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Abstract. Organizations that collect and use large volumes of personal infor-
mation are expected under the principle of accountable data governance to take
measures to protect data subjects from risks that arise from inapproriate uses of
this information. In this paper, we focus on a specific class of mechanisms—
audits to identify policy violators coupled with punishments—that organizations
such as hospitals, financial institutions, and Web services companies may adopt
to protect data subjects from privacy and security risks stemming from inappro-
priate information use by insiders. We model the interaction between the organi-
zation (defender) and an insider (adversary) during the audit process as a repeated
game. We then present an audit strategy for the defender. The strategy requires
the defender to commit to its action and when paired with the adversary’s best
response to it, provably yields an asymmetric subgame perfect equilibrium. We
then present two mechanisms for allocating the total audit budget for inspec-
tions across all games the organization plays with different insiders. The first
mechanism allocates budget to maximize the utility of the organization. Observ-
ing that this mechanism protects the organization’s interests but may not protect
data subjects, we introduce an accountable data governance property, which re-
quires the organization to conduct thorough audits and impose punishments on
violators. The second mechanism we present achieves this property. We provide
evidence that a number of parameters in the game model can be estimated from
prior empirical studies and suggest specific studies that can help estimate other
parameters. Finally, we use our model to predict observed practices in industry
(e.g., differences in punishment rates of doctors and nurses for the same viola-
tion) and the effectiveness of policy interventions (e.g., data breach notification
laws and government audits) in encouraging organizations to adopt accountable
data governance practices.
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1 Introduction

Organizations that collect and use large volumes of personal information are expected
under the principle of accountable data governance to take measures to protect data
subjects from risks that arise from these uses of information [1, 2]. In this paper, we
focus on a specific class of mechanisms—audits to identify policy violators coupled
with punishments—that organizations such as hospitals, financial institutions, and Web
services companies may adopt to protect data subjects from privacy and security risks
stemming from inappropriate information use by authorized insiders. Indeed, commer-
cial audit tools are emerging to assist in the process of detecting inappropriate informa-
tion use by insiders [3], and reports of privacy policy violations and associated sanctions
are routinely reported in the healthcare sector [4–7].

A central challenge in this setting is the design of effective audit and punishment
schemes. We assume that in each audit round audit logs are first analyzed using an
automated tool that ranks actions by insiders as potential violations. Our focus is on the
next step when a subset of these actions is inspected (because of budgetary constraints)
to identify and punish policy violators. We seek to compute the inspection level and
punishment level for an “effective” scheme.

The challenge in modeling the complex interaction between the auditor and audited
agent includes making reasonable abstractions and assumptions. We model the inter-
action between an organization (the defender) and the insider (the adversary) as a re-
peated game with imperfect information (the defender does not observe the adversary’s
actions) and public signals (the outcome of the audit is public). The model captures a
number of important economic considerations that influence the design of audit mecha-
nisms. The game model (described in Section 3) replaces the byzantine adversary model
in our previous work [8] with a near-rational adversary model. These adversaries act
rationally with high probability and in a byzantine manner otherwise (similar to a trem-
bling hand assumption [9]). Adversaries benefit from violations they commit (e.g., by
selling personal data) and suffer due to punishments imposed for detected violations.
The model generalizes from the situation in which the defender interacts with a single
adversary to one where she interacts with multiple, non-colluding adversaries via a nat-
ural product game construction that we define. Each audit game is parametrized by a
budget that the defender can use to conduct inspections.

We then present an audit strategy for the defender. This strategy when paired with
the adversary’s best response to it provably yields an asymmetric approximate subgame
perfect equilibrium (Theorem 1). This equilibrium concept implies that the adversary
does not gain at all from deviating from her best response strategy (see Section 4). We
define this equilibrium concept by adapting the standard notion of approximate sub-
game perfect equilibrium, which has a symmetric flavor and permits both players to
obtain small gains by unilaterally deviating from their equilibrium strategy. The sym-
metric equilibrium concept is unsuitable for our security application, where an adver-
sary who deviates motivated by a small gain could cause a big loss for the organization.
The defender’s strategy involves committing to a level of inspection and punishment.
The strategy has two desirable properties. First, the commitment results in a predictable
equilibrium since the adversary plays her best response to the strategy. Second, the
strategy is deterrence dominant over the set of maximum utility defender strategies that



result in a perfect public equilibrium, i.e., whenever such a strategy deters the adversary,
so does our audit strategy (see Theorem 2 for the formal statement).

We design two mechanisms using which the defender can allocate her total audit
budget across the different games to audit different insiders and types of potential vio-
lations. The first mechanism optimizes the defender’s utility. Observing that this mecha-
nism protects the organization’s interests but may not protect data subjects, we introduce
an accountable data governance property, which places an operational requirement on
the organization to use a sufficiently effective log analysis tool and maintain sufficiently
high inspection and punishment rates. The second mechanism allocates the total audit
budget to achieve this property (see Section 5).

Finally, we demonstrate the usefulness of our model by predicting and explain-
ing observed practices in industry (e.g., differences in punishment rates of doctors and
nurses for the same violation) and analyzing the effectiveness of policy interventions
(e.g., data breach notification laws and government audits) in encouraging organizations
to adopt accountable data governance practices (see Section 6). We present comparisons
to additional related work in Section 7 and conclusions and directions for future work
in Section 8.

2 Overview

In this section, we provide an overview of our model using a motivating scenario that
will serve as a running example for this paper. Consider a “Hospital X” with employees
in different roles (doctors, nurses). X conducts weekly audits to ensure that accesses to
personal health records are legitimate. Given budget constraints, X cannot check every
single access. The first step in the audit process is to analyze the access logs using
an automated tool that ranks accesses as potential violations. Hospital X assesses the
(monetary) impact of different types of violations and decides what subset to focus on
by balancing the cost of audit and the expected impact (“risk”) from policy violations.
This type of audit mechanism is common in practice [10–13].

We provide a game model for this audit process. An employee (“adversary,” A)
executes tasks, i.e., actions that are permitted as part of their job. We only consider
tasks that can later be audited, e.g., through inspection of logs. For example, in X the
tasks are accesses to health records. We can distinguish A’s tasks between legitimate
tasks and violations of a policy. Different types of violations may have different impact
on the organization. We assume that there are K different types of violations thatA can
commit. Examples of violations of different types in Hospital X include inappropriate
access to a celebrity’s health record, or access to a health record leading to identity
theft. A benefits by committing violations: the benefit is quantifiable using information
from existing studies or by human judgment. For example, reports [14,15] indicate that
on average the personal benefit of a hospital employee from selling a common person’s
health record is $50. On the other hand, if A is caught committing a violation then she
is punished according to the punishment policy used by D. For example, employees
could be terminated, as happened in similar recent incidents [6, 7].

The organization D can classify each adversary’s task by type. However, D cannot
determine with certainty whether a particular task is legitimate or a violation without



investigating. Furthermore, D cannot inspect all of A’s tasks due to budgetary con-
straints. As such, some violations may go undetected internally, but could be detected
externally. Governmental audits, whistle-blowing, patient complaints [16, 17] are all
examples of situations that could lead to external detection of violations. Externally
detected violations usually cause more economic damage to the organization than in-
ternally caught violations. The 2011 Ponemon Institute report [18] states that patients
whose privacy has been violated are more likely to leave (and possibly sue) a hospital
if they discover the violation on their own than if the hospital detects the violation and
proactively notifies the patient.

