
1

Passe-Partout: a General Collection Methodology
for Android Devices

Daniel Votipka, Timothy Vidas, and Nicolas Christin∗, Carnegie Mellon University
{dvotipka,tvidas,nicolasc}@andrew.cmu.edu

Abstract—
Like computers, mobile devices are both used to commit and

are the subject of crimes. Digital forensics collection and analysis
techniques need to adapt to cope with the unique characteristics
of mobile devices. Fortunately, the rapid adoption of such devices
has also resulted in a relatively homogeneous set of software
platforms. In this paper, we describe a general methodology
for performing digital forensic data collection on Android-
based devices. By re-purposing a special Android boot mode,
comprehensive extraction of evidence, with minimal potential for
data corruption or omission, is possible.

EDICS Categories: FOR-EVID, HWS-FORE

I. INTRODUCTION

Modern mobile devices not only rival budget computers in
terms of computing power, but are also capable of storing and
producing substantial amounts of information. Among these
modern mobile devices, the Android operating system has re-
cently become the operating system of choice. The capabilities
of these mobile devices encourage rapid adoption in enterprise
and consumer settings; the open nature of Android facilitates
scientific investigation and reproducibility.

Like computers, mobile devices are used to commit and
are the target of crime. However, methods of performing
criminal investigation on mobile devices remain immature.
The increased presence of modern mobile devices necessitates
the creation of tools and methods for incorporating mobile
device data in investigations. Accordingly, the ability to collect
and analyze mobile device data is a vital requirement to
overcoming forthcoming investigative challenges [23].

To a large extent, forensic data collection is an “offensive”
activity: to collect all the data that may be needed for further
investigation, one needs to acquire elevated privileges on the
device where data of interest is stored, often without the
assent of the owner of the device. Worse, on modern mobile
devices, very often the owner of the device herself does not
even possess these elevated privileges. That is, unless she
has “rooted” her phone, she may not, herself, have the level
of access needed to perform sound forensic data collection.
In other words, investigators must usually “break into” the
device to collect the data they need [30]. Doing so without
compromising the integrity of the data is a complex task.

While the issue of forensic data collection is not new,
most practitioner-oriented forensics tools were developed out
of necessity and thus focused exclusively on the dominant
platform of the past two decades, that is, Microsoft Windows
computers [23]. In contrast, the (historically) relatively small
market share, and the hardware and software diversity of
mobile phones has hindered the development of such tools
for mobile devices.

The greater capabilities of smartphones – compared to
traditional “feature phones” – bring added complexity. To-
day’s mobile devices have much in common with computer
systems. In fact, the two prevailing smartphone platforms,
iOS and Android, are both based on contemporary, robust
operating systems (OSX/FreeBSD and Linux, respectively).
Nevertheless, the hardware and software used on these devices
are undoubtedly different than the Windows computer for
which current forensics tools and procedures are designed. For
example, mobile devices do not share the modular hardware
(e.g., readily removable RAM, hard disk drives) common to
today’s computer systems [23]. Mobile devices may include
removable SD cards for memory expansion, which can be
easily analyzed through techniques similar to those employed
on traditional computer systems, however, they are only sec-
ondary storage units and many manufacturers are moving away
from their use [1], [2]. Similarly, mobile devices often employ
unfamiliar filesystems and use varying low-level protocols to
access data storage areas that make better use of the embedded
non-volatile memory. These inherent differences impair an
examiner’s ability to properly investigate crimes involving
mobile devices through current means and require the creation
new techniques that can effectively handle the new challenges
presented by mobile devices.

The primary contribution of this paper is a general method
for collecting forensically sound evidence from Android based
devices. Our method takes advantage of the common mid-
dleware Android provides to offer image collection on a
wide range of devices. Specifically, our work builds on the
recovery image collection technique originally proposed by
Vidas et al. for the Motorola Droid [32] and confirmed by
James [28], and generalizes it to a comprehensive set of
different Android devices, with different Android versions and
markedly different underlying hardware. We test our method
with 15 different devices. Using this technique, we are able to
collect data from evidence-rich storage locations without any
concerns of evidence tampering.

The remainder of this paper is organized as follows. We first
provide some background on Android, forensic data collection,

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org

and related work in Section II. In Section III, we formalize
the definition of forensic soundness through a set of objectives
for data collection. In Section IV, we discuss creation of a
custom recovery image to perform forensic data collection
on Android. In Section V, we provide a comparative analysis
of the application of our method to a set of fifteen different
devices. We further elaborate, in Section VI, on how one can
adapt our forensic techniques to other Android devices. We
discuss implications of this work and conclude in Section VII.

II. BACKGROUND AND RELATED WORK

Forensics is the application of a science to inform decisions
in a legal process. Likewise, digital forensics is the application
of computer sciences in this manner. Many process models
have been suggested to formalize the concept of digital foren-
sics. Two steps seemingly appear in every proposed model:
collection and analysis. Collection of evidence is a necessary
prerequisite for other, analytic steps [33]. Improper collection
processes can make subsequent analysis impossible or even
cause evidence to later be inadmissible in court.

Evidence can be collected in many ways, each often present-
ing trade-offs that must be weighed by the collector. The two
representative methods are colloquially known as logical and
physical collection. In either method, the collector must take
steps to ensure the resultant duplication, or image, is collected
in a sound manner. That is, the source evidence must only
be altered to the minimal extent as required by the collection
process. To this end, collectors often employ a hardware device
engineered to prevent inadvertently altering evidence.

A physical collection results in the most complete acquisi-
tion of evidence. Physical collection is often referred to as a
byte-for-byte, owing to a sequential copy process independent
of higher data layers such as disk partitions or filesystems. A
physical image is a prerequisite for some subsequent analysis
techniques, such as the recovery of deleted files that are
no longer known to a filesystem. On a typical computer, a
physical image is typically created by first physically removing
the hard disk drive from the computer. Then the device is
duplicated using hardware or software (such as the UNIX disk
duplicating utility, dd) to copy the smallest accessible storage
units from the device.

