

Security Behavior Observatory: Infrastructure for Long-
term Monitoring of Client Machines

Alain Forget, Saranga Komanduri, Alessandro Acquisti,
Nicolas Christin, Lorrie Faith Cranor, and Rahul Telang

July 14, 2014

CMU-CyLab-14-009

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

http://www.cylab.cmu.edu/research/techreports/2014/tr_cylab14009.html
http://www.cylab.cmu.edu/

Security Behavior Observatory:
Infrastructure for Long-term Monitoring of Client Machines

Alain Forgeta, Saranga Komandurib,
Alessandro Acquistic, Nicolas Christind, Lorrie Faith Cranore, Rahul Telangf

Carnegie Mellon University
aaforget@cmu.edu, bsarangak@cs.cmu.edu,

cacquisti@andrew.cmu.edu, dnicolasc@cmu.edu, elorrie@cmu.edu, f rtelang@andrew.cmu.edu

Abstract—Much of the data researchers usually collect about
users’ privacy and security behavior comes from short-term
studies and focuses on specific, narrow activities. We present a
design architecture for the Security Behavior Observatory (SBO),
a client-server infrastructure designed to collect a wide array of
data on user and computer behavior from a panel of hundreds of
participants over several years. The SBO infrastructure had to be
carefully designed to fulfill several requirements. First, the SBO
must scale with the desired length, breadth, and depth of data
collection. Second, we must take extraordinary care to ensure the
security and privacy of the collected data, which will inevitably
include intimate details about our participants’ behavior. Third,
the SBO must serve our research interests, which will inevitably
change over the course of the study, as collected data is analyzed,
interpreted, and suggest further lines of inquiry. We describe in
detail the SBO infrastructure, its secure data collection methods,
the benefits of our design and implementation, as well as the
hurdles and tradeoffs to consider when designing such a data
collection system.

I. INTRODUCTION

Our understanding of the security and privacy challenges
users face has grown substantially since some seminal usable
security papers were first published [1], [2]. Much of the
empirical data relating to topics such as authentication [3],
[4], computer warnings [5], phishing [6], [7], identity theft [8],
has been collected through either in-lab or online controlled
experiments, or with surveys and interviews. Controlled lab
and online studies allow researchers to isolate variables to
observe and measure specific phenomena and effects. Survey
and interview data have given us a better understanding of
users’ perceptions and perspectives, which are invaluable if
we are to make security and privacy systems more usable.
However, lab studies often lack ecological validity, since users
may behave differently in the real world than in an artificial
experimental setting [9]. Furthermore, self-reported data may
not match users’ actual behavior [10], [11].

Thus, the research community has begun focusing on more
ecologically-valid data collection. Most published field studies
to date have concentrated on specific sub-areas in the usable
security and privacy field (e.g., text passwords [12], [13], ATM
usage [11], malware infection [14], [15], mobile locking [16],
social networks [17]). Most of these studies have short-term
focus and monitor only a specific aspect of user or machine
behavior. If we are to discover the ground truth of users’ most
pressing security and privacy challenges, it seems important to

collect data on users’ and their computers’ overall naturalistic
behavior in the wild over an extended period of time.

In this paper, we present and describe the Security Behavior
Observatory (SBO) we designed to help researchers collect
more ecologically-valid data of the widest possible scope over
several years. The SBO is a client-server infrastructure for
collecting data from a panel of several hundred household
computers. Our software will allow us to deploy modular
and independent sensors to monitor many security and privacy
aspects of home computer use. Observing comprehensive and
real-time decision-making of a large panel of users over an
extended period of time in a real world setting, in itself, is
invaluable. This information can provide a variety of practical
and powerful insights into improving security and privacy
policies and technologies. However, designing and building the
SBO requires attention to factors less frequently considered in
shorter-term, more focused studies. The infrastructure must
be sufficiently scalable, reliable, and robust to collect the
required size, breadth, and depth of data over the study’s
lengthy duration. In addition, we must carefully consider how
best to maintain the security and privacy of participants’ data,
given the sheer amount and detail of behavioral data we will
collect. We also require the flexibility to adjust the types of
data we collect throughout the study, since research needs will
invariably change as earlier data analysis leads to further lines
of inquiry.

This paper is organized as follows. Section II describes
how this project contributes to the science of security. Sec-
tion III introduces the SBO and provides examples of the
data we intend to begin collecting. Section IV elaborates on
the SBO’s architecture from two perspectives. First, we use a
data flow model (Figure 1) to describe how data is collected
from participants’ client machines and sent to our server,
and describe the specific benefits of our design decisions.
Second, we use a deployment model (Figure 2) to describe
our server configuration and how it securely and reliably
handles the data encryption, transfer, and storage procedures.
We briefly describe how participants enroll in our study in
Section V. Section VI discusses some challenges, trade-offs,
and limitations to consider when designing and deploying
such an SBO system. Finally, we describe related work of
similar data collection endeavors in Section VII and offer some
concluding remarks in Section VIII.

II. THE SCIENCE

Our understanding of computer and user behavior, with
respect to security and privacy, has largely been based on
studies of short duration and narrow focus. These studies
have helped guide research over the past 20 years. How-
ever, a large-scale field study permits the measurement of
users’ security and privacy challenges and behaviors with
much greater ecological validity than in the lab, where the
experimental setting might not reflect users’ actual behavior
in their natural environment [?]. Furthermore, a long-term
longitudinal study would provide data on the frequencies at
which users encounter various security and privacy issues.
These frequencies would represent risk probabilities, which
are a key element of any risk assessment or risk management
strategy. Thus, data from such a field study could be used to
both inform and prioritize future research agendas.

To fill this need for more ecologically-valid data, we have
built the Security Behavior Observatory (SBO): a framework
for collecting data from a large panel of end-users whose
online behavior will be monitored and analyzed over an
extended period of time. This project is now possible thanks
to widespread access to broadband Internet connections with
reasonable upload speeds. The SBO offers an unprecedented
window on real-time, real-life security and privacy behavior
in the wild. Through the SBO, we aim to contribute to the
evolution of a data-driven science of information security, with
immediate applications in usability, economics, and secure
system design. We hope this project will encourage discus-
sions on collecting ecologically-valid data in current research
practices, and serve as a template for future field studies.