The economic impact of a violation is a combination of direct and indirect costs; di-
rect costs include breach notification and remedial cost, and indirect costs include loss
of customers and brand value. For example, the 2010 Ponemon Institute report [19]
states that the average cost of privacy breach per record in health care is $301 with
indirect costs about two thirds of that amount. Of course, certain violations may re-
sult in much higher direct costs, e.g., $25, 000 per record (up to $250, 000 in total) in
fines alone in the state of California [6]. These fines may incentivize organizations to
adopt aggressive punishments policies. However, severe punishment policies create a
hostile work environment resulting in economic losses for the organization due to low
employee motivation and a failure to attract new talent [20].

The organization needs to balance auditing costs, potential economic damages due
to violations and the economic impact of the punishment policy. The employees need to
weigh their gain from violating policies against loss from getting caught by an audit and
punished. The actions of one party impact the actions of the other party: if employees
never violate, the organization does not need to audit; likewise, if the organization never
audits, employees can violate policies in total impunity. Given this strategic interdepen-
dency, we model the auditing process as a repeated game between the organization and
its employees, where the discrete rounds characterize audit cycles. The game is param-
eterized by quantifiable variables such as the personal benefit of employee, the cost of
breach, and the cost of auditing, among others. The organization is engaged in multiple
such games simultaneously with different employees and has to effectively allocate its
total audit budget across the different games.

3 Audit Game Model

We begin by providing a high level view of the audit process, before describing the
audit game in detail (Section 3). In practice, the organization is not playing a repeated
audit game against a specific employee, but against all of its n employees at the same
time. However, if we assume that 1) a given employee’s actions for a type of task are
independent of her actions for other types, and that 2) employees do not collude with
other employees and act independently, we can decompose the overall game into nK
independent base repeated games, that the organization plays in parallel. One base re-
peated game corresponds to a given type of access k by a given employee A, and will
be denoted by GA,k. Each game GA,k is described using many parameters, e.g., loss
due to violations, personal benefit for employee, etc. We abuse notation in using GA,k
to refer to a base repeated game of type k with any value of the parameters.



In our proposed audit process the organization follows the steps below in each audit
cycle for every game GA,k. Assume the parameters of the game have been estimated
and the equilibrium audit strategy computed for the first time auditing is performed.

before audit:
1. If any parameter changes go to step 2 else go to audit.
2. Estimate parameters. Compute equilibrium of GA,k.
audit:
3. Audit using actions of the computed equilibrium.

Note that the parameters of GA,k may change for any given round of the game, resulting
in a different game. However, neither D nor A knows when that will happen. As such,
since the horizon of GA,k with a fixed set of parameters is infinite, we can describe
the interaction between the organization and its employees with an infinitely repeated
game for the period in which the parameters are unchanged (see [9] for details). Thus,
the game GA,k is an infinitely repeated game of imperfect information since A’s action
is not directly observed. Instead, noisy information about the action, called a public sig-
nal is observed. The public signal here consists of a) the detected violations b) number
of tasks by A and c) D’s action. The K parallel games played between A and D can
be composed in a natural manner into one repeated game (which we call GA) by taking
the product of action spaces and adding up utilities from the games.

Finally, analyzing data to detect changes of parameters may require the use of sta-
tistical methods [21], data mining and learning techniques. We do not delve into details
of these methods as that is beyond the scope of this paper and estimating risk parame-
ters has been studied extensively in many contexts [10–13, 15]. Observe that change of
parameters may change the equilibrium of the game, e.g., a lot of violations in quick
succession by an employee (in spite of being inspected sufficiently) may result in the
organization changing the personal benefit of the employee leading to more inspection.

Formal Description In the remainder of this section, we focus on the base repeated
games GA,k. We use the following notations in this paper:
•Vectors are represented with an arrow on top, e.g., ~v is a vector. The ith component

of a vector is given by ~v (i). ~v ≤ ~a means that both vectors have the same number of
components and for any component i, ~v (i) ≤ ~a (i).
•Random variables are represented in boldface, e.g., x and X are random variables.
•E(X)[q, r] denotes the expected value of random variable X , when particular parame-

ters of the probability mass function of X are set to q and r.
•We will use a shorthand form by dropping A, k and the vector notation, as we assume

these are implicitly understood for the game GA,k, i.e., a quantity ~xA(k) will be simply
denoted as x. We use this form whenever the context is restricted to game GA,k only.
GA,k is fully defined by the players, the time granularity at which the game is played,

the actions the players can take, and the utility the players obtain as a result of the
actions they take. We next discuss these different concepts in turn.
Players: The game GA,k is played between the organizationD and an adversaryA. For
instance, the players are hospital X and a nurse in X.
Round of play: In practice, audits for all employees and all types of access are per-
formed together and usually periodically. Thus, we adopt a discrete-time model, where



time points are associated with rounds. Each round of play corresponds to an audit cy-
cle. We group together all of theA’s actions (tasks of a given type) in a given round. All
games GA,k are synchronized, i.e., all rounds t in all games are played simultaneously.
Adversary action space: In each round, the adversary A chooses two quantities of
type k: the number of tasks she performs, and the number of such tasks that are vio-
lations. If we denote by Uk the maximum number of type k tasks that any employee
can perform, then A’s entire action space for GA,k is given by Ak × Vk with Ak =
{uk, . . . , Uk} (uk ≤ Uk) and Vk = {1, . . . , Uk}. Let ~atA and ~vtA be vectors of length
K such that the components of vector ~a are the number of tasks of each type that A
performs at time t, and the components of vector ~v are the number of violations of each
type. Since violations are a subset of all tasks, we always have ~vtA ≤ ~atA. In a given
audit cycle, A’s action in the game GA,k is defined by 〈~atA(k), ~vtA(k)〉, that is 〈at, vt〉
in shorthand form, with at ∈ Ak and vt ∈ Vk.

Instead of being perfectly rational, we modelA as playing with a trembling hand [9].
Whenever A chooses to commit vt violations in as given round t, she does so with
probability 1 − εth, but, with (small) probability εth she commits some other number
of violations sampled from an unknown distribution Dt

0 over all possible violations. In
other words, we allow A to act completely arbitrarily when she makes a mistake. For
instance, a nurse in X may lose her laptop containing health records leading to a breach.
Defender action space: D also chooses two quantities of type k in each round: the
number of inspections to perform, and the punishment to levy for each type-k violation
detected. Let ~stA be the vector of length K such that components of vector ~stA are
the number of inspections of each type that D performs in round t. The number of
inspections that D can conduct is bounded by the number of tasks that A performs,
and thus, ~stA ≤ ~atA. D uses a log analysis tool M to sort accesses according to the
probability of them being a violation. Then, D chooses the top ~stA(k) = st tasks from
the sorted output of M to inspect in game GA,k. Inspection is assumed perfect, i.e.,
if a violation is inspected, it is detected. The number of inspections is bounded by
budgetary constraints. Denoting the functions that outputs cost of inspection for each
type of violation by ~C, we have ~C(k)(~stA(k)) ≤ ~btA(k) where ~btA(k) defines a per-
employee, per-type budget constraint. The budget allocation problem is an optimization
problem depending on the audit strategy, which we discuss is Section 5.1.
D also chooses a punishment rate ~P tA(k) = P t (fine per violation of type k) in each

round t to punish A if violations of type k are detected. P t is bounded by a maximum
punishment Pf corresponding to the employee being fired, and the game terminated.