Conversely, a logical image is created from a higher rep-
resentation of data, such as files, or a filesystem. A logical
image is commonly collected using software (such as the
UNIX utility, cp) to copy only allocated data as maintained by
a filesystem [25], [27]. As such, logical imaging necessarily
results in a loss of evidence through omission, in this example
unallocated data areas.

The creation of a logical image is typically faster than
the creation of a physical image, often requires less post
processing, and in some cases a logical image is sufficient
for the investigation at hand. However, where possible, most
industry guidance and legal precedent dictate that evidence
be comprehensively preserved. Further, some later analysis
methods require a physical image, such as the recovery of
deleted data from unallocated data areas. Both are compelling
cases for physical imaging.

In the context of mobile devices, many of the incontrovert-
ible collection procedures informed by decades of experience
do not apply. In an extreme case, a logical collection may con-
sist of methodically photographing the device screen, thereby
missing any information not accessible via the standard user
interface [33]. Similarly, a physical collection is inhibited
by the device form factor. Unlike a computer hard disk
drive, the physical form of mobile devices does not facilitate
non-destructive removal of storage components [21]. Even
if the storage media can be physically accessed [20], the
component interfaces are often unfamiliar to collectors [21],
[34]. For example, flash storage is commonly used in modern
mobile devices, and the storage is permanently affixed to the
device circuit board. With storage techniques that differ from
magnetic media and proprietary physical allocation algorithms
[33], flash storage blurs the accepted definition of “physical
image” in the digital forensics community.

In addition to the new form factor, mobile devices differ
from traditional computers in the manner they are used.
Computers are used to access external services (e.g., social
networking, electronic mail) but with large displays and key-
board/mouse input, they are also used for general purpose
activities. Unlike computers, most of the value placed on a
mobile device comes from external services. For instance,
location-aware services, telephone calls, and text messaging
are used frequently on modern smartphones. In light of legal
investigation, this external connectivity can be advantageous
as information can be obtained from the service providers.
However, externally obtained information may not be suf-
ficient. A service provider may only maintain data for a
short period of time [33] or may be difficult to work with,
especially when involving multiple providers. Not knowing
a priori the set of service providers from which to solicit
information, the physical device might be the best source
for deducing a complete picture of prior events. Additionally,
some information will exist solely on the device, such as
pictures not yet transmitted to a remote service. In any case,
external data can be used to corroborate evidence found locally
on the device.

Unfortunately, no general collection technique currently
exists for mobile devices [23]. The past ten years have seen
sporadic collection and analysis research in mobile device
forensics. Research has produced a handful of custom tools
for collecting mobile device evidence. Each tool is often
compatible with a disjoint set of devices. In order to collect
evidence from a given device, a practitioner must be proficient
in using a set of these tools [33]. In the absence of a general,
sound technique for collection, practitioners have resorted to
attacking devices with questionable software exploits in order
to gain enough permission to perform collection [17], [24],
[26]. When successful, this practice certainly changes the
state of the device, a far from ideal situation, since these
modifications can compromise the integrity of the data on the
device.

To provide full physical collection without the negative
effects seen from exploiting devices, Vidas et al. proposed
recovery image-based collection [32]. In recovery based col-
lection, the examiner flashes a custom recovery image that

contains all their forensic tools onto the device’s recovery
partition. Since the recovery mode is not entered in normal
use, the storage locations being collected are not modified in
any way. The collected data is therefore unaltered from its
original state, alleviating any concerns of evidence tampering.
However, recovery image based collection has so far, only
been successfully tested on Motorola Droid, using tools spe-
cific to that particular device.

Current collection and analysis methods are plagued by the
diversity of previous generation mobile devices. The ubiquity
of Android in mobile devices brings unprecedented common-
ality in device software and hardware. This commonality can
be leveraged to overcome existing data collection and analysis
problems. Most of the work to make tools available to large
numbers of Android devices has been accomplished by the
modding community. The purpose of the modding community
is to utilize the open source code provided by Android to
produce modified versions of the Android experience [10].
Our research differs from the work done in the modding
community as their goal is to replicate the functionality of the
entire Android framework, but we only attempt to replicate the
functionality of the recovery image, which is a significantly
smaller set of features.

III. COLLECTION OBJECTIVES

We next present a methodology for collecting evidence
from Android devices in a forensically sound manner. The
collected data must facilitate subsequent analysis as performed
by current and future tools and procedures. Moreover, any data
omitted or corrupted during collection may cause the integrity
of an investigation to be jeopardized or entirely obviate later
analysis. Altering the device data may be considered akin
to destruction of evidence, therefore collection procedures
that modify data stores potentially containing evidence are
undesirable. The methodology must adhere to the following
general criteria, applicable to any forensic collection:
Data preservation: Ideally, all resident data can be collected
from a device, even metadata and memory areas thought to be
deleted or empty.
Atomic collection: During normal device operation, data is
continuously being written to and deleted from memory. When
attempting a comprehensive copy on an active device, the
resulting image will be composed of data collected through
many states of memory. For example, in the midst of a
sequential copy operation data may be orthogonally moved
from the end of memory to the beginning resulting in that
data not appearing in the resultant image. Such an image may
complicate analysis and in rare cases may not even represent
a set of data that is even valid for the device.
Correctness: The methodology must account for the accurate
collection of data from the device memory and accurate
transfer to the ultimate destination.
Determinism: The collection process must be repeatable and
produce expected output.
Evidence preservation: The collection process should not
physically damage the device. Physical evidence should be
preserved so that collection can be repeated if necessary to
ensure the correctness and determinism of the process.

Usability: Since the methodology is intended to be used
broadly by practitioners, the process must be easy to use and
must be able to conclude in a reasonable span of time.

Vetting ability: All software and techniques used for col-
lection should be verifiable or at the least taken from a
trustworthy source.

Reproducibility: Given a device that the collection process
has never been run on before, collection on the device should
be possible with only minimal effort.