III. SECURITY BEHAVIOR OBSERVATORY

The Security Behavior Observatory (SBO) is a client-server
architecture where participants’ client computers are moni-
tored over an extended period of time and upload collected
user and computer behavior data to our servers. The initial
launch of the SBO will monitor computers running Win-
dows Vista, 7, and 8. We currently focus on these operating
systems because their underlying architectures are almost
identical (at least for the purposes of data collection), Windows
has been the most popular operating system for the past 5
years [18], and desktop usage remains dominant over mobile
computing [19]. However, the high-level infrastructure design
and our own implementation (both described throughout this
paper) can easily be applied to other operating systems (see
Section IV-A7). Examples of the data we intend to monitor
from hundreds of client machines over several years, with
IRB approval and under strict security and privacy safeguards,
include those described in the following subsections.

Our architecture is designed to provide data covering as
much of the security and privacy space as possible. Some
example research questions we intend to examine include:

• How up-to-date are operating systems?
• How long before a clean machine is infected, and how

does infection actually occur in the wild?

• What are users’ online social network privacy settings?
Do they ever change, and why?

• What warning dialog messages do users encounter most
often, and how do users respond?

As of this writing, we are performing final tests on most
the implemented data collection sensors (see Sections III-A
to III-E) while the others are under development (see Sec-
tions III-F to III-H). We intend to invite participants to com-
plete questionnaires and interviews to elicit their perspectives
on issues and events we observe throughout the study. We
are beginning a pilot study on the main client-server SBO
infrastructure (see Sections III-I to IV-A) and user study
methodology (see Section V). We have purchased the server
deployment configuration (see Section IV-B) and hope to begin
data collection no later than this summer.

A. Filesystem
As currently designed, the SBO tracks changes to the

filesystem, including the added, modified, or deleted file’s size,
last date modified, permissions, and other related informa-
tion. 1 This data will help determine, for instance, if malware
exists on the system and if so, how it affects machines’ file
systems, and whether or not users are likely to have noticed
its presence.

B. Installed software and operating system updates
The SBO maintains a list of installed applications, their

version numbers, and other related data, to determine what
privacy or security software (e.g., anti-virus, firewall, ad-
blockers, anonymizers) are installed, and whether they are
up to date. The SBO also tracks which (and how soon after
their release) operating system updates and patches have been
installed. This allows us to measure the duration and severity
of client machines’ vulnerability to security threats.

C. Processes
The SBO monitors which processes (e.g., programs, appli-

cations) are running on clients’ machines. It captures when
all processes start and terminate, and can provide additional
process status information at regular intervals. Primarily, this
data will assist with the detection of malware. The SBO
also collects general computer usage statistics that may help
prioritize future security and privacy work, such as towards
frequently-used applications.

D. Security-related events
The SBO also notes general security-related events, such as

account-related events (e.g., logins, settings changes, password
changes), registry modifications, wireless network authenti-
cations, firewall changes, and potential attacks detected by
the operating system. This will provide valuable insights on
multiple usable security topics, including the security mea-
sures users’ employ on their computers, potentially dangerous
program behavior, and the types and frequency of attacks that
occur on home users’ machines.

1However, we do not collect file or network packet contents since this may
be too invasive and bandwidth intensive.

E. Network traffic

The SBO captures all network packet headers sent and
received to clients’ computers. 1 This data would allow us
to detect various network traffic types that may be risky (e.g.,
peer-to-peer file transfers, dangerous websites) or suspicious
(e.g., malware, intrusion attacks). We could thereby verify
whether risky Internet behavior is correlated with a higher
probability of an attack or infection.

F. Internet browsing behavior

We intend to further monitor users’ web browsing behavior
by collecting data from Microsoft Internet Explorer, Mozilla
Firefox, and Google Chrome. We intend to capture search
queries, online social network activity, browsers’ and some
online accounts’ privacy and security settings, as well as other
behavior of particular research interest (e.g., social networks,
behavioral advertising). One example of possible analyses
includes: what are users’ privacy settings and behaviors on
online social networks, do said settings adequately preserve
users privacy, and if not, how could the website be better
designed to empower users to more easily and accurately
express their desired privacy settings. Another example of
planned analysis consists of measuring how often users’ actu-
ally make purchases derived from behavioral advertising links.
This would reveal insights on the actual utility users gain from
behavioral advertising, with respect to the privacy cost.

G. Configuration of software and online accounts

We also intend to track the security and privacy settings of
users’ software (see Section III-B) and online accounts (e.g.,
Facebook, Twitter). This would provide data regarding users’
security and privacy practices. Should users change any such
settings during the course of the study, it will be particularly
interesting to understand users’ motivation for initiating the
change. If this could not be inferred with our data (i.e., if
we did not detect any particular event preceding the setting
modifications), we may send participants a survey or request
an interview to inquire further.

H. Warnings

We intend to capture the content of and users’ response
to warning dialogs that request users make a security- or
privacy-related decision. Past research has shown that users
frequently do not understand these warnings, let alone know
how to respond [5], [20]. This data would bring insights into
the warnings users must cope with most frequently and what
security and privacy decisions users make when prompted.

I. Security, Privacy, Usability, and Research Requirements

To capture such a wide array of data types over a long period
of time, it is crucial we design and build an infrastructure
that satisfies several requirements. First, we should minimize
the impact of our data collection software on participants’
computing and network performance. Thus, since the amount
of data we can gather and transmit from clients is limited,
we need the ability to be selective with and vary the types

Sensor

Sensor

Sensor

Filesystem
Client

communication
module

Server
communication

module
Filesystem

Sensor

Client Server

Fig. 1. Data flow between our SBO client and server software.

of data we collect over time. Second, as we collect and
analyze data, we expect our research questions will evolve
and require different types of data to be answered. For these
reasons, our data collection architecture must be flexible
enough to accommodate our changing needs. Third, unlike
most experimental software which is typically used for only
a short time for specific targeted purposes and environments,
any problems caused by our client software could profoundly
impact participants’ computing experience, due to the breadth,
depth, and duration of our data collection. Thus, our system
requires a much higher degree of stability and reliability
than typical experimental software. With these requirements
in mind, we have designed and implemented the following
architecture for the SBO.

