
Curbing Android Permission Creep
Timothy Vidas

Carnegie Mellon ECE/CyLab
tvidas@ece.cmu.edu

Nicolas Christin
Carnegie Mellon INI/CyLab
nicolasc@andrew.cmu.edu

Lorrie Faith Cranor
Carnegie Mellon CS/CyLab

lorrie@cs.cmu.edu

Abstract—The Android platform has about 130 application
level permissions that govern access to resources. The determi-
nation of which permissions to request is left solely to the appli-
cation developer. Users are prompted to approve all application
permissions at install time, and permissions are silently enforced
at execution time. Although many applications make use of a wide
range of permissions, we have observed that some applications
request permissions that are not required for the application to
execute, and that existing developer APIs make it difficult for
developers to align their permission requests with application
functionality. In this paper we describe a tool we developed to
assist developers in utilizing least privilege.

Index Terms—Android Framework, Privacy, Software Devel-
opment, Least Privilege

I. INTRODUCTION

Android, the Google-backed mobile software framework, is
reportedly enjoying a larger market share and growth factor
than Apple’s iPhone [1], [10], quickly making Android a major
player in the mobile market. The central repository for mobile
applications, the “Android market,” enjoys more freedom than
the Apple moderated iTunes Store for iPhone applications. A
would-be Android developer need only register for an account
and pay the $25 fee. Further, Android applications can be
installed from third party websites circumventing the Android
market altogether. Users historically make poor privacy and
security decisions especially when a warning is difficult to
understand and/or acts as a barrier to immediate gratification
[5]. Like many Google products, Android seeks to limit the
volume of privacy and security related warnings presented to
the user. Application privacy and security settings are accepted
by the user prior to install, and the user typically never again
has to make a privacy or security related decision pertaining to
that application1. An example of an install time prompt can be
seen in Figure 1 in which a battery monitoring application is
requiring access to the GPS device, phone state, Bluetooth,
Internet access and a multitude of other permissions. The
install time permission requirements are determined by the
developer and may or may not accurately reflect permissions
that the application actually requires for proper operation.

While the Android platform already provides copious
amounts of information to developers as well as a reasonably
rich development environment, there is no straightforward
way for a developer to determine appropriate permissions to
request. Developer specified permission requirements may in

1Unless the permissions change between version upgrades, in which case
the user will be prompted once for the new versions permissions

fact be a superset of the permissions the application actually
requires resulting in violation of the principle of least privilege
[18]. Least privilege is an important aspect of system de-
sign, benefiting system security and fault tolerance. The main
contributions of this paper are to describe a tool, Permission
Check Tool, that aids the developer in specifying a minimum
set of permissions required for a given mobile application,
and to describe the creation of an associated API-permission
database for Android. The tool analyzes application source
code and automatically infers the minimal set of permissions
required to run the application. This approach is unique in
the method used to determine permission requirements and,
to encourage adoption, is implemented alongside the existing
IDE recommended for Android development.

First we discuss Android’s permission model in section II.
In section III we describe the inner workings of the Permission
Check Tool. Finally we present related work in section IV
and have a concluding discussion providing some avenues for
future work in section V.

Fig. 1. Android permission prompt during application install Why does
a Battery application require so many invasive permissions?

II. ANDROID PERMISSION MODEL

Built upon a Linux kernel, Android uses operating system
primitives (such as processes and user IDs) as well as a Java
Virtual Machine (Dalvik) to isolate applications providing a
safety sandbox [22]. The Android platform introduces about
130 application level permissions [8], [21] that are requested

at install time and silently enforced any time the application
is executed [14]. Unlike other privacy models, such as the
iPhone, the user is not prompted when an application requests
a resource during execution.

These application level permissions generalize access con-
trols into categories like “access location information” or
“access the network.” In some cases this generality may force
an application to request more access than needed. Consider,
for instance, an Internet radio application that only needs
access to a single URL on a single domain, but must request
access to all network resources. Other applications request
large sets of controls, many of which intuitively have little
or no use to the advertised functionality of an application.
The ambiguity, generality and misuse of Android application
permissions have led to statistics such as “50% of applications
send info to third parties” [15]. This information disclosure is
asserted to be “clearly wrong” [15] even though the practice is
likely in accordance with Google’s privacy policy2 [2]. Other
studies claim 1 in 5 applications are a privacy threat, 1 in 20
can make arbitrary phone calls, 3% can arbitrarily send text
messages, and 383 can access authentication information from
other applications and service [23].