Our technique, based on Vidas et al.’s work [32], involves
repurposing a special Android boot mode known as recovery
mode. Standard Android devices have several partitions that
house different types of data. For example, the system partition
contains parts of the operating system, manufacturer and
vendor added features, and applications that the user is not
meant to modify. On the other hand, the userdata partition con-
tains application specific data. The recovery partition typically
contains seldom used software that can perform maintenance
tasks. Common recovery mode tasks include returning the
device to a stock configuration or applying a software update
that cannot be applied while the system is executing in
its standard operating mode. To accomplish such tasks, the
recovery software is executed by circumventing the normal
boot procedure A device enters this recovery mode by way of
special key presses during the early stages of the boot process.

For digital forensics collection, we devise special recovery
software to replace the incumbent software in the recovery
partition. Many qualities of the standard recovery software
are desirable for collection purposes. For instance, the code
that enables a mobile phone’s radio is never loaded so there
is no risk of communications with the cellular tower altering
data on the device. Even so, the standard boot image does
not possess some components essential for data collection,
primarily methods for extracting data from device memory
and a methods for transferring collected data from the device.

Since the recovery software is Android-based, the obvious
tools for data duplication would be standard Linux tools such
as cp or dd. As discussed above, using cp would necessarily
perform a logical collection omitting unallocated spaces, and
in the case of modern mobile devices dd would also result
in an incomplete collected image. While transparent to the
typical user, the use of flash memory chips for data storage can
create critical problems for forensics collection. Data copied
using dd will omit memory areas known as spare or out-
of-band, which is used to store metadata about associated
memory segments. By employing a tool specifically designed
to interpret flash memory, an image can be collected that
contains more information than could be collected via standard
Linux tools.

In order to transmit collected data from the device without
enabling wireless radios, we employ an Android debugging
tool. The Android Debug Bridge (ADB) is often used across
USB to debug physical devices. While not available in the
standard recovery software, the device-specific components
can be added to our special recovery software. In order to inter-

act with the device, an investigator may download or build1 the
complementary computer-specific ADB components. Then,
utilizing ADB in recovery mode, an investigator can interact
with the recovery software using a computer, and perform data
collection using TCP over USB.

As shown in Figure 1, once crafted, the collector must
transfer the collection-oriented software to the device. This
transfer requires device-specific software tools that overwrite
the existing recovery partition with the new software. While
this process does unavoidably overwrite data only in the re-
covery partition, this partition is extremely unlikely to contain
potential evidence. The collector then reboots the device and
directs it into recovery mode. Once executing in the context of
the new recovery software, data is collected using ADB and
the bundled flash duplication tools.

When booted into recovery mode, partitions other than
the recovery partition are not modified as would typically
occur during normal operation. By using recovery mode for
forensic collection, data in other partitions can be duplicated
with no risk of data in those partitions being altered during
collection. Similarly, since data in other partitions is never
altered, repeated collection results in identical collected im-
ages. By utilizing special duplication software, this collection
method collects more data than standard data duplication tools,
particularly capturing flash out-of-band areas.

From the perspective of a practitioner, there is little need to
fully understand the inner workings of the recovery software,
or even how to construct such software. Instead, the practi-
tioner may be concerned only with obtaining vetted recovery
software and understanding how to perform the collection
process. Thus, the collection process does not require specific
expertise and, in practice, tested devices sustain approximately
4.3 MB/s allowing for full collection to occur in a reasonable
amount of time.

IV. ANDROID RECOVERY IMAGE

To generalize the recovery method for Android, we focus
on two key components: the recovery image and the flashing
mechanism. In this section we will further discuss the com-
ponents of the recovery method and give the steps taken to
create a custom image

A. Recovery Image Structure

The recovery image consists of three main components:
the header, kernel, and the ramdisk.2 The Android bootimg
structure can be seen in Figure 2.
Header. The header is placed at the start of the image and
provides essential metadata to the bootloader for loading the
other components when booting into recovery mode. The
structure of the header is given in bootimg.h 3 in the Android
source.

1Source code and pre-built executables are available at http://developer.
android.com.

2A secondary ramdisk is optional, however it is unnecessary to our
application and for simplicity has been omitted from our discussion

3bootimg.h can be found at <path to source
tree>/system/core/mkbootimg/bootimg.h

o = (second_size + page_size − 1) / page_size

boot header

kernel

ramdisk

second stage

1 page

n pages

m pages

o pages

n = (kernel_size + page_size − 1) / page_size
m = (ramdisk_size + page_size − 1) / page_size

Fig. 2. Bootimg Structure: structure of a common Android bootimg

Name Description
default.prop Default Build Properties

init.rc System-wide initialization values
init Initialization executable

system/ System files and tools
sbin/ Additional tools

sbin/adb Android Debug Bridge executable
sbin/recovery Recovery executable

res/ Images for recovery mode

TABLE I
IMPORTANT RAMDISK FILES

The image header includes a magic signature, the size and
memory location in which to load the kernel, ramdisk, and
secondary image, the physical address of any kernel tags, the
image’s page size, command line options, and a checksum.
Kernel. The second segment of the recovery image is a
gzipped kernel. The kernel stored in the recovery image is
a customized variant of the Linux 2.6 kernel and acts as
a mediary between the Android framework and the hard-
ware, memory management, process management, the network
stack, and the driver model [5], so the kernel for each device
is tuned to work with a specific set of hardware.
Ramdisk. The last segment of the recovery image is the
ramdisk. The ramdisk contains the core files needed for
system initialization. Table I gives the files and folders most
commonly found in the recovery image and their usage. The
most important files are the init binary, init.rc, which controls
most system-wide properties, and the recovery binary, which
is executed when the phone is booted into recovery mode [13].

Even though the image structure given above is defined
by the Android framework, not every device uses the same
image structure. Specifically, Samsung devices use a different
method where the ramdisk is built into the kernel. However,
the components for each method remain the same, the only
difference is in the way they are packaged.

B. Custom Image

To build a custom recovery image, we split the process
between the three components of the image: the header, kernel,
and ramdisk.