Finally, D’s choice of the inspection action can depend only onA’s total number of
tasks, since the number of violations is not observed. Thus,D can choose its strategy as
a function from number of tasks to inspections and punishment even beforeA performs
its action. In fact, we simulateD acting first and the actions are observable by requiring
D to commit to a strategy and provide a proof of honoring the commitment. Specifically,
D computes its strategy, makes it public and provides a proof of following the strategy
after auditing is done. The proof can be provided by maintaining an audit trail of the
audit process itself.
Outcomes: We define the outcome of a single round of GA,k as the number of vio-
lations detected in internal audit and the number of violations detected externally. We



assume that there is a fixed exogenous probability p (0 < p < 1) of an internally unde-
tected violation getting caught externally. Due to the probabilistic nature of all quanti-
ties, the outcome is a random variable. Let ~Ot

A be the vector of length K such that the
~Ot
A(k) = Ot represents the outcome for the tth round for the game GA,k. Then Ot is a

tuple 〈Ot
int,O

t
ext〉 of violations caught internally and externally. As stated earlier, we

assume the use of a log analysis tool M to rank the accesses with more likely viola-
tions being ranked higher. Then, the probability mass function for ~Ot

int is a distribution
parameterized by 〈at, vt〉, s andM. The baseline performance ofM is when the s ac-
cesses to be inspected are chosen at random, resulting in a hyper-geometric distribution
with mean vtαt, where αt = st/at. We assume that the mean of the distribution is
µ(αt)vtαt, where µ(αt) is a function dependent on αt that measures the performance
of M and ∀αt ∈ [0, 1]. µ ≥ µ(αt) ≥ 1 for some constant µ (µ is overloaded here).
Note that we must have µ(αt)αt ≤ 1, and further, we assume that µ(αt) is monotoni-
cally non-increasing in αt. The probability mass function for Ot

ext conditioned on Ot
int

is a binomial distribution parameterized by p.
Utility functions: In a public signaling game like GA,k, the utilities of the players de-
pend only on the public signal and their own action, while the strategies they choose
depend on the history of public signals [22]. The utility of the repeated game is defined
as a (delta-discounted) sum of the expected utilities received in each round, where the
expectation is taken with respect to the distribution over histories. Let the discount fac-
tor for D be δD and for any employeeA be δA. We assume that D is patient, i.e., future
rewards are almost as important as immediate rewards, and δD is close to 1. A is less
patient than D and hence δA < δD.
Defender utility function: D’s utility in a round of the game GA,k consists of the sum
of the cost of inspecting A’s actions, the monetary loss from a high punishment rate
for A, and direct and indirect costs of violations. As discussed before, inspection costs
are given by C(st) where C = ~C(k) is a function denoting the cost of inspecting
type-k tasks. Similarly, the monetary loss from losing employee’s productivity due to
fear of punishment is given by e(P t), where e = ~eA(k) is a function for type-k tasks.
The functions in ~C and ~e must satisfy the following constraints: 1) they should be
monotonically increasing in the argument and 2) ~C(k) ≥ 0, ~eA(k) ≥ 0 for all k.

We characterize the effect of violations on the organization’s indirect cost similarly
to the reputation loss as in previous work [8]. Additionally, the generic function de-
scribed below is capable of capturing direct costs, as shown in the example following
the function specification. Specifically, we define a function rk (r in shorthand form)
that, at time t, takes as input the number of type-k violations caught internally, the num-
ber of type-k violations caught externally, and a time horizon τ , and outputs the overall
loss at time t + τ due to these violations at time t. r is stationary (i.e., independent of
t), and externally caught violations have a stronger impact on r than internally detected
violations. Further, r(〈0, 0〉, τ) = 0 for any τ (undetected violations have 0 cost), and
r is monotonically decreasing in τ and becomes equal to zero for τ ≥ m (violations
are forgotten after a finite amount of rounds). As in previous work [8], we construct
the utility function at round t by immediately accounting for future losses due to vio-
lations occurring at time t. This allows us to use standard game-theory results, while at
the same time, providing a close approximation of the defender’s loss [8]. With these



notations, D’s utility at time t in GA,k is

Rewt
D(〈st, P t〉,Ot) = −

m−1∑
j=0

δjDr(O
t, j)− C(st)− e(P t) . (1)

This per-round utility is always negative (or at most zero). As is typical of security
games (e.g., [23, 24] and related work), implementing security measures does not pro-
vide direct benefits to the defender, but is necessary to pare possible losses. Hence, the
goal for the defender is to have this utility as close to zero as possible.

The above function can capture direct costs of violations as an additive term at time
τ = 0. As a simple example [8], assuming the average direct costs for internally and
externally caught violations are given by RDint and RDext, and the function r is linear in
the random variables ~Ot

int and ~Ot
ext, r can be given by

r(Ot, τ) =

 (c+RDint)O
t
int + (ψc+RDext)O

t
ext for τ = 0

δτ c(Ot
int + ψ ·Ot

ext) for 1 ≤ τ < m
0 for τ ≥ m,

where δ ∈ (0, 1) and ψ ≥ 1. Then Eqn. (1) reduces to

Rewt
D(〈st, P t〉,Ot) = −RintOt

int −RextO
t

ext − C(s
t)− e(P t) , (2)

with Rint = RIint+RDint, R
I
int = c(1− δmδmD )/(1− δδD) and Rext = ψRIint+RDext.

Adversary utility function: We define A’s utility as the sum of A’s personal benefit
gained by committing violations and the punishment that results due to detected viola-
tions. Personal benefit is a monetary measure of the benefit thatA gets out of violations.
It includes all kinds of benefits, e.g., curiosity, actual monetary benefit (by selling pri-
vate data), revenge, etc. It is natural that true personal benefit of A is only known to A.
Our model of personal benefit of A is linear and is defined by a rate of personal benefit
for each type of violation given by the vector ~IA of length K. The punishment is the
vector ~P tA of length K chosen byD, as discussed above. Using shorthand notation,A’s
utility, for the game GA,k, is:

Rewt
A(〈at, vt〉, 〈st, P t〉,Ot) = Ivt − P t

(
Ot
int +Ot

ext

)
.

Observe that the utility function of a player depends on the public signal (observed
violations, D’s action) and the action of the player, which conforms to the definition of
a repeated game with imperfect information and public signaling. In such games, the
expected utility is used in computing equilibria.

Let αt = st/at and ν(αt) = µ(αt)αt. Then, E(Ot
int) = ν(αt)vt, and E(Ot

ext) =
pvt(1− ν(αt)). The expected utilities in each round then become:

E(Rewt
D) = −

∑m−1
j=0 δjDE(r(Ot, j))[vt, at, αt]− C(αtat)− e(P t) ,

E(Rewt
A) = Ivt − P tvt (ν(αt) + p(1− ν(αt))) .

The expected utility of A depends only on the level of inspection and not on the actual
number of inspections. For the example loss function given by Eqn. (2), the utility
function of D becomes:

E(Rewt
D) = −vt(Rintν(αt) +Rextp(1− ν(αt)))− C(αtat)− e(P t) .