IV. ARCHITECTURE

In this section we describe our design and implementation of
the SBO architecture from two perspectives. We first illustrate
how the data flows from initial collection on the client to
storage on our server. Second, we discuss our deployment of
servers and each of their roles. For both of these perspectives,
we highlight the specific benefits of our design.

A. Data Collection and Flow

Figure 1 shows a data flow diagram of the client-server
architecture. Each type of data is collected by a sensor, which
outputs the data into a common directory. The client com-
munication module periodically checks this directory for data
files, and compresses, encrypts, and sends them over an SSL-
encrypted channel to the server communication module. This
architecture provides a number of beneficial design features.

1) Silent updates: We use Windows Installer [21] to pack-
age all the client software components into a single executable.
Windows Installer provides functionality for cleanly installing
and uninstalling the software, as well as upgrading. When
the client communication module establishes a connection to
the server, it first verifies that client software is up to date.
If the server determines that it is not, the server provides a
link to the current version’s installation executable (hosted on
our server) to the client. The client then disconnects from the
server, downloads the current version of the client software,
and checks the file’s integrity with an MD5 hash. If the file
is intact, the client shuts itself down after silently running

the installer executable in the background. Windows Installer
then performs a “major upgrade” whereby the previous version
is completely uninstalled before installing the new version.
This clean-install approach avoids potential complex problems
that can occur with minor upgrades and patches, which can
result in an unstable software state. Should the update fail for
some reason, Windows Installer will roll back to the previous
software version, and the data collection can continue until
the client attempts the update again. The entire update process
is completely invisible to the user, and does not affect their
normal computer usage in any way.

2) Independent sensors: Each type of data of interest (see
Section III) is collected by a software sensor we have designed
and implemented. Each sensor is independent of the rest of
the data collection system. This sensor independence provides
the following robustness and adaptability benefits. Firstly,
if a sensor fails, the other sensors will continue to collect
data, which the client communication module will continue
to upload to the server. Secondly, if the client communication
module fails or the server is unavailable, the client sensors
will continue to collect and store data locally, and upload
the data once the client communication module has finished
restarting and/or the server becomes available. Thirdly, as the
data interests for the study change over time, sensors can be
silently (see Section IV-A1) and independently added, enabled,
configured, disabled, or removed by the experimenters at
any time without impacting any other aspect of the client
system or our software. Finally, sensors can be implemented
in whichever language is best for collecting the desired data.
In Windows, this is most often a .NET language (e.g., C#,
PowerShell), a command-line batch script, or Java.

3) Least privilege: To ensure clients’ security and privacy,
the principle of least privilege should be followed whenever
possible. However, some data we seek to collect is likely to
require administrator access to the client system. Fortunately,
our architecture’s sensors are independent, so higher privileges
can be given only to sensors that require them.

4) Minimal footprint: Since the study’s primary goal is
to observe computer users’ typical behavior, we must take
care to avoid experimental effects that may influence this
behavior. Thus, users should not notice a decrease in computer
or network performance during the study. We achieve this in
two ways. First, we take care to avoid intensive processing
or blocking access to system resources as much as possible.
Second, we throttle our client software’s data upload speed
to at most 192 kilobits per second (kbps), which is half of
the slowest upload speed of the least expensive home Internet
service plan available (excluding dial-up) in our initial area of
participant recruitment (see Section VI-D). A data transfer rate
of 192 kbps is equivalent to about 1.44 megabytes per minute,
which is not much bandwidth for on-going data collection.
This further enforces a minimal footprint by requiring the
experimenters to be selective about what types and richness
of data we collect. Although necessary, prioritizing what data
to collect can be challenging (see Section VI).

5) Minimal user interaction: The use of passive observation
to avoid experimental effects also implies we must minimize
any user interaction. Our sensors and client communication
module execute as Windows services [22], which implicitly
provides this benefit. A Windows service is an executable
program that runs in the background. Similar to Unix daemons,
services (or any process or thread they spawn) cannot display
any form of user interface (since Windows Vista). Thus, should
a program running as a service attempt to display anything to
the user, it will not be shown. This acts as a safeguard to ensure
that we do not influence the user’s normal computing tasks.
However, this can be a challenge should the experimenters
purposefully desire to interact with the user. This may be
desirable should the experimenters wish to test participants’
behavior to some stimuli. If future research questions require
this, the application containing the stimuli would run as a
standard program, not as a service, and would be designed
so that any disruption to the user is minimized. However, the
stimuli, and any effects it may have on all data being collected,
should be carefully considered.

6) Multiple user accounts: Participants’ computers may
have multiple accounts. The computer’s owner may have a
separate account for guests, or each member of a household
may have a separate account on a common machine. It is
crucial that our data collection software run regardless of
which user account may be logged in. Fortunately, Windows
services can be set to always run when the system starts,
independently of which user(s) logs in or logs out. Since our
sensors and client communication module run as services, they
are assured to run irrespective of which users login. Standard
(non-service) applications can also be executed at startup,
regardless of which user logs in, by adding a value to the
registry [23].

7) Portability: Although we are currently targeting only
Windows machines, we may desire the flexibility to collect
data from other operating systems (OSes). To do so, we
would almost certainly need to write new sensors, since the
Windows underlying architecture is completely different from
Unix-based operating systems. However, the client and server
communication modules are written in Java, and thus should
be easily-portable to any OS.

B. Deployment

There are several high-level requirements the SBO must
meet. It is crucial that the data is securely and efficiently
collected from participants. The data must must also be as
securely and reliably stored as possible. Finally, researchers
must be able to access and work with the data with as little
inconvenience as possible. Figure 2 illustrates the deployment
of our server architecture we believe best meets these require-
ments. We describe below each physical server’s role, how
data flows from the clients to the various server machines,
and the security precautions that are in effect throughout.

1) Data collection server: The data collection server’s role
is solely to receive data from clients, and periodically send said

Data collection
server

Researchers

Fig. 2. Our SBO high-level hardware architecture and data flow.

data to the data analysis server when requested. The data flow
from clients to the data collection server proceeds as follows:

1) Data is continuously generated on client machines (see
Section IV-A).