Create
collection
software
package

Reboot
device into
flash mode

Transfer
collection
software

using
device-

specific tool

Reboot
device into

recovery
mode

Connect to
collection
software

using ADB
and USB

Collect
data using
collection
software

Fig. 1. Collection Process First the collector creates or obtains collection software for the device. The collector then reboots the device into a special flash
mode and uses a manufacturer-specific tool to transfer the collection software to the device. Next, the device is rebooted into recovery mode, which executes
the collection software. The collector then connects a computer to the device using a USB cable and the Android Debug Bridge (ADB) software. Finally,
data is duplicated to the computer using the collection software.

Header. To generate a header, we need to select values for the
size and loading location of the kernel, ramdisk, and secondary
ramdisk, the address of the kernel tags, image page size,
command line options, and checksum. We omit the magic
signature in our discussion because it is constant across all
images.

The sizes for the kernel, ramdisk, and secondary ramdisk
can be calculated once we create the other custom com-
ponents4. The loading location for each component is gen-
erated as a standard offset from a base address5 (given in
mkbootimg.c6). Therefore, we only need to select a single base
offset. Additionally, the checksum is calculated over all our
custom components.

To select the correct values for the base address, page size,
and command-line options, we can either extract them from
another working image’s header or from a kernel built for our
device.
Kernel. For our custom recovery image to work on a new
device, we need a kernel that understands how to communicate
with the specific hardware found on that device. Obtaining a
working kernel can be done in one of two ways, building the
kernel from source or extracting it from a working image.

Some manufacturers have made the kernel source for all
their devices publicly available [14], [18]. For these devices,
we can simply download their source and an ARM cross-
compiler [19] and build to get a working kernel. Note, this
method is preferable to extracting a kernel binary because the
source can be read and analyzed to ensure that no malicious or
unwanted actions are executed when running a kernel, whereas
identifying unwanted effects becomes much more difficult
when looking at a kernel binary [22].

For future analysis and comparison purposes, when building
each device kernel for our test set we minimize the configura-
tion so that only necessary components are included. Because
our forensic application only requires a small set of features,
we removed any unnecessary devices, such as audio, OpenGL,
and networking drivers, and only included code necessary to
run the recovery executable, access memory, and establish an
adb connection over USB.

For devices where no source is available, we extracted our
kernels from recovery images that are known to work for our

4The size of the secondary ramdisk will always be zero because it is never
used in our application.

5Kernel address = base + 0x0000800, ramdisk address = base +
0x01000000, secondary ramdsik address = 0x00F00000, kernel tags address
= base + 0x00000100.

6mkbootimg.c can be found at <path to source
tree>/system/core/mkbootimg/mkbootimg.c.

target device. The first method obtains a “stock" image, the im-
age that is provided by the manufacturers for that device. With
the secondary device that is unrelated to the investigation and
is the same make and model, a recovery image can be extracted
using a rooting technique. The second method for obtaining a
working recovery image is through the modding community.
“Modded" images provide a modified Android experience for
users that want to push the performance of their devices or
add features not supported by Android. “Modded" images can
be obtained from many sources, such as forums [4], [6], [11]
and developer sites [3], [10]. Because of the strong Android
development community, images for all devices can typically
be found.

A stock image is preferable to an image from the mod-
ding community because Android and the manufacturer are
assumed to test the images more thoroughly and are motivated
by sales to ensure their code works with no negative effects,
whereas “modders" may have other motivations which could
lead to unwanted side effects.
Ramdisk. To generate a custom ramdisk we utilize the open-
ness of the Android platform. Using the Android source,
we simply modify a few configuration files to match the
configuration of our device, and add our forensics tools into
the build tree for inclusion into the image.

To build a ramdisk for a new device we have to add
a device specific directory to the device/ directory, which
contains all the information necessary to build the Android
source for a given device. Configuration information includes
all the custom header and kernel information, and other make
information. Note, to prepare for device build comparison and
analysis we reduce the device configuration to its minimal
set of necessary options, to avoid including any spurious
information in our analysis.

To add our forensic tools to the ramdisk, we have to make
two modifications: add custom busybox source to the build
tree and update init.rc.

Busybox is an executable which contains size optimized
versions of common Linux tools designed for resource limited
systems [8]. By adding busybox to the build we provide the
adb remote shell with commonly used tools such as ls, cat,
file, etc with little effort. Also, busybox is open source and
extendable [9], allowing us to add our forensic tools, such as
nanddump and transfer, into the ramdisk easily.

The init.rc file is used to control system-wide properties,
such as partition mounting and starting services [13]. For our
forensic application, we modify the init.rc file to mount the
partitions we want to image as globally readable, give our

forensic tools root level permissions, and ensure that the adb
service is running at startup.

C. Flashing Tools

Once we have created an image for the device, we then
need to find a way to write the custom image to the recovery
partition. For maintenance purposes, manufacturers tend to
provide tools for flashing custom images.
Acquiring the Tool. If the tool is provided publicly (such as
fastboot [7]), then it can simply be downloaded from the devel-
oper’s website and used to write the recovery image. However,
these tools are typically not open source and commonly are
only built for the manufacture’s operating system of choice
(i.e. Windows).

Many of the proprietary tools have been reverse engineered
[12], [16] by the modding community and distributed publicly
for multiple host operating systems. Modded tools are easier
to obtain and avoid the challenges presented by proprietary
tools, however, they should be used with caution, as they are
provided by a less reputable source.

When obtaining a flashing tool it is always recommended
to obtain the proprietary tool directly from the manufacturer.
The manufacturers understands the protocol best and reverse
engineered tools should only be relied on if no proprietary tool
is available. Proprietary tools may be available for download
from other sources such as modding forums, however they
should not be given the same trust as they may have been
modified before posting.
Locked Bootloader. After we have the flashing tool it is
important to understand what level of privilege we have
to write to the device. In some cases our access may be
completely unrestricted. However, this is not always the case.
Some phones may have an unlock-able or signed bootloader
which restricts write access to the device. In the case of an
unlock-able bootloader, the manufacturer allows the user to
overwrite the device images, but only after they receive a key
from the manufacturer. With a signed bootloader, only images
which are signed by the manufacturer’s cryptographic secret
key can be written to the device.