In addition to the action dependent utilities above, the players also receive a fixed utility
every round, which is the salary for A and value generated by A for D. Pf depends on
these values, and is calculated in Appendix B.2. Finally, the model parameters that may
change over time are Rext, Rint, p, function C, function e, function µ and I .
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Graphical representation: A graphical representation of the utilities helps illustrate
the ideas presented in the next two sections. (See Figure 1). Consider the 2-dimensional
plane Rα,P spanned by αt and P t. We define a feasible audit space in Rα,P given by
0 ≤ αt ≤ 1 and 0 ≤ P t ≤ Pf . D’s actions are points in the feasible region. The
expected utility of the adversary in each round is given by vt(I − P t(ν(αt) + p(1 −
ν(αt)))). Thus, the curve in Rα,P given by I = P t(ν(αt) + p(1 − ν(αt))) is the
separator between positive and negative expected utility regions for the adversary in
each round. Within the feasible region, we call the region of positive expected utility
the non-deterred region and the region of negative utility the deterred region.
A’s utility can as well be non-linear, e.g., if D decides to scale punishment quadrat-

ically with violations. Technically, this partitions the feasible audit space into many
regions, with each region associated with the number of violations that maximize the
utility of A in that region. We emphasize that the equilibrium presented later can be
easily extended to consider such cases. To keep the presentation simple we keep using
the linear utility throughout the paper, which yields two regions associated with 0 or all
violations. Similarly, it is possible to add any other relevant term to D’s utility, e.g., if
D satisfies a certain accountability criteria (defined later in Section 5) then it may earn
positive benefit out of increased reputation.

Estimation: Next, we describe techniques of estimating parameters of game GA,k,
obtaining sample estimates in the process. Before getting to constant values, we state the
functions that we use as concrete instances for the examples in this paper. We use simple
linear functions for audit cost (C(αa) = Cαa) and for punishment loss (e(P ) = eP ).
The performance ofM is dependent on the tool being used and we use a linear function
for µ(.) to get ν(α) = µα − (µ − 1)α2, where µ is a constant. Further, we use the
example loss function (with Rint and Rext) stated in the last sub-section. We note that
our theorems work with any function; these functions above are the simplest functions
that satisfy the constraints on these functions stated in the last sub-section. Next, we
gather data from industry wide studies to obtain sample estimates for parameters.



As stated in Section 2, values of direct and indirect costs of violation (average of
Rint and Rext is $300 in healthcare [19], a detailed breakdown is present in the ANSI
report [15]), maximum personal benefit I ($50 for medical records [14, 15]), etc. are
available in studies. Also, in absence of studies quantitatively distinguishing externally
and internally caught violations we assume Rint = Rext = $300. Many parameters
depends on the employee, his role in the organization and type of violation. Keeping a
track of violations and behavior within the organization offers a data source for estimat-
ing and detecting changes in these parameters. We choose values for these parameters
that are not extremes, e = $10, I = $6, εth = 0.03, δA = 0.4 and Uk = 40. Further,
under certain assumptions we calculate Pf (in Appendix B.2) to get Pf = $10. Finally,
the average cost of auditing C and performance factor µ of log analysis tool should be
known to D. We assume values C = $50, and tool performance µ = 1.5.

4 Auditing Strategy

In this section, we define a suitable equilibrium concept for the audit game (Section 4.1)
and present a strategy for the defender such that the best response to that strategy by the
adversary results in an equilibrium being attained (Section 4.2). Finally, we compare
our equilibrium with other equilibria (Section 4.3). Recall that the equilibrium of the
game occurs in the period in which the game parameters are fixed.

4.1 Equilibrium Concepts

We begin by introducing standard terminology from game theory. In a one-shot ex-
tensive form game players move in order. We assume player 1 moves first followed by
player 2. An extensive form repeated game is one in which the round game is a one-shot
extensive game. The history is a sequence of actions. Let H be the set of all possible
histories. Let Si be the action space of player i. A strategy of player i is a function
σi : Hi → Si, where Hi ⊂ H are the histories in which player i moves. The utility in
each round is given by ri : S1 × S2 → R. The total utility is a δi-discounted sum of
utilities of each round, normalized by 1− δi.

The definition of strategies extends to extensive form repeated games with public
signals. We consider a special case here that resembles our audit game. Player 1 moves
first and the action is observed by player 2, then player 2 moves, but, that action may
not be perfectly observed, instead resulting in a public signal. Let the space of public
signals be Y . In any round, the observed public signal is distributed according to the
distribution∆Y (.|s), i.e.,∆Y (y|s) is the probability of seeing signal y when the action
profile s is played. In these games, a history is defined as an alternating sequence of
player 1’a action and public signals, ending in a public signal for histories in which
player 1 has to move and ending in player 1’s move for histories in which player 2 has
to move. The actual utility in each round is given by the function ri : Si × Y → R.
The total expected utility gi is the expected normalized δi-discounted sum of utilities
of each round, where the expectation is taken over the distribution over public signals
and histories. For any history h, the game to be played in the future after h is called the
continuation game of h with total utility given by gi(σ, h).



A strategy profile (σ1, σ2) is a subgame perfect equilibrium (SPE) of a repeated
game if it is a Nash equilibrium for all continuation games given by any history h [9].
One way of determining if a strategy is a SPE is to determine whether the strategy
satisfies the single stage deviation property, that is, any unilateral deviation by any
player in any single round is not profitable. We define a natural extension of SPE, which
we call asymmetric subgame perfect equilibrium (or (ε1, ε2)-SPE), which encompasses
SPE as a special case when ε1 = ε2 = 0.

Definition 1. ((ε1, ε2)-SPE) Denote concatenation operator for histories as ;. Strategy
profile σ is a (ε1, ε2)-SPE if for history h in which player 1 has to play, given h′ =
h;σ1(h) and h′′ = h; s1,

E(r1(σ1(h),y))[σ1(h), σ2(h
′)] + δ1E(g1(σ, h

′;y))[σ1(h), σ2(h
′)]

≥ E(r1(s1,y))[s1, σ2(h
′′)] + δ1E(g1(σ, h

′′;y))[s1, σ2(h
′′)]− ε1

for all s1. For history h in which player 2 has to play, given a(h) is the last action by
player 1 in h, for all s2

E(r2(σ2(h),y))[a(h), σ2(h)] + δ2E(g2(σ, h;y))[a(h), σ2(h)]

≥ E(r2(s2,y))[a(h), s2] + δ2E(g2(σ, h;y))[a(h), s2]− ε2

We are particularly interested in (ε1, 0)-SPE, where player 1 is the defender and player
2 is the adversary. By setting ε2 = 0, we ensure that a rational adversary will never
deviate from the expected equilibrium behavior. Such equilibria are important in secu-
rity games, since ε2 > 0 could incentivize the adversary to deviate from her strategy,
possibly resulting in significant loss to the defender.

The following useful property about history-independent strategies, which follows
directly from the definition, helps in understanding our proposed history-independent
audit strategy.

Property 1. If a strategy profile σ is history-independent, i.e., σ1(h) = σ1() and σ2(h) =
σ2(a(h)) then the condition to test for SPE reduces to E(r1(σ1(),y)) ≥ E(r1(s1,y)),
for player 1 and to E(r2(σ2(h),y)) ≥ E(r2(s2,y)), for player 2, since gi(σ, h; y) is
the same for all y and each i. Also, if E(ri(si,y))−E(ri(σi(h),y)) ≤ εi for all i and
si then σ is an (ε1, ε2)-SPE strategy profile.

