastboot modes.

The G1 employs a boot method called fastboot (shown
in Figure 4). Fastboot requires a fastboot compatible boot
loader and a fastboot program on a personal com-
puter. The fastboot program can be compiled from An-
droid source [10] or pre-compiled versions for Windows,
Linux and OSX can conveniently be obtained via HTC’s
developer website [6]. After booting into fastboot mode

5the exact structure of an sbf is not extremely important here, software that
can create a well formed .sbf file when provided a bootimg can be found at
http://www.ece.cmu.edu/∼tvidas/

Fig. 3. Recovery Mode HTC G1 booted to a typical recovery image.

and connecting the device to the computer via the spe-
cial HTC cable or miniUSB6, the fastboot program
can be used to enumerate devices attached (./fastboot
devices) and to flash an image to the device (./fastboot
flash recovery bootimg_filename). Fastboot also
allows directly booting to a kernel and ramdisk lo-
cated on a connected computer (./fastboot boot
kernel_filename ramdisk_filename). Which may
be slightly preferred over flashing the recovery image as the
existing recovery image on the device remains intact. For
consistency in the collection process we suggest maintaining
a set of recovery images and flashing the recovery image for
every collection.

6The author observed that the G1 in fastboot mode was not recognized
correctly when connected to a USB3 port. Readers may wish to specifically
use USB2 ports.



Fig. 4. Fastboot Mode HTC G1 booted to fastboot mode.

Fig. 5. Recovery Mode Samsung Captivate booted to a typical recovery
image.

C. Example: Samsung Captivate

The Captivate is part of Samsung’s Galaxy S line of mobile
phones, sold by AT&T (shown in Figure 5). The Captivate has
a larger touch screen than the G1 and Droid, but it also has no
QWERTY keyboard, in fact it only has 3 edge buttons: power,
volume up and volume down. A standard microUSB port can
be found at the top of the device behind a plastic sliding
cover. In addition to typical internal hardware: 1GHz ARM
Cortex A8, 512 MB of RAM, and 16GB internal SDcard, the
Captivate also has a hardware graphics core.

Unlike the Droid and the G1 the Captivate employs Sam-
sung’s proprietary RFS (Robust FAT File System) and Sam-
sung’s OneNAND memory [21]. This requires Android to load

Device Name Mount
Point Description

bml1 boot - Primary boot loader
bml2 pit - Partition map data
bml3 efs /efs Unknown.
bml4 SBL - Secondary boot loader
bml5 download - Download Mode
bml67 param /mnt/.lfs Unknown (lfs)
bml7 kernel N/A kernel + initramfs
bml8 recovery N/A kernel + initramfs
bml97 system /system Typical /system data (RFS)

bml107 dbdata /dbdata dbcache (RFS)
bml117 cache /cache cache (RFS)
bml12 modem - Modem software

TABLE III
PARTITION INFORMATION TYPICAL OF A SAMSUNG DEVICE

kernel modules to support RFS and makes later analysis more
difficult as there is no available software for parsing RFS
related data. Instead of using MTD devices, the kernel modules
create several STL (Sector Translation Layer) and BML7

(Block Management Layer) block devices (/dev/block/).
A partition table showing typical use of BML devices is
shown in Table III. This type of device complicates collection
slightly as it is not possible to read from some of the higher-
layer STL devices, and collecting all of BML devices, while
recommended, is not particularly useful as there is no way to
analyze the resulting image.

Much like the Droid, the Captivate has a special flash mode
(also called download mode, shown in Figure 6), that can be
entered by holding both volume buttons and then connecting
the device to a computer for flashing. In this mode the phone
can be flashed using an open source tool called Heimdall [18]
or the closed source software Odin (Windows only). When
using Odin prior to flashing, source files must be placed in a
.tar8 archive. Heimdall does not require files to be packaged
as a .tar and is compatible with Windows, Linux and Mac
OSX.

In addition to the more complex partitioning and file system
structure, Samsung devices do not employ the typical bootimg
structure in the recovery partition. The recovery image is an
initramfs image. Initramfs, available in 2.6.x Linux kernels, is
a root file system that is actually embedded into the kernel. The
details of creating an image suitable for flashing to a device
are slightly more complex than described above, but the same
theory applies.