For our analysis we bypass bootloader restrictions for the
sake of building recovery images for a greater range of
devices. We assume that in a real forensic investigation, the
authority prosecuting the case could obtain the manufacturer
key through the legal process.

V. EVALUATION

Acquiring all Android devices is impossible due to the sheer
number of distinct models and carrier-hardware combination.
Instead, we have to build a subset which provides sufficient
coverage of the smart device market. To produce a such a
subset, we focused our resources to acquire devices that varied
across the following characteristics:
Popularity: By acquiring the most popular devices currently
available, we can show that our method works for the majority
of devices a practitioner may encounter.
Manufacturers: From our initial research we discovered that
the majority of differences between devices come from the

different manufacturers. To cover the largest set of devices
with our test bed, we obtained at least one device from each
of the major manufacturers (Motorola, HTC, Samsung, LG,
Huawei, and Acer).
Software Version: According to Google, approximately 30%
of devices that are currently being used run an older version
of the OS than that currently available. Thus, even though the
software on the device is old, the practitioner is still likely to
come in contact with older devices. Also, by including the OS
version as a component of our procurement strategy, we are
also able to test the effectiveness of our method to changes
over time.
Price: Because our methodology may be used in criminal
cases, we believe it is essential to ensure its effectiveness with
possible “burn" phones, which may be purchased without need
for a contract only for limited use then discarded to hide any
connections to evidence found on the device.

Using these characteristics we selected and collected the set
of fifteen devices shown in Table II. These devices present a
combination of software diversity (Android versions ranging
from 2.1 to 4.0), price heterogeneity, manufacturer diversity
and cover a reasonably wide range of different hardware.

A. Results

After porting the recovery image method to the fifteen
Android devices of Table II, we identified the similarities
and difference between each attempt. We compare the devices
across the four components of the recovery method identified
in Section IV. To compare the recovery method across our
device set we compared each component of the recovery
image method individually and ensured each component was
reduced to a minimal set of configuration options to guarantee
no extraneous information was included in our analysis. The
components analyzed include the image header, kernel, and
ramdisk, and the flashing tools.
Header: From our discussion in Section IV we know that
our values of interest in the header are the partition location
base address and the kernel page size, and the command line
options.

In our reduction process we found that the command line
options could be left empty without any effect. However, the
base address and kernel page size were found to be essential,
as any changes to the base address or page size caused the
recovery mode to fail. On further analysis of the kernel, we
discovered that these values are defined in the kernel, making
changes necessary for the header a subset of the kernel.
Kernel: When analyzing the kernel differences, we first iden-
tified for which devices kernel source code was available. In
our test set, source was available for thirteen of the fifteen
devices as shown in Table III.

To compare the kernel source, we reduced the build for each
device to a minimal set and removed any code unnecessary
to the recovery mode, such as audio, video, and networking
features. After reducing the kernel source, we performed
manual comparison of the code. We identified configuration
differences between USB drivers, chip sets, etc. though many
of the differences seemed semantically equivalent. However,

Device Manufacturer Carrier Release Date OS Version Cost
Liquid E Acer Rogers Feb 2010 2.2 $200

Droid Motorola Verizon Oct 2009 2.2 $100
Droid 2 Motorola Verizon Aug 2010 2.2 $170
XOOM Motorola Verizon Jan 2011 3.2, 4.0 $400
Nexus S Google T-Mobile Dec 2010 2.3 $350

Xperia Mini Pro Sony Ericsson AT&T Aug 2011 2.1 $150
Optimus S LG Sprint Dec 2010 2.2 $140

MyTouch 4G LG T-Mobile Nov 2010 2.3 $290
Desire HTC U.S. Cellular Feb 2010 2.2 $280

Evo 4G HTC Sprint Jun 2010 2.3 $250
Thunderbolt HTC Verizon Mar 2011 2.2 $200

Sensation HTC T-Mobile Jul 2011 2.3 $300
Galaxy SII Samsung AT&T May 2011 2.3 $550

Pulse Huawei T-Mobile Aug 2009 2.1 $170
Streak Dell AT&T Dec 2010 2.2 $218

TABLE II
DEVICE TEST SET

our analysis was very basic and more time, resources, and
knowledge of the Linux kernel is required to better understand
kernel build differences. When source was not available and
we were required to use an extracted kernel binary, we did
not perform any analysis on the compiled binaries due to the
difficulty of extracting any useful information.
Ramdisk: Across our implementations we discovered that all
the files found in the ramdisk directory, excluding the init
binary and init.rc file, were identical across all devices except
the HTC Sensation.

Because we used the Android source to build our ramdisks,
we were able to trace differences in the init binary to dif-
ferent base address and page size values given in the device
configuration.

The difference between init.rc files in our test set comes
from the different memory layouts used. Because the partition
map for each device is different, the partitions listed in init.rc
must also reflect this difference.

The only exception to the ramdisk generality was the HTC
Sensation. We were unable to create a custom ramdisk for
the Sensation using the Android source because it requires an
extra set of executables to be built into the recovery binary.
Because the Sensation was the only device we were unable
to generalize to and we tested several other similar devices
by the same manufacturer, both older and newer, without the
same result, we believe that it is an anomaly and does not
detract from the generality of the result.
Flashing: In our analysis we made three observations: there
are three major flashing tools, the flashing tool is manufacturer
dependent, and there are four levels of bootloader availability.

The first, and most commonly used flashing tool was
fastboot [7]. Fastboot is provided by Google and is included
in the Android source code7

The other two flashing tools observed are proprietary tools
for Motorola and Samsung devices. Both Motorola and Sam-
sung use a custom packaging of the recovery image compo-
nents which require a different flashing mechanism.

7Fastboot source can be found at <location of Android
source>directory/system/core/fastboot.