4.2 Equilibrium in the Audit Game

We next state an equilibrium strategy profile for the game GA,k. Formally, we present
a (εA,k, 0)-SPE strategy profile, and calculate the value εA,k. The proposed strategy
relies on commitment by D and computation of a single round best response by A. We
accordingly refer to this strategy profile as a simple commitment strategy profile.

For any equilibrium to be played out with certainty, players must believe that the
strategy being used by the other players is the equilibrium strategy. Our proposed strat-
egy profile has features that aim to achieve correct beliefs for the players, even in face of
partial rationality. One feature is thatD makes its strategy publicly known, and provides
a means to verify that it is playing that strategy. As noted earlier, even though D acts



after A does by committing to its strategy with a verification mechanism D simulates a
first move by making the employee believe its commitment with probability one. Thus,
we envision the organization making a commitment to stick to its strategy and providing
a proof that it follows the strategy. Further, D making its strategy publicly known fol-
lows the general security principle of not making the security mechanisms private [25].
Additionally, the simple commitment strategy profile is an approximate SPE for all val-
ues of parameters in any game GA,k and any value of A’s discount factor δA. Thus, all
employees observe the organization following a consistent strategy further reducing any
variability in beliefs about the organization’s strategy. Another important feature of the
simple commitment strategy profile is the single round best response computation byA
(yielding a single action to play), which is much simpler than optimizing over multiple
rounds often yielding many strategies as the solution. Thus, the organization also trusts
the employee to make the appropriate decision even if the employee is computationally
constrained. The above features of the simple commitment strategy profile makes the
strategy simple, which makes it more likely to be followed in the real world.

The main idea behind the definition of our strategy profile is that D optimizes its
utility assuming the best response of A for a given at. That is, D assumes that A does
not commit any violations when (P, α) is in the deterred region, and systematically
commits a violation otherwise (i.e., all of A’s tasks are violations). Further, D assumes
the worst case when the employee (with probability εth) accidentally makes a mistake in
the execution of their strategy; in such a case,D expects all ofA’s tasks to be violations,
regardless of the values of (P, α). This is because the distribution Dt

0 over violations
whenAmakes a mistake is unknown. Thus, the expected cost function thatD optimizes
(for each total number of tasks at) is a linear sum of (1− εth) times the cost due to best
response of A and εth times the cost when A commits all violations. The expected cost
function is different in the deterred and non-deterred region due to the difference in
best response of A in these two regions. The boundary between the deterred and non-
deterred regions is conditioned by the value of the adversary’s personal benefit I . We
assume that D learns the value of the personal benefit within an error δI of its actual
value, and thatD does not choose actions (P, α) in the region of uncertainty determined
by the error δI .

Formally, the expected reward is E(Rewt
D)[0] when the adversary commits no

violation, and E(Rewt
D)[a

t] when all at tasks are violations. Both of these expected
rewards are functions of P, α; we do not make that explicit for notational ease. Denote
the deterred region determined by the parameter I and the budget btA,k as RID and the
non-deterred region as RIND. Either of these regions may be empty. Denote the region
(of uncertainty) between the curves determined by I + δI and I − δI as RIδI . Then the
reduced deterred region is given by RID\RIδI and the reduced non-deterred region by
RIND\RIδI . The equilibrium strategy we propose is:

• For each possible number of tasks at that can be performed by A, D constrained by
budget btA,k, assumes the expected utility

UD(P, α) = (1− εth)E(Rewt
D)[0] + εthE(Rewt

D)[a
t] and

UND(P, α) = (1− εth)E(Rewt
D)[a

t] + εthE(Rewt
D)[a

t] ,



in RID\RIδI and RIND\RIδI respectively. D calculates the maximum expected utility
across the two regions as follows:
− UDmax = max(P,α)∈RID\RIδI UD(P, α), U

ND
max = max(P,α)∈RIND\RIδI UND(P, α)

− U = max(UDmax, U
ND
max)

D commits to the corresponding maximizer (P, α) for each at.
After knowing at, D plays the corresponding (P, α).

•A plays her best response (based on the committed action of D), i.e., if she is deterred
for all at she commits no violations and if she is not deterred for some at then all her
tasks are violations, and she chooses the at that maximizes her utility from violations.
But, she also commits mistakes with probability εth, and then the action is determined
by distribution Dt

0.
LetUD+δI

max = max(P,α)∈RID∪RIδI UD(P, α),U
ND+δI
max = max(P,α)∈RIND∪RIδI UND(P, α),

δUD = UD+δI
max −UDmax and δUND = UND+δI

max −UNDmax. We have the following result:

Theorem 1. The simple commitment strategy profile (defined above) is an (εA,k, 0)-
SPE for the game GA,k, where εA,k is

max

(
max
vt,at

(δUD), max
vt,at

(δUND)

)
+ εth max

α∈[0,1]

m−1∑
j=0

δjDE(r(~Ot, j))[Uk, Uk, α]


Remark 1. If the value of any parameter of the game (e.g., Rext, Rint) is perturbed in a
bounded manner, then accounting for that in the analysis yields an (ε, 0)-SPE, but, with
ε greater than εA,k. This happens because D’s utility is continuous in the parameters.

The proof is in Appendix B. The proof involves showing that the strategy profile has
the single stage deviation property. That A does not profit from deviating is imme-
diate since A chooses the best response in each round of the game. The bound on
profit from deviation for D has two terms. The first term arises due to D ignoring
the region of uncertainty in maximizing its utility. The maximum difference in util-
ity for the deterred region is maxvt,at(U

D+δI
max − UDmax) and for the undeterred region

is maxvt,at(U
ND+δI
max − UNDmax). The first term is the maximum of these quantities. The

second term arises due to the use of the worst case assumption of all violations out of
maximum possible Uk tasks whenAmakes a mistake as compared to the case whenDt

0

is known. Since A’s choice only affects the violation loss part of D’s utility and mis-
takes happen with probability εth, the second term is the maximum possible violation
loss multiplied by εth.

Numeric applications. The above theorem can be used to calculate concrete values
for εA,k when all parametric functions are instantiated. For example, with the values
in Section 3, we obtain εA,k = $200. Assuming A performs the maximum Uk =
40 number of tasks, εA,k is about 9.5% of the cost of auditing all actions of A with
maximum punishment rate ($2100), with no violations, and about 3.3% of the cost
incurred due to all violations caught externally ($6000), with no internal auditing or
punishment. Similarly, if we assume 70% audit coverage with maximum punishment
and four violations, the expected cost for organization is $2583, which means εA,k
corresponds to about 7.7% of this cost. We present the derivation of value of εA,k in
Claim B in Appendix B. The audit coverage here is for one employee only; hence it can



be as high as 100%. Also, since GA is a parallel composition of the games GA,k for all
k, we claim that the simple commitment strategy profile followed for all games GA,k is
a (
∑
k εA,k, 0)-SPE strategy profile for GA. (See Lemma 1 in Appendix B.1. )

4.3 Comparision with other equilibria

In this section, we compare our proposed strategy with the set of Perfect Public Equili-
brum (PPE) strategies. A PPE is the appropriate notion of equilibrium in an imperfect
information repeated game with public signals and simultaneous moves. A PPE is quite
similar to a SPE; the differences are that histories are sequences of public signals (in-
stead of action profiles) and payoffs are considered in the expected sense. PPE strategy
profiles also have the single stage deviation property. As pointed out already, one ad-
vantage of the simple commitment strategy is simplicity. As the set of PPE strategies
is often infinite, it is difficult for players’ beliefs to agree on the strategy being played.
However, a commitment by one player to her part of a PPE strategy profile forces that
particular PPE to be played. The organization is naturally the player who commits.
A committed utility maximizing player is one who uses a commitment to force the PPE
that yields the maximum payoff to that player. A privacy preserving defender is one that
chooses a PPE with fewer violations when it has a choice over multiple PPE with the
same payoff for the defender. The next theorem shows that simple commitment strat-
egy deters A as often as the case in which the chosen PPE strategy deters A, assuming
the budget allows for deterring the employee and the organization is committed utility
maximizing and privacy preserving in choosing PPE equilibrium. Stated succinctly, the
simple commitment strategy profile is no worse for privacy protection than choosing
the highest utility PPE in scenarios where the organization chooses a PPE strategy that
deters the employee.