Users have become habituated to clicking through terms
of service and warnings, and Android users are thus unlikely
to pay much attention to notices about Android permissions.
Average users cannot be expected to understand the semantics
of approximately 130 permissions. Similarly, users likely tend
to be unaware of the privacy impacts of their decisions. The
disconnect between the user accepting security and privacy set-
tings, once, during install and the enforcement of these settings
upon subsequent application execution, along with ambiguous
permission descriptions can lead to a fundamentally unaware
user base. Given that there is no central moderator of the
Android market, the policing of applications is largely left
to these same users.

We suggest that applications that request more permission
than needed fit into two general sets: applications that “do
something ‘questionable’ or ’malicious’ on purpose” (e.g.,
quietly collect information for advertising purposes), or appli-
cations that inadvertently request additional permissions due
to lack of understanding, laziness, or expected future use of
a capability. In the first case, the mobile application actually
requires permissions that may seem unnecessary to a user. We
take a simplistic definition of “proper operation” assuming
that all API calls that require a permission are required
for proper operation. For example, an application marketed
as a battery monitor possibly should not require the GPS

2Google’s Privacy Policy is fairly general and vague allowing for many
forms of information collection and sharing. For example, the policy contains
verbiage such as “We may share with third parties certain pieces of aggregate,
non-personal information,” “we provide such information to our subsidiaries,
affiliated companies or other trusted businesses or persons for the purpose of
processing personal information on our behalf,” “We may process personal
information to provide our own services. In some cases, we may process
personal information on behalf of and according to the instructions of a
third party, such as our advertising partners,” that allow for a wide variety
information collection and sharing.

permission that the application requested. For our purposes, if
the application makes use of the API interface for location,
then the permission request is legitimate. However in the
second case, when superfluous permissions are requested, the
application is clearly requesting more permission that required,
a plain violation of the principle of least privilege [18]. Note
that under our definition, if the previously mentioned battery
monitor application actually makes use of all associated API
calls, it may actually have correctly specified permissions. Of
course, such an application may not be classified similarly
under other metrics such as EULA or user expectation, If the
second set was reduced to near empty, then users would only
have be wary of “questionable” applications.

Much of the application-specific burden of identifying re-
quested permission falls with application developers, who
are required to specify permissions that an application will
request. The Android platform has no straightforward way for
a developer to determine appropriate permissions to request.
Either the developer needs to observe in the online API
documentation that a permission is needed by a particular
function call, or, more likely, observe in the emulator that
a Java error is thrown when such a function is called.
This problem posed to the developer is compounded by the
granularity and ambiguity of the permission mnemonics and
associated descriptions. The permission READ_SMS is a fairly
straight-forward and specific, but INTERNET, while straight-
forward, is very general. Other permissions may be consid-
ered obtuse (ACCESS_SURFACE_FLINGER3) or ambiguous
(DIAGNOSTIC). Even the clear permissions have created
serious user confusion, as evidenced by the user outrage when
Rovio added the SMS permission to their popular game Angry
Birds. The permission was required because Rovio had added
mobile payment capabilities allowing in-game purchasing over
SMS [12].

Even though applications obtained from the market are in
a compiled form that does not readily permit source code
analysis, the requested permissions can be extracted from the
binary XML with relative ease. From a corpus of 34,000
free Android applications obtained from the Android market
in March 2011, we observed indicators that developers are
currently not specifying permissions according to least privi-
lege. For example, More than four percent of the applications
specify duplicate permissions. That is, the application manifest
contained the same permission more than once (for some,
many times). Table I shows the number of applications that re-
quest duplicate permissions by market category, demonstrating
that even reference libraries and medical applications contain
some duplicates. Table II shows the permissions most often
duplicated.

III. PERMISSION CHECK TOOL

We have created a tool that aids the developer in assessing
appropriate application permission requests. To encourage
widespread adoption, this tool is implemented as an Eclipse

3The extended description of this permission is “Allows an application to
use SurfaceFlinger’s Low Level Features.”