2) At regular intervals, each client establishes an SSL
connection to the data collection server.

3) The client and server mutually authenticate each other
by encrypting random numbers with a shared symmetric
authentication key [24].

4) When the server is ready to receive data, the client
compresses the data, encrypts the compressed data with
its symmetric encryption key (which is distinct from the
authentication key and unknown to the data collection
server), and sends it to the server.

5) The server stores the data locally, still encrypted with
the client’s encryption key.

2) Data analysis server: The purpose of the data analysis
server is to periodically retrieve the encrypted data from
the data collection server (and thereafter delete is from the
data collection server), store all collected data in the data
storage node(s), and provide access to researchers to perform
work with the data. To ensure the data’s security, it must
remain solely on the data analysis server and be accessible
only to project administrators and researchers. Thus, the data
analysis server can be accessed only through a secure shell
(SSH) tunnel originating from the specific IP addresses of the
researchers’ and administrators’ work machines. To remotely
access the data analysis server, researchers and administrators
must first remotely connect to their work machine and, through
said machine, establish an SSH tunnel into the data analysis
server. Since the data must never exist anywhere other than
our servers, all work with the data must be performed through
this SSH tunnel.

As previously mentioned, the data analysis server period-
ically requests clients’ encrypted data from the data collec-
tion server. This data transmission occurs over a mutually-
authenticated SSL connection [24], and is scheduled to occur
at a time of day when the data collection server is least
likely to be busy receiving data from clients (e.g. 4:00 AM).
The received data is still be encrypted with the correspond-
ing clients’ symmetric encryption key (see Section IV-B1).

Clearly, the data cannot be analyzed while it is encrypted,
but we also cannot risk storing it on the server unencrypted.
Section VI-C discusses how we handle the decryption of the
data for analysis.

3) Data node(s): Participants’ encrypted data is ulti-
mately stored in two places; in the data storage node(s) and
data backup node(s). The backup node(s) are located in a
physically-separate building from the storage nodes. These
nodes are accessible only through the data analysis server,
which represents the storage and backup nodes each as a
network-attached storage (NAS) ZFS volume [25], [26]. Some
key features of ZFS include snapshots (i.e., simple revision
control), error detection, protections against data corruption,
and storage pools, which allow the single logical ZFS volume
to dynamically expand to include additional physical volumes.
Thus, as our needs for additional storage grow and we add
storage nodes, the additional storage space can simply be
added to the existing logical ZFS volume, rather than being
represented as a new volume (which would require additional
researcher effort to manage and organize the data among
multiple logical volumes).

An alternative filesystem could be the Hadoop Distributed
File System (HDFS) [27], [28]. With similar benefits as
ZFS, HDFS also allows data processing and analysis to be
parallelized by distributing the data and computations among
the nodes to more quickly process the data. However, HDFS
cannot be treated as a traditional logical volume; it must be
accessed through a special interface (i.e., API). Furthermore,
programs must be written in a particular way to leverage
the parallelism benefits of HDFS. Thus, Hadoop may require
significant investment costs of time and effort. Furthermore,
Hadoop would be beneficial when there are several data
storage nodes which can perform computations in parallel.
However, we currently need only a single storage node with an
8-core CPU to begin data collection, so the parallelism gains
are not worth the time and effort investment. As the size of
our panel and collected data grows to require several storage
nodes, we will consider using Hadoop or another data storage
and management technology instead of ZFS.

V. USER STUDY METHODOLOGY

With the aforementioned infrastructure in place and having
already obtained approval from our institutional review board
for these procedures, we can solicit users to participate in our
panel. Our primary method of finding participants is through
a recruitment service for which people have asked to be
notified about experiments. Potential participants will be asked
a number of pre-screening questions. Participants must be over
18 and own a Windows Vista, 7, or 8 personal computer. We
send interested persons an e-mail with a link to where they
can complete the following initial enrollment tasks:

1) Reading and completing a consent form, which clearly
informs users that we may monitor all activity on their
computer and collect any data except for the contents
of personal files, e-mails sent or received, content of
documents on Google Docs, and bank card numbers.

2) Providing the names and e-mail addresses of others who
also use the computer to be instrumented, so we can
obtain their consent.

3) Completing an initial questionnaire
4) Download and install our data collection client software
Once these steps are complete, and all the other users of

the computer have provided their consent, the participant is
awarded a $30 Amazon.com gift card, since we can now col-
lect data from the participant’s machine. Participants thereafter
receive a $10 gift card for every month our client software
continues to upload data from their computer. This data trans-
mission occurs silently in the background without requiring
any action from participants. We also send periodic e-mails
informing participants that either everything is working fine,
which of the above enrollment tasks still need to be completed,
or if we are not receiving data from their machine. If we do
not receive data from users for 3 months, we may cease their
participation.

VI. DISCUSSION

There are a number of issues warranting careful consid-
eration when collecting data from hundreds of participants’
personal machines.

A. Participant IDs

It is necessary for our server to be able to identify which
client belongs to which participant for several reasons. Pri-
marily, every client machine must locally store its unique
encryption and authentication keys to encrypt its data and
securely communicate with our server (see Section IV-B1).
We also need to verify users’ continued participation (i.e.
uploading data), so we can compensate them or remind them
that they need to keep their computer on and connected to the
Internet to continue participating. Additionally, we wish to be
able to perform participant-specific data analyses to evaluate
whether particular demographics are correlated with certain
behaviors. We also wish to perform longitudinal analyses
across specific machines’ lifetimes (e.g. time before a malware
infection).

The easiest way to identify client machines is to prompt
the user for their assigned ID when they first install our
client software. However, because our software runs as a
Windows service (see Section IV-A5), it cannot display any
user interface elements, and thus cannot interact with the
participant. We solved this problem by creating an independent
program that verifies that the stored participant ID and keys
are valid, and if they are not, the program prompts the user.
This program is run as a standard process, independently of
any of our services, which allows it to interact with users
if necessary. However, since the program does not run as a
service, it does not execute within the same workspace or
with the same privileges as the rest of the client software.
Thus, we had to resolve various challenges regarding program-
service communication, differing access control privileges, and
synchronization.