Theorem 2. Assume that budget is fixed in every round and is sufficient to deterA, and
the number of tasks performed byA in every round in fixed. Let v∗o be the maximum PPE
payoff that D can obtain. Further suppose there exists a PPE Em in which D always
plays some action in the deterred region and the utility for D with Em is v∗o . Then a
committed utility maximizing and privacy preservingD will choose to playEm. Further,
the action inEm coincides with the action chosen by simple commitment strategy profile
in each round.

5 Budget Allocation

In this section we present two budget allocation mechanisms: one maximizesD’s utility
(Section 5.1) and another does the same under accountability constraints (Section 5.2).

5.1 Optimized Budget Allocation

We assume the budget available to D for all audits is bound by B. Then we must have∑
A,k

~btA(k)+Cost(M) ≤ B, whereCost(M) is a fixed cost of using the log analysis

tool in an audit cycle. LetBM = B−Cost(M). LetαA,k(~btA(k),~a
t
A(k)), PA,k(

~btA(k),~a
t
A(k))



be the equilibrium in game GA,k for budget ~btA(k) and A’s tasks ~atA(k). Note that we
make the dependence on ~btA(k), ~a

t
A(k) explicit here. Let U(~btA(k),~a

t
A(k)) denote the

corresponding expected utility in game GA,k. Observe that in equilibrium, when A is
deterred for all possible ~atA(k) then A has equal preference for all possible ~atA(k),
and otherwise A chooses the maximum ~atA(k) for which she is undeterred to maxi-
mize her utility. Thus, let BR(~btA(k)) be the set of number of tasks all of which are
part of best responses of A. Note that the cost functions UD and UND in deterred and
non-deterred regions are continuous in~btA(k), since the regions themselves change con-
tinuously with change in~btA(k). Also, by definition they are continuous in ~atA(k). Since
U is the maximum of two continuous functions UD and UND, using the fact that max of
two functions is continuous, we get that U is continuous in both arguments. Then, the
optimal allocation of budget is to solve the following non-linear optimization problem

max
∑
A,k

min
~atA(k)∈BR(~btA(k))

U(~btA(k),~a
t
A(k)) subject to~btA(k) ≥ 0 and

∑
A,k

~btA(k) ≤ BM ,

which maximizes the minimum utility possible overA’s possible best response actions.
For example, consider a simple case with two types of tasks: celebrity records accesses
and non-celebrity records accesses, and one employee. Assume the utility functions and
constants as stated at the end of Section 3, except, it is assumed that it is apriori known
that exactly 40 celebrity and 400 non-celebrity accesses would be made and values of
some constants (in brackets) are different for celebrity type (Rext = $4500, Rint =
$300, I = $6, Pf = 10) and non-celebrity type (Rext = $90, Rint = $30, I = $0.6,
Pf = 5). Using discrete steps and a brute force search yields a solution of the above
optimization problem in which D would allocate $1300 to audit celebrity accesses and
the remaining $1200 to audit non-celebrity accesses. As the cost per inspection was
assumed $50 (Section 3), 0.65 fraction of celebrity accesses can be inspected and only
24 out of 400 non-celebrity accesses can be inspected. However, the equilibrium yields
that no non-celebrity inspections happen as the employee is non-deterred for the level of
non-celebrity inspections possible, and 0.65 fraction of celebrity accesses are inspected.

5.2 Towards Accountable Data Governance

While holding an employee responsible for the violation she causes is natural, it is dif-
ficult to define accountability for the organization, as the organization does not commit
violations directly. However, the organization influences the actual violator (employee)
by the choice of inspections and punishment. We use a simple definition of accountabil-
ity for the organization, requiring a minimum level of inspection and punishment.

Definition 2. ((M, ~α, ~P )-accountability) An organization satisfies (M, ~α, ~P )-accountability
if 1) its log analysis tool M′ satisfies M′ ≥ M, 2) its level of inspection satisfies
~α′ ≥ ~α, and 3) its punishment rate satisfies ~P ′ ≥ ~P .

Our definition assumes a partial ordering over log analysis tools M. This partial
ordering could be given from empirically computed accuracy µ estimates for each log
analysis tool (e.g., we could say thatM1 ≥ M2 ifM1 is at least as accurate asM2

for each type of access k). The dependence of accountability on M is required as a



better performing tool can detect the same expected number of violations as another
tool with worse performance, with a lower inspection level α. We envision the above
accountability being proven by the organization to a trusted third party external auditor
(e.g., Government) by means of a formal proof, in the same manner as commitment is
demonstrated to the employee.

To satisfy (M, ~α, ~P )-accountability an organization must add the following con-
straints to its optimization problem from the last sub-section:
min~atA(k)∈BR(~btA) αA,k(

~btA(k),~a
t
A(k)) > ~α(k) and min~atA(k)∈BR(~btA)PA,k(

~btA(k),~a
t
A(k)) >

~P (k) for all A, k. The first constraint ensures that the the minimum number of inspec-
tions divided by maximum number of tasks is greater than ~α(k), and the second con-
straint ensures that the minimum punishment level is higher that ~P (k).

Continuing the example from last sub-section if the minimum α and P is specified
as 0.1 and 1.0 for both types of accesses, then D would allocate $400 to audit celebrity
accesses and the remaining $2100 to audit non-celebrity accesses. Since the cost per
inspection was assumed $50 (Section 3), 0.2 fraction of celebrity accesses can be in-
spected and 42 out of 400 non-celebrity accesses can be inspected. However, according
to the equilibrium 40 non-celebrity inspections happen at punishment level of 2.0 as
the employee is already deterred for that level of non-celebrity inspections. In this case,
unlike the non-accountable scenario, the values ~α, ~P ensure that the privacy of common
person is being protected even when the organization has more economic incentives to
audit celebrity accesses more heavily.

6 Predictions and Interventions

In this section, we use our model to predict observed practices in industry and the effec-
tiveness of public policy interventions in encouraging organizations to adopt account-
able data governance practices (i.e., conduct more thorough audits) by analyzing the
equilibrium audit strategy P, α under varying parameters. The explanation of observed
practices provides evidence that our audit model is not far from reality. We use the val-
ues of parameters and instantiation of functions given in Section 3 (unless otherwise
noted). We assume that the value of personal benefit I is learned exactly and that P and
α take discrete values, with the discrete increments being 0.5 and 0.05, respectively. We
also assume for sake of exposition that uk = Uk, i.e., the number of tasks is fixed, there
is only one type of violation and the budget is sufficient to do all possible inspections.
Average costRext and probability p of external detection of violation. We varyRext
from $5 to $3900, with Rint fixed at $300. The results are shown in Figure 2. There are
two cases shown in the figure: p = 0.5 and p = 0.9. The figure shows the equilibria
P, α chosen for different values of Rext.