The presence of an older Secondary Boot Loader (SBL)9

will likely not utilize the BML8 recovery partition. Instead the
normal boot mode and recovery mode share the same kernel.
Unfortunately it is very difficult to tell the version of the SBL
without interacting with the device. However the SBL can be

7In addition to the BML, the associated STL should also be collected
because this is an RFS partition and at this time the STL data is easier to
analyze than the BML.

8the .tar file must be POSIX 1003.1-1988 (ustar) format
9Prior to approx. Oct 2010



Fig. 6. Download Mode Samsung Captivate booted to a typical download
mode for flashing.

flashed. So if after flashing the collection recovery image, if
recovery mode is not working as expected, one may assume
that an older SBL that does not boot to BML8 is on the device.
The SBL can be flashed using Odin or Heimdall (but it requires
having an exist SBL that is known to work with the device).
Corrupting the SBL will make data collection very difficult
because the device will no longer be able to reach download
mode, as such flashing the SBL should be a last resort.

Note that some devices, such as the Samsung Galaxy Tab
(Tablet), require a special cable. Unlike the HTC ExtUSB
where a miniUSB cable can serve as a substitute, the 30 pin
Galaxy Tab cable that ships with the tablet is the only method
of connecting to the device.

VII. DISCUSSION

We have demonstrated a general method for digital forensics
collection on Android devices. Through special boot methods
enabling the use of custom recovery bootimg, data on An-
droid devices can be collected with very little probability of
corrupting user data. Use of the recovery bootimg provides a
consistent, repeatable method of collecting numerous Android
devices without “rooting” the device in normal operating
mode. We feel that this recovery bootimg method is both safer
and had less impact to data likely to be useful for analysis.

Collection recovery images have been created for testing
for the devices detailed in VI. The collection process involves
calculating integrity hashes at the source and destination
helping ensure the correctness of the collection. Data contained
in the collected images was verified using standard a Linux
distribution with MTD and yaffs2 support (see Appendix I).
Where possible, we employed the use of a NAND dumping
tool which collects more data than typical filesystem copy
would collect. While current analysis techniques do not take
advantage of this extra information, future techniques may.

Most devices transfer data at approximately 4.3 MB/s
allowing for full collection to occur in a nominal amount
of time. Even though the collection is not atomic, execution

is restricted to the recovery partition and other partitions are
not altered during collection resulting in an “exact copy” of
original contents for all partitions other then the recovery
partition.

Though no user studies have been performed, we feel that
the solution is very approachable and could be adopted by
practitioners. When thought of simply as a collection tool, the
tool can easily be inspected for correctness.

VIII. FUTURE WORK

The software installed in collection bootimgs could easily be
extended to further aide the practitioner. The menu presented
on the screen when a bootimg is executed could have related
menu options such as “transfer data” eliminating the need
to run ./adb shell on the collection computer. Similarly
integrity hashes for collected partitions could be displayed on
the device screen. By moving this functionality to the device
there is less risk of user error, especially if a single computer
is used to perform collection of several Android devices.

A comprehensive list of boot modes for Android devices,
and associated flashing tools, should be created in order to
have a reference in place prior to the need for collection on a
particular device. Similarly, a comprehensive set of bootimgs
supporting all Android devices should be created, maintained
and tested.

APPENDIX I. ANALYSIS OF COLLECTED IMAGES

This appendix is not intended to be a comprehensive method
of analysis, but only to serve as a brief means of verifying the
collected images. Perhaps most important is the preparation of
an analysis system, but even given a complete analysis system,
locations and methods of data interpretation are left for future
research. The methods detailed below are pertinent to a yaffs2
based device.

A. Analysis system preparation

System preparation steps must only be performed once per
system. Mostly this consists of installing several packages if
they are not already installed. In Fedora these packages are
titled mtd-utils, sqlite and kernel-devel10 (only if
you want to build the yaffs2 kernel module yourself).