B. Ethics & participant privacy

Although true for all user studies, it is critical that an institu-
tional review board (IRB) approve the study’s methodologies
and procedures to ensure participants’ are treated ethically
and their data is kept confidential and secure. We spent
considerable time iterating over our consent procedures with
our IRB before their approval. However, many review boards
do not have the expertise to understand the specific security
and privacy challenges that may arise. Thus, the burden lies
on the experimenters to consider carefully which data they
are willing to collect and hold in trust, and to weigh the
risk of a compromise with the value of such data to the
advancement of the community’s knowledge. Regarding de-
identification, participants are assigned a random ID, which
decouples their uploaded data from their provided personal
information. We are also considering additional anonymization
strategies and weighing their costs (e.g., loss of data richness,
client-side computational loads) against possible threat models
(e.g., client, network, server attacks).

C. Data Security

Given the potential sensitivity of the data our infrastructure
collects and transmits from client machines across the Internet
and stores on our servers, the data’s security and confidentiality
must be carefully considered and strictly enforced. In our im-
plementation, we employ reliable end-to-end data encryption.
Every client is assigned a unique encryption key. Client-side
keys are stored in a permission-secured file on the client.
To obtain the keyfile, an attacker would need access to the
client with elevated privileges. The value of a participant’s
keys is unclear in this scenario, since this attacker could install
malware to collect more sensitive information (e.g., passwords,
bank account numbers) than we do.

Before transmitting the data, the client communication
module compresses and encrypts the data with 128-bit
AES [29] using Cipher Block Chaining mode [30] and PKCS5
Padding [31]. This encrypted data is sent to the server through
an SSL connection and stored, still encrypted with the client’s
unique key. Once the encrypted data is received by the server,
the client-side copy is deleted.

Although methods for computing on encrypted data exist
(e.g., homomorphic encryption), our analyses across multi-
ple sensors’ data longitudinally across time are likely to be
complex enough that they would not be practically feasible
with such solutions. Instead, one researcher with access to all
the clients’ keys (stored in an isolated and secured MySQL
database owned by a separate, dedicated, and tightly-secured
user account) will decrypt and decompress each client’s data
into a TrueCrypt volume, to which all project researchers
will have the key to analyze the data. Unencrypted data may
temporarily exist in memory while and after working with it.
However, the data must remain on the data storage nodes,
which can be accessed only through a secure shell to the
data analysis server from the specific IP addresses of the
researchers’ own campus machines. No other connections to
this server are permitted. We feel that this is the best solution

for offering sufficient data security without overburdening re-
searchers with complex, time-consuming procedures to access
the data.

D. Client upload bandwidth

Given the wide breadth and depth of data we ideally wish
to collect, the limit on how much data we can realistically
collect is the clients’ upload data rate. We must restrict the
amount of data we upload from participants’ machines to avoid
a noticeable reduction of their Internet connection bandwidth.

To calculate this maximum upload rate, we first found the
lowest data upload rate of Internet plans in our area, which is
384 kbps (kilobits per second). To avoid a noticeable impact
on participants’ network performance, we should use only a
fraction of this total upload rate. By using only half, the actual
data rate our software should be allowed to use is 192 kbps,
or 24 KBps (kilobytes per second).

To ensure we do not surpass our desired bandwidth usable,
we throttle clients’ data upload speed by interleaving data
transmission and sleep commands. For example, to achieve
an upload rate of 24 KBps, the client process could alternate
between uploading 6 KB and then sleeping for 250 ms until
all the data is transferred. Sleeping between data transmissions
should cause the OS to flush the uploaded data stream (i.e.,
actually send the data to our server rather than leave it in the
client’s network buffer in case our process adds more data to
be sent) and free the network bandwidth and processing cycles
for other applications until our application resumes. We hope
to add adaptive throttling functionality to upload either more
data when the network and computer are idle or less when
the machine and Internet are in heavy use. However, this risks
biasing the lower-priority types of data that would be collected
only for clients with more computing capability and network
bandwidth, which might be higher-income participants.

Given the massive amount of data this infrastructure can
collect about client machine behavior (see Section III), it is
important to employ techniques to minimize the physical size
of the data transferred and stored. One such technique involves
sensors that perform periodic snapshots, which should only
log differences between the previously-recorded and current
state, rather than always logging the complete current state.
This is particularly important for snapshot sensors that gather
large amounts of data for every snapshot. For example, when
monitoring the filesystem, we may want to know all files’
permissions, size, date first created and last modified, and
potentially an MD5 hash. Such a complete list could easily
be at least several hundred megabytes in size, which is an
unreasonable amount of data to regularly transfer and store.
However, only logging differences between the previous and
current snapshot would likely be a realistically manageable
size.

Another technique we use to reduce our data logs’ footprint
is the Binary JSON (BSON) data format [32]. The BSON data
format is ideal for our infrastructure’s purpose, since BSON
is specifically designed to minimize spatial overhead in data
transfers and storage, be easily traversable, and be efficient to

encode and decode. We use BSON to log data that is either
hierarchical in nature or may contain variable data elements
(i.e., where there could be many null values if the data were
logged in a flat table structure).

Even with data minimization techniques such as these, we
anticipate having to make difficult decisions about which
types of data to prioritize. However, while performing our
preliminary data analysis, we may observe phenomena that
we wish to further explore, but may be unable to because we
had previously chosen not to enable the relevant sensors. To
illustrate, suppose we initially choose to focus on malware
infection. Thus, the minimum data we would need to collect
appears to be network packet traffic, filesystem changes, and
the executing processes. However, there are a number of
scenarios where we would be missing data. For example, the
network packet sensor would be unable to detect malware
downloaded through SSL. Without the warning dialog sensor,
we would not know if the user was ever warned from visiting
a website, or prompted to download or install the malware.
Without tracking security-related events, we may be unable
to detect changes to the Windows firewall or other computer
security settings. Admittedly, it may be possible to make
some inferences from the sensors we did enable, but our
understanding of the malware-infection events would certainly
be incomplete. However, since we cannot possibly collect all
the data, it is clear that there will be some limitations to the
analysis we will be able to perform. Still, the choices of which
data to collect in tandem will need to be made carefully, since
poor decisions could pose unnecessary additional challenges
when analyzing the data.