Prediction 1: Increasing Rext and p is an effective way to encourage organizations
to audit more. In fact, when p∗Rext is low X may not audit at all. Thus, X audits to pro-
tect itself from greater loss incurred when violations are caught externally. Surprisingly,
the hospital may continue to increase inspection levels (incurring higher cost) beyond
the minimum level necessary to deter a rational employee. Hospital X does so because
the employee is not fully rational: even in the deterred region there is an εth probability
of violations occurring.
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Suggested Intervention 1: Subject organizations to external audits and fines when
violations are detected. For example, by awarding contracts for conducting 150 external
audits by 2012 [26], HHS is moving in the right direction by effectively increasing p.
This intervention is having an impact: the 2011 Ponemon study on patient privacy [27]
states—“Concerns about the threat of upcoming HHS HIPAA audits and investigation
has affected changes in patient data privacy and security programs, according to 55
percent of respondents.”

Prediction 2: Interventions that increase the expected loss for both external and in-
ternal detection of violations are not as effective in increasing auditing as those that
increase expected loss for external detection of violations only. Table 2 shows the equi-
librium inspection level as Rext and Rint are both increased at the same rate. While the
inspection level may initially increase, it quickly reaches a peak. As an example, con-
sider the principle of breach detection notification used in many data breach laws [28].
The effect of breach detection notification is to increase both Rint and Rext since no-
tification happens for all breaches. While there isn’t sufficient data for our model to
predict whether these laws are less effective than external audits (see suggested study
below), prior empirical analysis [28] indicate that the benefit in breach detection from
these laws is only about 6% (after adjusting for increased reporting of breaches due to
the law itself).

Suggested study: An empirical study that separately reports costs incurred when
violations are internally detected from those that are externally detected would be useful
in quantifying and comparing the effectiveness of interventions. Existing studies either
do not speak of these distinct categories of costs [19, 28] or hint at the importance of
this distinction without reporting numbers [16, 17].
Punishment loss factor e and personal benefit I . Prediction 3: Employees with higher
value for e (e.g., doctors have higher e; suspending a doctor is costlier for the hospital
than suspending a nurse) will have lower punishment levels. If punishments were free,
i.e., e = 0, (an unrealistic assumption) X will always keep the punishment rate at
maximum according to our model. At higher punishment rates (e = 1000), X will favor
increasing inspections rather than increasing the punishment level P (see Table 1 in
Appendix A). While we do not know of an industry-wide study on this topic, there is
evidence of such phenomena occurring in hospitals. For example, in 2011 Vermont’s
Office of Professional Regulation, which licenses nurses, investigated 53 allegations
of drug diversion by nurses and disciplined 20. In the same year, the Vermont Board



of Medical Practice, which regulates doctors, listed 11 board actions against licensed
physicians for a variety of offenses. However, only one doctor had his license revoked
while the rest were allowed to continue practicing [7].

Prediction 4: Employees who cannot be deterred are not punished. When the per-
sonal benefit of the employee I is high, our model predicts that X chooses the pun-
ishment rate P = 0 (because this employee cannot be deterred at all) and increases
inspection as Rext increases to minimize the impact of violations by catching them
inside (see Table 4 in Appendix A). Note that this is true only for violations that are
not very costly (as is the case for our choice of costs). If the expected violation cost is
more than the value generated by the employee, then it is better to fire the non-deterred
employee (see Appendix B.2).
Audit cost C and performance factor µ of log analysis tool.
Prediction 5: If audit cost C decreases or the performance µ of log analysis increases,
then the equilibrium inspection level increases. The data supporting this prediction is
presented in Table 3 and 5 in Appendix A. Intuitively, it is expected that if the cost
of auditing goes down then organizations would audit more, given their fixed budget
allocated for auditing. Similarly, a more efficient mechanized audit tool will enable the
organization to increase its audit efficiency with the fixed budget. For example, MedAs-
sets claims that Stanford Hospitals and Clinics saved $4 million by using automated
tools for auditing [29].

7 Related Work

Auditing and Accountability: Prior work studies orthogonal questions of algorithmic
detection of policy violations [30–33] and blame assignment [34–37]. Feigenbaum et
al. [38] report work in progress on formal definitions of accountability capturing the
idea that violators are punished with or without identification and mediation with non-
zero probability, and punishments are determined based on an understanding of “typ-
ical” utility functions. Operational considerations of how to design an accountability
mechanism that effectively manages organizational risk is not central to their work. In
other work, auditing is employed to revise access control policies when unintended ac-
cesses are detected [39–41]. Another line of work uses logical methods for enforcing a
class of policies, which cannot be enforced using preventive access control mechanisms,
based on evidence recorded in audit logs [42]. Cheng et al. [43, 44] extend access con-
trol to by allowing agents access based on risk estimations. A game-theoretic approach
of coupling access control with audits of escalated access requests in the framework
of a single-shot game is studied by Zhao et al. [45]. These works are fundamentally
different from our approach. We are interested in scenarios where access control is not
desirable and audits are used to detect violations. We believe that a repeated game can
better model the repeated interactions of auditing.
Risk Management and Data Breaches: Our work is an instance of a risk management
technique [12, 13] in the context of auditing and accountability. As far as we know, our
technique is the first instance of managing risk in auditing using a repeated game for-
malism. Risk assessment has been extensively used in many areas [10, 11]; the report
by American National Standards Institute [15] provides a risk assessment mechanism



for healthcare. Our model also models data breaches that happen due to insider attacks.
Reputation has been used to study insider attacks in non-cooperative repeated games
[46]; we differ from that work in that the employer-employee interaction is essentially
cooperative. Also, the primary purpose of interaction between employer and employee
is to accomplish some task (e.g., provide medical care). Privacy is typically a secondary
concern. Our model captures this reality by considering the effect of non-audit interac-
tions in parameters like Pf . There are quite a few empirical studies on data breaches
and insider attacks [16, 19, 28] and qualitative models of insider attacks [47]. We use
these studies to estimate parameters and evaluate the predictions of our model.

8 Conclusion and Future Work

First, as public policy and industry move towards accountability-based privacy gov-
ernance, the biggest challenge is how to operationalize requirements such as internal
enforcement of policies. We believe that principled audit and punishment schemes like
the one presented in this paper can inform practical enforcement regimes. Second, a
usual complaint against this kind of risk management approach is that there isn’t data
to estimate the risk parameters. We provide evidence that a number of parameters in
the game model can be estimated from prior empirical studies while recognizing the
need for more scientific studies with similar goals, and suggest specific studies that can
help estimate other parameters. Third, our model makes an interesting prediction that
merits further attention: it suggests that we should design interventions that increase the
expected loss from external detection of violations significantly more than the expected
loss from internal detection.