Motorola packages their images into a proprietary format
called SBF8 The SBF file provides a structure for organizing
multiple firmware components and images into one file [32].
To flash an SBF file to a device RSD Lite (Windows Only)
is used by Motorola. However, RSD Lite is not distributed
publicly. As an alternate to RSD Lite, sbf_flash [16] developed
by Optical Delusion can be used.

Similarly, Samsung replaces the standard recovery image
structure with the initramfs structure [15], which embeds the
ramdisk in the kernel. The process for creating an initramfs is
slightly more complicated than the standard bootimg and re-
quires the ramdisk to be inserted into the kernel source9 Once
the initramfs is created, it can be flashed to the device using
Samsung’s proprietary tool, ODIN. ODIN is also only avail-
able for Windows, closed source, and not publicly available.
Alternatively, Heimdall [12], an open source implementation,
can be used to flash a recovery initramfs.

The final case observed across our device set was the lack
of a bootloader mode, which was seen in our LG devices.
In cases where no bootloader mode was available, we were
forced to root the standard boot mode, mount the recovery
partition as writable, and overwrite the recovery image through
the standard boot mode. Using a rooting method to overwrite
the recovery image is not recommended for an investigation,
however, it was used in our analysis to better understand
recovery image differences over more devices.

Along with the flashing tools we identified, we also dis-
covered that the flashing tool used is manufacturer dependent.
Through our analysis we observed that all devices made by the
same manufacturer use the same flashing tool. The discovery
that the flashing tool is manufacturer dependent is important
as it means there is a limited number of possible tools and the
set of flashing tools should be relatively static.

Our final observation with regard to device flashing is
that there are four levels of bootloader availability: unlocked,

8The exact structure of an SBF is not extremely important here, software
that can create a well formed .sbf file when provided a bootimg can be found
at http://www.ece.cmu.edu/~tvidas/.

9Instructions for building the initramfs can be found at http://forum.xda-
developers.com/showthread.php?t=1294436.

similar phone

kernel

official image available

full source

no kernel source availablekernel source available

no official image available

acquire modded image

extract kernel
from image

build from source

root another

Fig. 3. Kernel Decision Tree: approach used for obtaining a kernel for a
new device

locked, signed, or non-existent. Of the four bootloader avail-
ability levels, we discovered that locked bootloaders are the
most common. The distribution of bootloader access levels
across our device test set can be seen in Table III.

VI. GENERALIZING OUR COLLECTION METHODOLOGY

From our analysis we identified four key characteristics
which are crucial to building a forensic recovery image for an
Android device: image header, kernel, ramdisk, and flashing
tool. On further analysis we concluded that the information
necessary to build the ramdisk and the header is a subset of the
kernel information. Therefore, only a new kernel and flashing
method are required to collect forensic data from a new device.

We also discovered that the kernel can be obtained by
following the decision tree given by Figure 3. Building a kernel
from source is the optimal solution for obtaining the kernel
because the analyst can read the code and verify it has no
unwanted properties. However, source may not be available, in
these cases the kernel must be extracted from another working
image for the device in question. When choosing which image
to extract the kernel from, it is recommended that an official
image is acquired from another device of the same model and
using one of the rooting methods to extract and image. If an
official image is impossible to acquire, then a modified image
created by the modding community can be used.

Similarly, the level of flashing privilege can be determined
using the decision tree given in Figure 4. When determining
the level of write privilege on a new device, it is important to
first identify whether a flashing mode is enabled. As shown
in Section V we found that the flashing mode was only
disabled on two phones. If a flashing mode is enabled, then
the next question that should be answered is whether the
bootloader is locked. If locked, the investigator must acquire a
signature from the manufacturer to cryptographically sign the
image before the device will execute the recovery image. If
the device is not locked or once the signature is obtained,
then the practitioner simply needs to acquire the flashing
tool for the device and use this to overwrite the recovery
image with the custom forensics recovery image. We also
discovered that the flashing tool is manufacturer dependent,
and in our experience only three different tools were necessary.
Therefore, a set of flashing tools should be maintained by the

a way to root the device

flash

locked bootloader

acquire signature from
manufacturer

non−locked bootloader

flashing tool enabled

Flash Image

no flash tool enabled

required adb enabled and

Fig. 4. Flasher Decision Tree: approach used for obtaining the flashing tool
for a new device

forensic practitioner. Finally, if the device does not have a
flashing mode enabled, then the device needs to be “rooted"
and the practitioner can then use the adb shell to install the
recovery image.

To conclude we provide a table of important information
for each of the devices in our test set. Table III should be
used as a reference for practitioners when building a forensic
recovery image.

VII. DISCUSSION AND CONCLUSION

We have demonstrated a general methodology for collect-
ing a physical memory dump from smart devices running
the Android operating system. Evaluating our methodology
against the criteria given in Section III we see that by utilizing
the method given by Vidas et al. in [32] we achieve user
data preservation, atomic collection, correctness, determinism,
evidence preservation, and usability and reproducibility and
vetting ability are provided through the techniques of image
creation given by our methodology.
Data preservation: The Android OS stores each partition in
its own, distinct memory address range, ensuring that any
writes to the recovery partition will not overwrite blocks on
other partitions. The base address of the partition is given in
the imageÕs header, as discussed in Section III, along with the
partition size. If the base address/size pair given to the flashing
device overlaps another partition it is possible that blocks
from another partition could be overwritten. On some devices
memory maps are stored in known locations and can be read
from a running device before an image is written. However,
memory maps are not always available, which is why we
pulled base address and size values from images distributed
by the manufacturer or built from source. In practice, if an
invalid address/size pair is given to the flashing tool it will be
rejected and not written to the device. In our test cases no,
allocated or unallocated blocks of user data were overwritten.
Due to the use of a distinct memory range, In all our test
cases and over 15 devices we observed that the integrity of
user data, in both allocated and unallocated blocks, was never
violated. The data preservation of the recovery method is also
confirmed through the analysis of James et al. in [28] where
the authors compare data collected from the recovery method