E. Server specifications & other cost considerations

There are a number of significant costs involved in conduct-
ing such a long-term data collection study. First and foremost,
as discussed in Section IV-B, at least four physical server
machines are required to begin the study; data collection,
analysis, storage, and backup. Each of these machines have
different specification requirements which should be carefully
considered before committing to a purchase. The importance
we place on each server’s components are noted in Table I. Our
reasoning for these priorities is as follows. The data collection
server would benefit from several processor cores for receiving
data from multiple clients at once, but these do not necessarily
need to be the highest-possible clock speed (hence the medium
rating). Our server software does not require much memory.
This server’s storage requirements are also relatively little,
since it needs to retain only data collected over a few days,
in case the data analysis server is temporarily delayed from
removing the data (see Section IV-B2). The data analysis
server itself also requires relatively little storage space for
the operating system, data transfer, manipulation, and analysis
applications and scripts. However, the data analysis server
does require significant memory and processing power for its
namesake purpose. The data storage nodes require at least a
reasonably powerful processor and memory for data transfers
to occur rapidly (and to quickly perform data processing tasks

TABLE I
IMPORTANCE OF EACH COMPONENT FOR EACH SERVER (SEE

SECTION IV-B).

Server Processor Memory Storage
Data Collection Medium Low Low
Data Analysis High High Low
Data Storage & Backup Medium Medium High

if HDFS is in use). Of course, the storage nodes must have
sufficient space to hold all the data to be collected. We use the
following calculation to estimate our long-term storage needs.
Assuming each participant uploads approximately 24 KBps
(kilobytes per second) to our server (see Section VI-D), this
equates to 377.4 gigabytes (GB) per year per participant. In
our study’s first year, we intend to have 100 users participating
in our study. Thus, 100 participants each generating 377.4 GB
per a year results in about 37.74 terabytes (TB) of data. We
have obtained a minimum hardware configuration that satisfies
the above requirements, and can be expanded for further data
collection beyond one year, for around $35,000 (USD).

In addition to the server configuration costs, there are also
on-going costs to be budgeted. Primarily, the participants
require compensation. We are currently offering $30 for com-
pleting the necessary initial tasks to begin participating in the
study (see Section V), and $10 for every month they continue
to participate (e.g. we continue to regularly receive data from
their machine). These costs add up quickly, since each partici-
pant costs $150 per year, so 100 participants cost $15,000 for a
single year. Furthermore, if we cannot initially attract enough
participants, we may need to consider increasing this stipend,
which would further increase costs. Other on-going costs
that should be considered include the technical administration
and maintenance of the server hardware as well at least one
dedicated project leader (and ideally a support team) to build
and continuously refine the software and sensors, oversee the
smooth execution of the study, and lead the data management
(see Section VI-C) and analysis.

F. Study Limitations

Despite the wide scope of this infrastructure and study,
there are some limitations which must be noted. Firstly, we
are currently targeting only participants using Windows Vista,
7, or 8. Our focus on modern Microsoft operating systems
(OS) means that we may not observe phenomena that occur
on Unix-based OSes. Furthermore, mobile devices and tablets
are growing in popularity [19]. Users’ behavior and risk
with respect to privacy and security with these devices may
differ significantly than with traditional desktops or laptops.
For future work, we could build sensors to collect data on
Unix-based systems’ usage, as well as mobile devices and
tablets. Fortunately, our client communication module (see
Section IV-A) can run on any system that supports Java (which
includes most modern operating systems, see Section IV-A7).

In our user study, we ask users to install our software
only on their one main Windows computer, because we are
interested in observing the breadth of behaviors of multiple

independent machines. However, people often have multiple
devices through which they may have privacy and security
challenges, including mobile devices and tablets. Thus, a
complete in-depth examination of participants’ behavior would
require instrumenting all of a user’s devices. This would
be particularly challenging, given the multiple OS architec-
tures participants may use. It is also unclear whether or
not a participant’s work machines should be instrumented.
This would be required for a truly complete understanding
of users’ computing experience and behavior, but it would
require participants’ employers’ consent, since data collection
software on these machines may unintentionally capture the
employers’ intellectual property or other sensitive data. In any
case, as our user study is currently designed, even though we
capture a wider breadth of data than previous studies, we still
risk missing some behaviors that occur on participants’ non-
instrumented devices. In future work, we hope to also collect
data from mobile devices and tablets. We hope to reuse our
client communication module to collect data from devices that
support Java (see Section IV-A7).

As previously mentioned (see Section V), we offer partic-
ipants $30 to complete the initial enrollment, and $10 per
month of continued participation. This may bias our sample
towards lower-income and privacy unaware or unconcerned
participants. We will be able to confirm the former by asking
participants to self-disclose their income in our enrollment
questionnaire. However, it is unclear if any affordable level of
compensation could attract higher-income participants. Addi-
tional compensation may also fail to attract privacy-concerned
users, since users willing to be monitored are likely to do so
for relatively small immediate short-term gains [33], [34].

VII. RELATED WORK

Lalonde Lévesque et al. [14] performed a 50-subject 4-
month study of the effectiveness of an anti-virus software (AV)
with respect users’ computer behavior. Participants were given
a Windows 7 laptop with Trend Micro’s premium home anti-
virus software and various monitoring software and scripts pre-
installed. Every month, participants were required to meet with
the experimenters to complete a survey about their computer
usage and for the data to be collected from the machines.
The AV detected 95 distinct threats on 38% of machines
during the study, the vast majority of which were trojans,
which is comparable with publicly-available statistics [14].
The authors’ found 18 threats (e.g., 7 unwanted software,
9 adware, one malware, and another suspected as malware)
that the AV failed to detect on 20% of machines. Participants
with a greater computer expertise were more at risk of being
exposed to threats than less computer-knowledgeable users.
Furthermore, the authors reported that visiting sports and
Internet infrastructure sites were more associated with a higher
rate of infection, while visiting sites with pornographic or
questionable content was less so. Although their methodology
bares some resemblance to ours, there are several important
differences between this and our study. Most obviously, our
target sample size and study duration will both be several times

greater (i.e., hundreds of participants over several years). A
more fundamental difference lies in our respective experimen-
tal models. Their study follows a “clinical trials” experimental
model from medical research, whereby subjects are given a
treatment (i.e., AV) and its effects are monitored over time. In
contrast, our study’s primary purpose is to passively observe
our participants’ and their machines’ behavior by collecting
a very wide array of security- and privacy-related data (see
Section III) without any form of experimental intervention
whatsoever.