Market Category Total Apps With Duplicates
Arcade and Action 1344 17

Books and Reference 1452 24
Brain and Puzzle 1352 14

Business 1092 38
Cards and Casino 842 85

Casual 966 4
Comics 838 11

Communication 1311 77
Education 1305 21

Entertainment 1522 40
Finance 1354 44

Health and Fitness 1258 36
Libraries and Demo 1156 21

Lifestyle 1489 48
Live Wallpaper 537 14

Media and Video 1360 49
Medical 527 2

Music and Audio 1124 89
News and Magazine 1419 63

Personalization 1342 54
Photography 1165 283
Productivity 1319 54

Racing 216 76
Shopping 1155 46

Social 1296 41
Sports 1433 23

Sports Games 365 71
Tools 690 27

Transportation 454 8
Travel and Local 1473 35

Weather 342 4
Widgets 1395 64

TABLE I
APPLICATIONS WITH DUPLICATE PERMISSIONS BY MARKET CATEGORY

Permission Count
INTERNET 620

ACCESS NETWORK STATE 438
READ PHONE STATE 153

RECEIVE BOOT COMPLETED 147
WRITE EXTERNAL STORAGE 59

READ CONTACTS 49
ACCESS FINE LOCATION 48

TABLE II
TOP TEN DUPLICATE PERMISSIONS REQUESTED

IDE plugin that can be used alongside the Android-specific
development environment provided in the SDK. The tool eval-
uates an Android application for platform permission access
and informs the developer on minimum controls required for
proper execution. In this section we discuss the creation of a
permission-API database and the Eclipse implementation.

A. Permission-API database

We created one-to-many permission-API mappings by man-
ually parsing the API documentation4 and creating a database
of functions and permissions upon which they depend. Some

4While no longer automatically distributed, it can be locally installed using
the SDK Manager tool.

permission mappings are more complex than others. For
example, instantiating and using a BluetoothSocket re-
quiring the BLUETOOTH permission, is a fairly straight-
forward example, but the LocationManager class can-
not be instantiated directly and the permission varies
based on constants used in the instantiation: when us-
ing GPS_PROVIDER with LocationManager the re-
quired permission is ACCESS_FINE_LOCATION, when us-
ing NETWORK_PROVIDER with LocationManager the
permission is ACCESS_COURSE_LOCATION.

Permission-API databases can, and should, be created a
priori and simply loaded by the tool the first time the plugin
is executed. Once created, the databases should require little
maintenance since each database is particular to an Android
API revision which is static. The only maintenance would be
the result of an error or omission in the database itself.

Inconsistent nomenclature in the documentation further
complicates the creation of a Permission-API database. Fig-
ure 2 shows several examples taken directly from the doc-
umentation. The class overview for BluetoothSocket
shows the requirement for the BLUETOOTH permission in
a “Note”: “Requires the BLUETOOTH permission.” Simi-
larly the documentation for the disable[] function we
see “Requires the BLUETOOTH permission” but not as a
“Note.” Other instances demonstrate more variation as is
the case with KILL_BACKGROUND_PROCESSES which is
called out with “You must hold the permission...to be able
to call this method” in lieu of the more common “re-
quired.” In Figure 2 we see that a permission required for
restartPackage is actually noted in the text associated
with killBackgroundProcess.

As a result of these complexities, the version of the database
developed as a proof of concept for our tool handles all method
(function) and class level permission enforcement denoted in
the SDK documentation for Android 2.2. The database consists
of two sets of one-to-many mappings: permission associated
with one or more methods and permission associated with one
or more classes. Permissions that have no associated method
(or class) have no entry in the set.

B. Static Analysis

When the user invokes the plugin, the plugin parses applica-
tion requested permissions from AndroidManifest.xml
into a map. Each map entry stores meta information about
permission, such as source code line number, and is initially
marked as unused. The plugin then inspects all java source
files (Eclipse IProject “members”) using Eclipse’s built in API
functions for Java, in particular the Abstract Syntax Tree
(AST). Each API reference is checked against the Permission-
API databases, if a permission is found to be required for
a reference the associated map entry is marked as used.
Once all source has been inspected, permission entries in
the map still marked as unused are known to be extrane-
ous. As an additional aid to the developer, references that
are found to require a permission that was not specified in
the AndroidManfiest.xml are also tracked in order to

suggest additional permissions for inclusion in the manifest
and prevent error conditions during execution.

C. User Interface Notification

After the static analysis completes, both permissions that
have been specified by the developer but are not required
and permissions that are required by the application but
have not been specified are known. The plugin again utilizes
familiar Eclipse features to notify the developer of any omitted
and/or extraneous items. An extraneous permission is shown
in Figure 3 with a red “error” mark and associated tooltip
text. The “error” condition is recognized by Eclipse and will
prevent the build (unless the developer corrects the condition
and reruns the tool, or manually clears the mark). Similarly, the
tool will notify the developer, using a yellow “warning” mark,
in the case where a function requiring a permission is use yet
the developer hasn’t specified the appropriate permission in
the manifest. By using the existing Eclipse interfaces, other
views, such as the Problems View, can be used to obtain a list
of permissions related errors for the entire Eclipse Workspace.