Device Bootloader Base Addr Page Size Open
Source
Kernel

Flasher Ramdisk
From
Source

Liquid E unlocked 0x20000000 4096 X Fastboot X
Droid unlocked 0x10000000 2048 - RSD Lite X

Droid 2 signed 0x10000000 2048 X BSD Lite X
XOOM locked 0x10000000 2048 X Fastboot X
Nexus S locked 0x30000000 4096 X Fastboot X

Xperia Mini Pro signed 0x00200000 2048 X Fastboot X
Optimus S non-existent 0x12200000 2048 X N/A X

MyTouch 4G non-existent 0x00200000 2048 X N/A X
Desire locked 0x20000000 2048 X Fastboot X

Evo 4G locked 0x20000000 2048 X Fastboot X
Thunderbolt locked 0x05200000 2048 X Fastboot X

Sensation locked 0x40400000 2048 X Fastboot -
Galaxy SII unlocked 0x40000000 4096 X ODIN X

Pulse unlocked 0x00200000 4096 - Fastboot X
Streak unlocked 0x20000000 2048 X Fastboot X

TABLE III
DEVICE INFORMATION

to the results acquired through the use of the JTAG hardware
debugging port over multiple attempts.
Atomic Collection: Atomic collection is obtained by our
method through the reduction of services used by the recovery
image. In building our image from source, we removed any
code unnecessary to collection, restricting execution to only
the collection process. In the cases when source was not
available for a device and kernel was pulled from another
image, atomic collection is not guaranteed, but is likely due
to the reduced nature of operations in recovery mode.
Correctness: To ensure the data is correctly collected, we
performed a hash of the phone image before and after
transmission from the device and used well-trusted bit-by-
bit copying tools for flash memory. In all our test cases
we observed correct collection. Similar to the case of data
preservation, our results were confirmed by James et al. [28]
who reports correct collection in all tests of the recovery
method through their comparison to the results produced by
acquisition via JTAG debugging port.
Determinism: For each device in our test set we performed
three collections. Across all the devices we observed the same
result for each collection. Also, determinism is confirmed from
the results of James et al. [28] who produced consistent results
across five collections per device on nine different devices.
Evidence preservation: Our technique makes no changes to
the physical device, preventing any physical damage to the
evidence. At the software level, because the recovery image
is the only partition altered, there were no cases of corrupting
or “bricking” the device even when a bad recovery image is
used. Because no physical damage is done to the device and
the device can continue to function, the collection process can
be repeated and the evidence is preserved.
Usability: Once a recovery image is crafted for a specific
device, collection only requires the practitioner to follow a
simple set of steps to flash the image, connect and collect
data for each partition. In practice the entire flashing and con-
nection process takes at most two minutes and the collection
process varies on the amount of user data the investigator
wishes to collect, but we observed average transfer speeds

of 4.3 MB/s allowing collection to complete in a reasonable
amount of time.
Vetting ability: For each component of the collection image
we either build from source or acquire pre-built components
from trusted sources whenever possible. The only case that
non-vetted components are necessary comes when source for
a device kernel is unavailable from the manufacturer and
second device stock kernel cannot be obtained. However,
source was available for all but two devices in our test set,
therefore creating a fully vetted image is possible for almost
all devices. Also, each non-vetted case was an older device and
the manufacturer for both has since begun to release source
for newer devices.
Reproducibility: Given a new Android device, the forensic
examiner simply needs to collect the kernel and memory
layout to generate a recovery image. Our method for forensic
recovery image creation was shown to be successful for all but
one of the fifteen devices tested, therefore providing sufficient
reproducibility.

Finally, looking at our research from a more general per-
spective we can see further applications beyond forensics. We
can modify the set of tools provided in the image ramdisk
to provide many different features. Some possible applica-
tions include Antivirus scanning, which currently can not
be properly accomplished due to the privilege restriction of
application level antivirus [31], or for malicious intents such
as an Evil Maid attack [29]. Due to the possible malicious use
of the recovery image technique, manufacturers must take into
account the ability to flash the recovery image as a possible
security threat.
Future work: Although our method is quite general over a
wide range of devices, we determined that we still need to
obtain a kernel specific to the device examined. Because only a
minimal set of features were shown to be needed by the kernel,
we believe it would be possible to create a kernel specialized
for recovery.

To provide a more general result for forensic image col-
lection, further research must be conducted on other mobile
operating systems. The exact details of our implementation are

specific to Android, however, the concept of custom recovery
mode creation for forensic collection can be exploited on other
platforms due to the general need for the recovery function-
ality. Different operating systems have different names and
data structures for the recovery image and different techniques
for image flashing, but the general methodology of using the
recovery mode for collection will work for all modern mobile
devices. As an example, iPhones utilize a similar recovery
mode which can be overwritten using the same technique we
propose for data acquisition [35].

We believe that our contributions can provide a useful
solution for forensically sound image collection on a large set
of devices and a step toward general collection for mobile
devices. To this end, we have provided working recovery
images and data collected from all devices tested at http:
//dogo.ece.cmu.edu/~tvidas/pp/.

ACKNOWLEDGMENTS

This work was supported in part by CyLab at Carnegie
Mellon under Army Research Office grant DAAD19-02-1-
0389, National Science Foundation ITR award CCF-0424422
and IGERT award DGE-0903659, as well as a hardware
donation by Google Inc.

REFERENCES

[1] Five iphone 5 features tim cook will not announce today.
http://www.forbes.com/sites/adriankingsleyhughes/2012/09/12/five-
iphone-5-features-tim-cook-will-not-announce-today/.

[2] Here is another reason google continues to shun sd cards - multiuser sup-
port. http://www.androidpolice.com/2012/10/30/here-is-another-reason-
google-continues-to-shun-sd-cards-multiuser-support/.

[3] Amon ra recovery tool - android wiki. http://android-dls.com/wiki/index.
php?title=Amon_Ra_recovery_tool, Apr 2012.