Van Bruggen et al. [16] instrumented 149 student partici-
pants’ Android smartphones with software that collected two
types of data over two weeks; usage statistics (e.g., data
usage, text messages, screen lock) and participant responses
to weekly surveys on various topics. They found that 65%
of their participants used a phone locking mechanism; 51%
used the Android pattern lock and 14% chose a text password
or PIN. They found no correlations for this choice with
gender, previous phone type, text message frequency, data
usage, or personality traits. Upon being surveyed about their
password sharing behavior, 19% responded that they shared
the password to their phone, while 63% shared passwords
for other devices or services. The authors suggested that
participants may place greater value the security of the mobile
device over other devices or services. The authors later em-
ployed intervention messages based on incentives, morality,
and deterrence to encourage users to either adopt a screen
lock or upgrade to a more secure lock (e.g., from the pattern
lock to a text password). The interventions did not appear
result in many conversions. The authors concluded that the
cost associated with targeting the users and implementing the
interventions may not be worth the limited results. Our study
does not currently target smartphones or attempt to modify
users’ normal computing behavior, we may consider testing
attempts to assist, inform, and persuade users to take security
precautions, should our data suggest that many users leave
their computers dangerously vulnerable or otherwise behave
insecurely. We also hope to expand our study in the future to
include a broader range of devices, including smartphones and
tablets.

Florêncio and Herley [12] collected Internet password data
from over a half-million people over 85 days. This data was
collected voluntarily from users of the Windows Live Toolbar.
Their component hashed and stored passwords users’ entered
in web pages’ password input fields, as well as the related
URL, the passwords’ bit strength, and other data. The authors
also tracked incidents of password re-use as follows. Every
time a character was typed into the web browser, their system
hashed and compared each sequence of the last 7 to 16 typed
characters to each of the stored password hashes that had
been collected thus far. If a match was found and the current
website’s URL did not match the stored password hash’s URL,
then a password re-use event was logged. The authors reported
many interesting findings of users’ real-world password use,
including the following highlights. Users had an average of 25
different online accounts, and typed 8 passwords on an average

day. Users maintained an average of 6.5 distinct passwords,
each across 3.9 separate websites. Users predominately chose
lowercase-only passwords unless required otherwise. Finally,
based on their study’s results, the authors estimated that
0.4% of Internet users enter passwords on known phishing
sites every year. Clearly, this study provided the research
community with great insight into live user behavior, despite
having only collected data for 3 months. However, unlike
this study, we currently do not intend to collect data on
participants’ passwords (see Section VI-B), given the risks
(despite our security precautions) of storing such data for a
study spanning several years.

De Luca et al. [11] observed 360 people’s interactions with
automated teller machines (ATMs). A single experimenter
personally monitored 60 people without their knowledge at
each of 6 different banks’ ATMs at varied times of day. The
goal of the study was to better understand the context of ATM
usage without capturing users’ actual PINs. The data collected
from each ATM interaction included the location, gender, time
of day, interaction time, queue length, security measures taken
by the user, and repeated PIN entry. The authors found that
users were distracted in 11% of interactions, and that 65% of
users made no effort to protect their PINs from observation
attacks, either out of negligence, inability (e.g. carrying bags),
or social context (e.g., did not want to imply mistrust in a
nearby friend or family member). These and other results
(including from interviews) led the authors to conclude that
security should not rely on the user whenever possible, should
be compatible with the social context, and PIN memorability
is not a problem for most people, but it is severe when it
occurs, since forgetting led to unsafe practices. The authors
also shared lessons learned from the field observation study,
including the utility of conducting pilot studies to test and
refine the types and methods of data collection, abiding by
strict codes of conduct to ensure ethical and consistent data
collection, and importance of field studies in measuring users’
actual behavior, which can differ from users’ stated behavior
in surveys and interviews.

VIII. CONCLUSION

Research to date has brought to light many usable security
and privacy challenges computer users face, but there remain
many unknowns, particularly with respect to home computer
usages. Capturing data on these challenges in the wild as
they occur naturally is essential if we are to conduct research
and foster innovations with the greatest impact in improving
the security and privacy of users and their machines. The
Security Behavior Observatory (SBO) aims to collect said
highly ecologically valid data on multiple security and pri-
vacy topics from hundreds of users’ home computers over
several years. This paper has specified the SBO client-server
architecture, the benefits of our design decisions, and the
challenges and trade-offs involved in building a system with
the reliability, robustness, and flexibility required for a study
of this lengthy duration and grand scope. We hope the data
collected will yield insights on a wide variety of security and

privacy challenges, and guide future research efforts towards
solving the challenges users actually face in the wild.

REFERENCES

[1] A. Adams and M. Sasse, “Users are not the enemy,” Communications
of the ACM, vol. 42, no. 12, 1999.

[2] A. Whitten and J. Tygar, “Why Johnny can’t encrypt: A usability
evaluation of PGP 5.0,” in USENIX Security Symposium, 1999.

[3] R. Biddle, S. Chiasson, and P.C. van Oorschot, “Graphical passwords:
Learning from the first twelve years,” ACM Computing Surveys, vol. 44,
no. 4, 2012.

[4] A. Forget, “A world with many authentication schemes,” Ph.D. disser-
tation, School of Computer Science, Carleton University, 2012.

[5] C. Bravo-Lillo, L. Cranor, J. Downs, and S. Komanduri, “Bridging the
gap in computer security warnings: A mental model approach,” Security
& Privacy, vol. 9, no. 2, 2011.