D. Tool Results

Of the applications obtained directly from the Android
market, only a very small fraction of the developers have

Fig. 2. Android Documentation examples of calling out required
permissions

Fig. 3. Eclipse plugin Highlighting Extraneous Permission

Application Extra Permissions
droidcon 1
meshapp 2

posit mobile 7
selenium 1

wifi-tether 1
YouTube Direct 3

TABLE III
EXTRANEOUS PERMISSIONS FOUND IN OPEN ANDROID APPLICATION

SOURCE

elected to make source code available to the public, making
empirical analysis of our source code oriented tool difficult.
Many mobile applications are developed by novice individuals
or small groups that have minimal quality assurance or code
auditing procedures. One might predict that, due to the open
audit ability, applications that have available sources are more
likely to have minimal permissions specified than the closed
source applications. Even so, cursory searching revealed that
some of these open sourced applications indeed have or have
had extraneous permissions specified. As shown in Table III,
six applications were identified to have extraneous permissions
via source analysis. Not only did applications include extra
permissions, but some specified the same permission multiple
times [4], [6] or specified fictitious permissions [3].

IV. RELATED WORK

Several groups have explored Android security and at-
tempted to formalize the security model [8], [22], apply
security enhancements found on modern computers to Android
[13], [17], [20], [21], and adapt or extend Android’s current
models [9], [11], [14], [16]. Some of the general reviews of
Android security also take into account characteristics specific
to the mobile market, such as battery life or billing based
on throughput [16], [21]. Related research spans across the
underlying Linux base, the Android middleware and Android
applications. Android applications have been studied in the
context of a permission model and as case studies. Case
studies often involve the collection and various analysis of
a percentage of the Android market. This percentage varies
widely in collection manner and number of applications used
in the study (from 30 [9] to 48,000 [23]).

Twenty-five Firefox browser extensions were analyzed by
Barth et al. [7] who found that 78% request more privilege than
required, demonstrating a lack of least privilege in the browser
extensions. Enck et al. scrutinize 30 applications demonstrat-
ing their dynamic taint system on Android. Of the 30 popular
applications, 1/2 to 2/3 were found to exhibit questionable
behavior such as reporting location to 3rd parties or disclosing
sensitive information [9]. In this case the applications were
clearly utilizing the permissions requested of the application5.
Complementing this work, we have focused on applications
that request extraneous permissions neatly addressing both sets
of applications mentioned in section II.

5Enck et al. also note that the EULA and privacy policies, if provided, omit
or are not clear about advertising and 3rd party data collection

Perhaps the most related work is [19] which explores iPhone
privacy issues in rooted iPhones, iPhones vulnerable due to
software vulnerabilities, and fully patched iPhones that osten-
sibly only allow data access through the published API. The
author releases an open source, proof of concept application:
SpyPhone, which collects users data. Some of this collected
data would likely be expected by a typical smartphone user:
address book, phone call logs, email messages. Other bits
of information may cause alarm in many users such as the
keyboard cache file.

V. DISCUSSION AND FUTURE WORK

Market share alone demonstrates the viability of the
Android platform. Both the generality and granularity of
application-level permissions warrant some concern to users
and developers alike. However, even if the Android security
and privacy models remain unchanged, developers can create
applications that request only the minimum set of permissions
required for execution. We have presented a tool that aids
developers in just this way by highlighting code that require
certain permissions (and thus avoiding errors during execution)
and highlighting requested permissions that are not needed
(maintaining least privilege, a desirable security feature).

The tool described here is intended as a source analysis
tool for developer use. There is no requirement for developers
to release the source code of Android applications. Compiled
and packaged applications are typically a collection of binary
XML and JAVA classes in a zipped format. As such, there
is no ready dataset of Android application source code which
makes extensive empirical analysis of this plugin difficult.

Several updates and additions could be made to the tool.
For example, the tool already integrates with the suggested
IDE for Android development, but the process of creating an
appropriate permission set could be automated as part of the
build process. The permission-function pairs used by the tool
need to be generated for all API levels. Additionally, there
are several indirect enforcements of permissions through bit-
field class data members, or class interfaces that are more
difficult to extract from documentation. It may be difficult to
enumerate all instances from documentation and API fuzzing
may be more appropriate. Eclipse integration could also be
improved through the use of an Eclipse Nature allowing
for dynamic checking of extra and omitted permissions as
software is developed. A Nature can also automatically detect
when the user had corrected an error mark eliminating the
need for the developer to re-run the tool. Using the Eclipse
AST to locate API references is a convenient method of source
inspection, but more advanced static analysis techniques could
be employed.