The most difficult part is the compilation of the yaffs2 kernel
module, which is needed to mount yaffs2 partitions for earlier
Android devices. To compile your own kernel module copy the
kernel sources to a working directory, apply the patch supplied
with the yaffs2 source11, ensure MTD devices are built as
modules, and building the modules. A shell log would look
something like:

cp /usr/lib/<kernel> <somedir>
../yaffs2/patch-ker.sh <somedir>
cd <somedir>
menuconfig

10make sure you obtain the source for the kernel you intend to run, in
Fedora you can look in the /boot directory for config* files for all installed
kernels

11available at http://www.aleph1.co.uk/yaffs2



make modules
make M=fs/yaffs2 modules
depmod
modprobe yaffs

In menuconfig (or by editing the .config file) you need
to ensure that MTD,MTD_CHAR,MTD_BLOCK,MTD_NAND, and
MTD_NAND_NANDSIM are all set to “m.”

Installing the module may require slightly different
syntax depending on your kernel configuration, such
as make M=fs/yaffs2 install_modules and it
may be needed to copy the compiled module to the
kernel modules directory cp fs/yaffs2/yaffs.ko
/lib/modules/kernel/fs/yaffs/yaffs.ko (check
permissions to match other directories). Note that you don’t
need to recompile, and use the entire kernel.

Perhaps the easiest method may be to download a prepared
VM from: http://www.ece.cmu.edu/∼tvidas/.

B. Analysis Initialization

Analysis initialization must occur each time a device ana-
lyzed. Modules must be loaded:

modprobe mtd
modprobe mtdchar
modprobe mtdblock
modprobe nandsim first_id_byte=0x20 \
second_id_byte=0xac third_id_byte=0x00 \
fourth_id_byte=0x15
modprobe yaffs

The nandsim (NAND simulator) options determine the char-
acteristics of the simulator such as 512 MB device with 2048
byte pages, if you need to specify other sizes see Table IV
for more options12. Nandsim creates a pair of related devices
/dev/mtd0 and /dev/mdtblock0.

For each collected image, write the data to the virtual MTD
device:

nandwrite -a -o /dev/mtd0 [dumpfile]

Finally mount the mtd device:

mount -t yaffs2 -o ro /dev/mtdblock0 \
/some/mount/point

Now the partitions can be browsed and easily inspected from
/some/mount/point.

C. Common mobile phone data locations

It is important to note that Android “smart phones” are more
complex than, and typically contain much more information
than, a standard mobile phone, and the data locations described
here are by not means comprehensive or universal. Recall that
you will need to determine the partition associated with the
original mount point for /data similar to Table I.

12NAND size and page size vary widely among manufactures, see http:
//www.linux-mtd.infradead.org/nand-data/nanddata.html for more information

Desired Size Byte Specifier
NAND Page 1 2 3 4
16 MB 512 b 0x20 0x33 - -
32 MB 512 b 0x20 0x35 - -
64 MB 512 b 0x20 0x36 - -

128 MB 512 b 0x20 0x78 - -
256 MB 512 b 0x20 0x71 - -
64 MB 2048 b 0x20 0xa2 0x00 0x15

128 MB 2048 b 0xec 0xa1 0x00 0x15
256 MB 2048 b 0x20 0xaa 0x00 0x15
512 MB 2048 b 0x20 0xac 0x00 0x15
1024 MB 2048 b 0xec 0xd3 0x51 0x95

TABLE IV
NANDSIM OPTIONS

Phone contacts, and call log data can be found at:

/data/data/com.android.providers.\
contacts/databases/contacts2.db

Calendar information:

/data/data/com.android.providers.\
calendar/databases/calendar.db

SMS and MMS messages:

/data/data/com.android.providers.\
telephony/databases/mmssms.db

Gmail and gtalk data:

/data/data/com.google.android.providers.\
gmail/databases/mailstore.cmu.android.\
<GMAILADDRESS>.db

Each of these databases are SQLite3 databases, the easiest
way to ‘export’ data is via the sqlite3:

sqlite3 /data/data/com.android.providers.\
calendar/databases/calendar.db .dump \
> calender_raw.txt

But in many cases it may be more useful to actually leverage
SQL:

sqlite3 com.android.providers.telephony \
/databases/mmssms.db ’select address, \
person, body, protocol, subject, body \
from sms’

A wealth of information is available in SQLite3 databases
(Android’s method of structured storage) both for packaged
and user installed apps, but analysts should be aware that apps
may elect to store information using proprietary methods.
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