[6] J. Hong, “The state of phishing attacks,” Communications of the ACM,
vol. 55, no. 1, 2012.

[7] M. Jakobsson, “The human factor in phishing,” Privacy & Security of
Consumer Information, 2007.

[8] I. T. L. Review, “G.r. newman and m.m. mcnally,” US Department of
Justice, Tech. Rep. 210459, July 2005.

[9] M. Brewer, “Research design and issues of validity,” Handbook of
research methods in social and personality psychology, pp. 3–16, 2000.

[10] B. Berendt, O. Günther, and S. Spiekermann, “Privacy in e-commerce:
Stated preferences vs. actual behavior,” Communications of the ACM,
vol. 48, no. 4, April 2005.

[11] A. De Luca, M. Langheinrich, and H. Hussmann, “Towards understand-
ing ATM security – a field study of real world ATM use,” in Symposium
on Usable Privacy and Security (SOUPS). ACM, 2010.

[12] D. Florêncio and C. Herley, “A large-scale study of WWW password
habits,” in International World Wide Web Conference (WWW). ACM,
May 2007.

[13] M. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. Cranor,
P. Kelley, R. Shay, and B. Ur, “Measuring password guessability for
an entire university,” in Conference on Computer and Communications
Security (CCS). ACM, 2012.

[14] F. Lalonde Lévesque, J. Nsiempba, J. Fernandez, S. Chiasson, and
A. Somayaji, “A clinical study of risk factors related to malware
infections,” in Conference on Computer and Communications Security
(CCS). ACM, 2013.

[15] N. Christin, S. Egelman, T. Vidas, and J. Grossklags, “It’s all about the
benjamins: An empirical study on incentivizing users to ignore security
advice,” in International Conference on Financial Cryptography and
Data Security (FC). Springer, 2011.

[16] D. Van Bruggen, S. Liu, M. Kajzer, A. Striegel, C. Crowell, and
J. D’Arcy, “Modifying smartphone user locking behavior,” in Sympo-
sium on Usable Privacy and Security (SOUPS). ACM, 2013.

[17] G. Friedland, G. Maier, R. Sommer, and N. Weaver, “Sherlock holmes’
evil twin: On the impact of global inference for online privacy,” in New
Security Paradigms Workshop (NSPW). ACM, 2011.

[18] StatCounter.com, “Top 7 operating systems from july
2008 to nov 2013,” October 2013, http://gs.statcounter.com/
#os-ww-monthly-200807-201311.

[19] ——, “Mobile vs. desktop from july 2008 to oct 2013,” ac-
cessed October 2013 2013, http://gs.statcounter.com/#mobile vs
desktop-ww-monthly-200807-201311.

[20] S. Egelman, L. Cranor, and J. Hong, “You’ve been warned: an empirical
study of the effectiveness of web browser phishing warnings,” in
Conference on Human Factors in Computing Systems (CHI). ACM,
2008.

[21] Microsoft Corporation, “Windows Installer (Windows),” November
2013, http://msdn.microsoft.com/en-us/library/cc185688.aspx.

[22] ——, “Services (Windows),” October 2013, http://msdn.microsoft.com/
en-us/library/windows/desktop/ms685141.aspx.

[23] ——, “INFO: Run, RunOnce, RunServices, RunServicesOnce and
Startup,” November 2013, http://support.microsoft.com/kb/179365.

[24] A. Menezes, P.C. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1996, ch. 10, p. 402, http://cacr.uwaterloo.
ca/hac/.

[25] S. Watanabe, Solaris 10 ZFS Essentials, 1st ed. Prentice Hall, 2010.
[26] “OpenZFS,” accessed November 2013, http://open-zfs.org.
[27] T. White, Hadoop: The Definitive Guide, 3rd ed. O’Reilly, 2012.

[28] Apache Software Foundation, “Welcome to apache hadoop,” https:
//hadoop.apache.org/, accessed November 2013.

[29] Federal Information Processing Standards (FIPS), “Advanced encryption
standard,” National Institute of Standards and Technology (NIST), Tech.
Rep. 197, November 2001, http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.

[30] ——, “Des modes of operations,” National Institute of Standards and
Technology (NIST), Tech. Rep. 81, December 1980, http://www.itl.nist.
gov/fipspubs/fip81.htm.

[31] R. Laboratories, “Pkcs #5: Password-based cryptography standard,”
accessed November 2013, http://www.emc.com/emc-plus/rsa-labs/
standards-initiatives/pkcs-5-password-based-cryptography-standard.
htm.

[32] “Bson - binary json,” accessed November 2013, http://bsonspec.org/.
[33] A. Acquisti, “Privacy in electronic commerce and the economics of

immediate gratification,” in Conference on Electronic Commerce. ACM,
2004.

[34] A. Shostack and P. Syverson, “What price privacy?” in The Economics
of Information Security. Kluwer Academic Publishers, 2004.

http://gs.statcounter.com/#os-ww-monthly-200807-201311
http://gs.statcounter.com/#os-ww-monthly-200807-201311
http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-200807-201311
http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-200807-201311
http://msdn.microsoft.com/en-us/library/cc185688.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms685141.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms685141.aspx
http://support.microsoft.com/kb/179365
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
http://open-zfs.org
https://hadoop.apache.org/
https://hadoop.apache.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-5-password-based-cryptography-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-5-password-based-cryptography-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-5-password-based-cryptography-standard.htm
http://bsonspec.org/

	Introduction
	The Science
	Security Behavior Observatory
	Filesystem
	Installed software and operating system updates
	Processes
	Security-related events
	Network traffic
	Internet browsing behavior
	Configuration of software and online accounts
	Warnings
	Security, Privacy, Usability, and Research Requirements

	Architecture
	Data Collection and Flow
	Silent updates
	Independent sensors
	Least privilege
	Minimal footprint
	Minimal user interaction
	Multiple user accounts
	Portability

	Deployment
	Data collection server
	Data analysis server
	Data node(s)

	User Study Methodology
	Discussion
	Participant IDs
	Ethics & participant privacy
	Data Security
	Client upload bandwidth
	Server specifications & other cost considerations
	Study Limitations

	Related Work
	Conclusion
	References