Corpora of applications and application source code should
be created from open sources and then analyzed using future
versions of this tool. Such corpora will be useful for many
future Android based research projects, both related to this
work and not. In this work we assumed a very broad definition
of “proper” in regard to the operation of an application.

Applications such as a battery monitor need very few permis-
sions, and certainly should not require Internet access, contact
list access or location information in order to report battery
information to the user. We intend to study the privacy and
security impacts of publicly available Android applications
that offer similar extended functionality.

The current version of the tool should be considered beta
quality. The plugin is available as a jar file available at
http://www.ece.cmu.edu/∼tvidas/PermCheckTool.jar and can
be installed by saving the file into the plugins directory for
Eclipse.

REFERENCES

[1] Android most popular operating system in us among recent smartphone
buyers|nielsen wire. http://blog.nielsen.com/nielsenwire/online\
mobile/android-most-popular-operating-system-in-u-s-among-recent-
smartphone-buyers/, Oct. 2010.

[2] Android.com. http://www.android.com/privacy.html, Oct. 2010.
[3] Posit-mobile issue 100. http://code.google.com/p/posit-mobile/issues/

detail?id=100, Nov. 2010.
[4] selenium revision log. http://code.google.com/p/selenium/source/diff?

path=/trunk/android/server/AndroidManifest.xml\&format=side\&r=
10729\&old path=/trunk/android/server/AndroidManifest.xml\&old=
10639, Dec. 2010.

[5] A. Acquisti and J. Grossklags. Privacy and rationality in individual
decision making. Security & Privacy, IEEE, 3(1):26–33, 2005.

[6] D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji. A method-
ology for empirical analysis of permission-based security models and
its application to android. In CCS, pages 73–84. ACM, 2010.

[7] A. Barth, A. Felt, P. Saxena, and A. Boodman. Protecting browsers from
extension vulnerabilities. In NDSS. Citeseer, 2010.

[8] A. Chaudhuri. Language-based security on android. In ACM SIGPLAN
Workshop on Prog. Lang. and Analysis for Security, pages 1–7, 2009.

[9] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth.
TaintDroid: an Information-Flow tracking system for realtime privacy
monitoring on smartphones. In OSDI 2010, Vancouver, BC, Canada.

[10] M. Meeker, S. Devitt, and L. Wu. Ten questions internet execs should
ask & answer. San Fransisco, CA, Nov. 2010. Web 2.0 Summit.

[11] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints. In
CCS, pages 328–332. ACM, 2010.

[12] P. Nickinson. http://m.androidcentral.com/rovio-explains-why-angry-
birds-update-needs-sms-permission, Feb. 2011.

[13] M. Ongtang, K. Butler, and P. McDaniel. Porscha: Policy oriented secure
content handling in android. pages 221–230, 2010.

[14] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically
rich application-centric security in android. pages 340–349. IEEE, 2009.

[15] N. Saint. 50% of android apps with internet access that ask for your
location send it to advertisers. http://www.businessinsider.com/50-of-
android-apps-that-ask-for-your-location-send-it-to-advertisers-2010-
10, Oct. 2010.

[16] A. Schmidt, R. Bye, H. Schmidt, J. Clausen, O. Kiraz, K. Yuksel,
S. Camtepe, and S. Albayrak. Static analysis of executables for
collaborative malware detection on android. In ICC, pages 1–5. IEEE,
2009.

[17] A. Schmidt, H. Schmidt, J. Clausen, K. Yksel, O. Kiraz, A. Camtepe,
and S. Albayrak. Enhancing security of linux-based android devices. In
15th International Linux Kongress, Lehmann, 2008.

[18] M. Schroeder and J. Saltzer. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[19] N. Seriot. iPhone privacy. Arlington, VA, 2010. Blackhat DC.
[20] A. Shabtai, Y. Fledel, and Y. Elovici. Securing Android-Powered mobile

devices using SELinux. IEEE Security and Privacy, 2009.
[21] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer.

Google android: A comprehensive security assessment. Security &
Privacy, IEEE, 8(2):35–44, 2010.

[22] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka. Towards formal
analysis of the Permission-Based security model for android. pages
87–92. IEEE, 2009.

[23] T. Vennon and D. Stroop. Threat analysis of the android market.
Technical report, Tech. rep., SMobile Systems, 2010, June 2010.