[4] Android & windows phone: Tablets, apps, & roms @ xda-developers.
http://www.xda-developers.com/, Mar 2012.

[5] Android developers. http://developer.android.com/, Apr. 2012.
[6] Android mods | android forum, android hacks, android tips, android

applications, android downloads. http://androidmodz.com/, Mar 2012.
[7] Building for devices | android open source. http://source.android.com/

source/building-devices.html, Mar 2012.
[8] Busybox. http://busybox.net/about.html, Mar 2012.
[9] busybox - busybox: The swiss army knife of embedded linux. http:

//git.busybox.net/busybox/tree/docs/new-applet-HOWTO.txt, Mar 2012.
[10] Cyanogenmod wiki. http://wiki.cyanogenmod.com/index.php?title=

What_is_CyanogenMod, Mar 2012.
[11] Droid mod. http://www.droidforums.net/forum/droid-mod/, Mar 2012.
[12] Heimdall - glass echidna. http://www.glassechidna.com.au/products/

heimdall/, Feb 2012.
[13] Howto: Unpack, edit, and re-pack boot images. http://android-dls.

com/wiki/index.php?title=HOWTO:_Unpack\%2C_Edit\%2C_and_Re-
Pack_Boot_Images, Mar 2012.

[14] Htcdev - htc kernel source code and binaries. http://htcdev.com/
devcenter/downloads, Mar 2012.

[15] Initramfs - gentoo linux wiki. http://en.gentoo-wiki.com/wiki/Initramfs,
Jan 2012.

[16] Opticaldelusion: sbf_flash. http://blog.opticaldelusion.org/2010/05/
sbfflash.html, Mar 2012.

[17] Rom manager. https://market.android.com/details?id=com.koushikdutta.
rommanager&hl=en, Mar 2012.

[18] Samsungopen source release center. https://opensource.samsung.com/
index.jsp, Mar 2012.

[19] Sourcery g++ lite 2008q1-126 for arm gnu/linux. https://sourcery.
mentor.com/sgpp/lite/arm/portal/release324, Mar 2012.

[20] M. Al-Zarouni. Introduction to mobile phone flasher devices and
considerations for their use in mobile phone forensics. Proc. 5th
Australian digital forensics conference, Dec. 2007.

[21] M. Breeuwsma, M. D. Jongh, C. Klaver, R. V. D. Knijff, and
M. Roeloffs. Forensic data recovery from flash memory. Small, 1(1):1-
17, 2007.

[22] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. Proc. USENIX Security Symposium, August 2011.

[23] S. Garfinkel. Digital forensics research: The next 10 years. Digital
Investigation, 7:S64–S73, 2010.

[24] A. Hoog. Android forensics. Mobile Forensics World, 29, 2009.
[25] A. Hoog. Open source android digital forensics applica-

tion. http://computer-forensics.sans.org/blog/2010/03/01/open-source-
android-digital-forensics-application/, Mar 2010.

[26] J. Lessard and G. Kessler. Android forensics: Simplifying cell phone
examinations. In Small Scale Dig. Dev. Forensics J., vol. 4, Sept 2010.

[27] G. Me and M. Rossi. Internal forensic acquisition for mobile equip-
ments. Proc. IEEE IPDPS 2008, April 2008.

[28] S. Namheun, Y. Lee, D. Kim, J. James, S. Lee, and K. Lee. A study of
user data integrity during acquisition of android devices. Proc. DFRWS
2013, Aug. 2013.

[29] J. Rutkowska. The invisible things lab’s blog: Why do i miss mi-
crosoft bitlocker? http://theinvisiblethings.blogspot.com/2009/01/why-
do-i-miss-microsoft-bitlocker.html, Jan 2009.

[30] J. Sylve, A. Case, L. Marziale, and G. G. Richard. Acquisition and
analysis of volatile memory from android devices. Digital Investigation,
8(3-4):175 – 184, 2012.

[31] T. Vidas, D. Votipka, and N. Christin. All your droid are belong to us:
A survey of current android attacks. Proc. WOOT 2011, Aug. 2011.

[32] T. Vidas, C. Zhang, and N. Christin. Toward a general collection
methodology for android devices. Proc. DFWRS 2011.

[33] R. Walls, E. Learned-Miller, and B. Levine. Forensic triage for mobile
phones with dec0de. In Proc. USENIX Security Symposium, Aug. 2011.

[34] S. Y. Willassen. Forensic analysis of mobile phone internal memory.
Memory, page 191-204, 2005.

[35] J. Zdziarski. iPhone forensics - recovering evidence, personal data and
corporate assets. O’Reilly, 2008.

DANIEL VOTIPKA received the B.S. degree
in Computer Science from the Illinois Institute
of Technology, Chicago, IL in 2010 and the
M.S. degree in Information Security, Technol-
ogy, and Management from Carnegie Mellon

University, Pittsburgh, PA in 2012. He is currently serving in
the United States Air Force as a Cyberwarfare Officer. His
current research interests include forensics, code analysis, and
mobile security.

TIMOTHY VIDAS is an Electrical and Com-
puter Engineering Ph.D. candidate at Carnegie
Mellon University. Tim’s recent research inter-
ests revolve around mobile platform security

and privacy, volatile data collection and analysis, reverse en-
gineering, digital forensics, and malware analysis. Tim previ-
ously held research positions at CERT, the Naval Postgraduate
School and the University of Nebraska. He holds a B.S.
and M.S in computer science and two DEFCON CTF black
badges. Tim is a member of the Shmoo group and is a DC3
Forensics Challenge grand champion.

NICOLAS CHRISTIN is an Assistant Re-
search Professor in Electrical and Computer
Engineering and CyLab at Carnegie Mellon
University. He holds a Diplôme d’Ingénieur
from École Centrale Lille, and M.S. and Ph.D.

degrees in Computer Science from the University of Virginia.
His research interests are in computer and information system
security; most of his work is at the boundary of systems and
policy research. He has most recently focused on online crime,
security economics, mobile security, and psychological aspects
of computer security.