While our model captures a number of important economic considerations that in-
fluence the design of audit mechanisms, there is much room for further refinement.
For example, the model does not handle colluding adversaries nor does it account for
detection of violations in audit rounds other than the one in which the violation was
committed. Also, our treatment of accountable data governance leaves open questions
about the trade-off between utility maximization and privacy protection. Moving for-
ward, we plan to generalize our model, explore the space of policy interventions to
encourage accountable data governance, and address normative questions such as what
are appropriate levels of inspections and punishments for accountable data governance.
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A Experimental Outcomes Supporting Predictions

Rext P α

5 to 443 0 0
443 to 3900 6.5 1

Table 1. P, α for e = 1000

Rext and Rint P α

5 to 26 0 0
26 to 3900 10 0.2

Table 2. P, α for constant (0) difference in
Rint, Rext



C P α

10 6.5 1
20 6.5 1
30 7.0 0.85
40 7.5 0.65
50 8.0 0.5
60 9.5 0.25
70 10.0 0.2

Table 3. P, α for varying C

Rext P α

5 0 0
670 0 0.1
685 0 0.35
714 0 0.6
748 0 0.85
790 0 1.0

Table 4. P, α for I = 50

µ P α

1.0 10.0 0.3
1.2 9.5 0.35
1.3 9.5 0.35
1.40 9.0 0.45
1.5 9.0 0.45
1.6 8.5 0.5
1.7 8.5 0.5

Table 5. P, α for varying µ

B Proofs

Reminder of Theorem 1. The simple commitment strategy profile (defined above) is an
(εA,k, 0)-SPE for the game GA,k, where εA,k is

max

(
max
vt,at

(UD+δI
max − UDmax), max

vt,at
(UND+δI

max − UNDmax)

)
+

εth max
α∈[0,1]

m−1∑
j=0

δjDE(r(~Ot, j))[Uk, Uk, α]


Proof. First the easy case for the employee: the employee always plays a best response.
When deterred she is indifferent among any at, so choice of at does not matter in that
case. Thus, there is 0 benefit for the employee by deviating with the history-independent
strategy followed. There are two terms in the εA,k bound for the organization. The first
term bounds the profit from deviation due to the fact that the true I is not known. The
second term further bounds the profit from deviation due to the fact that the distribution
D0
t is unknown.

Note that we have lifted the action space of D to commitment functions. Thus,
we need to compare the given commitment with other commitment functions. First,
note that if the regions were known properly, and Dt

0 known then it is possible to find
the commitment that is optimal cost for each fixed value of at. Then, it is enough to
bound the difference in utility of the the audit commitment function to this optimal
commitment function across all values of at. We perform the analysis for any fixed at,
then taking the maximum over all at to bound the difference in utility when D could
move to the optimal commitment. We first compare the audit commitment to itself
when the true regions are known, then assuming true regions are known we compare
the audit commitment to the optimal commitment. Then using triangle inequality we
get the required difference for a fixed at. Then using the fact that maxx f(x) + g(x) ≤
maxx f(x) + maxx g(x) we get the required bound for all at.

Suppose the simple commitment strategy profile finds a point in the regionRID\RIδI .
The largest true deterred region can be RID ∪RIδI . Thus, UD+δI

max −UDmax represents the
maximum profit the organization could have obtained by deviating to another point



using the true deterred region in simple commitment strategy, with some fixed value
of vt and at. Then the maximum taken over vt and at gives the maximum possible
profit by deviation for the deterred region if the true deterred region were known. Sim-
ilar argument shows that the maximum profit by deviation for non-deterred region is
maxvt,at(U

ND+δI
max − UNDmax). Thus, the absolute maximum profit from deviation for

any region is given by the maximum of these two quantities.
Next, assume that the true deterred region RD is known, so is the non-deterred

region RND. We have already show above that the maximum profit from deviation
that the organization would get using simple commitment strategy with RD instead of
RID\RIδI , and RND instead of RIND\RIδI . Assume that the true regions are known and
simple commitment strategy outputs (P, α) to be played by the organization. We use the
simplified notation with the game under consideration being GA,k. Denote by f(P, α)
the function E(Rewt

D)[0], by g(P, α) the function E(Rewt
D)[a

t] and by h(P, α) the
function E(Rewt

D)[D
t
0]. The function maximized by (P, α) is

UD(P, α) = (1− εth)f(P, α) + εthg(P, α) ,

in RD and is
UND(P, α) = (1− εth)g(P, α) + εthg(P, α)

in RND. Suppose Dt
0 was known and the point (P ′, α′) is obtained by maximizing

U ′D(P, α) = (1− εth)f(P, α) + εthh(P, α)

in the RD region and

U ′ND(P, α) = (1− εth)g(P, α) + εthh(P, α)

in the RND region. We emphasize that the function U ′ is the true expected utility.
Consider two different cases

– (P, α) and (P ′, α′) both lie in the same region, sayRD. Then, the maximum benefit
to be gained out of deviation is U ′D(P

′, α′)− U ′D(P, α), which is

(1− εth)(f(P ′, α′)− f(P, α)) + εth(h(P
′, α′)− h(P, α))

Also, since UD(P, α) ≥ UD(P ′, α′) we have

εth(g(P, α)− g(P ′, α′)) ≥ (1− εth)(f(P ′, α′)− f(P, α))

Thus, the maximum benefit is upper bounded by

εth (g(P, α)− g(P ′, α′) + h(P ′, α′)− h(P, α)) .

The upper bound is same for the non-deterred case, since in that case the function
f(., .) is replaced by g(., .) in both U and U ′ and the exact same calculation as
above yields the same bound.



– (P, α) and (P ′, α′) both lie in different regions, say RD and RND respectively.
Then, the maximum benefit to be gained out of deviation isU ′ND(P

′, α′)−U ′D(P, α),
which is

(1− εth)(g(P ′, α′)− f(P, α)) + εth(h(P
′, α′)− h(P, α)) .

Also, since UD(P, α) ≥ UND(P ′, α′) we have

εth(g(P, α)− g(P ′, α′)) ≥ (1− εth)(g(P ′, α′)− f(P, α)) .

Thus, the maximum benefit is upper bounded by

εth (g(P, α)− g(P ′, α′) + h(P ′, α′)− h(P, α)) .

Now suppose that (P, α) and (P ′, α′) lie in RND and RD respectively. Then, the
maximum benefit to be gained out of deviation is U ′D(P

′, α′)−U ′ND(P, α), which
is

(1− εth)(f(P ′, α′)− g(P, α)) + εth(h(P
′, α′)− h(P, α)) .

Also, since UND(P, α) ≥ UD(P ′, α′) we have

εth(g(P, α)− g(P ′, α′)) ≥ (1− εth)(f(P ′, α′)− g(P, α)) .

Thus, the maximum benefit is upper bounded by

εth (g(P, α)− g(P ′, α′) + h(P ′, α′)− h(P, α)) .

The above cases show that the upper bound for profit from deviation in one round is
always

εth (g(P, α)− g(P ′, α′) + h(P ′, α′)− h(P, α)) .

Using definition of expected rewards we have

g(P, α) = −C(αtat)− e(P t)

h(P, α) = −C(αtat)− e(P t)−
m−1∑
j=0

δjoEDt0(E(r(Ot, j)))

Note that for any P, α

h(P, α)− g(P, α) = −
m−1∑
j=0

δjoEDt0(E(r(Ot, j))) ≤ 0 ,

thus, the upper bound above is further bounded by

εth (g(P, α)− h(P, α)) ,

which is given by

εth

m−1∑
j=0

δjDEDt0(E(r(Ot, j)))

 .



Observe that the above term is maximized over choice of Dt
0 when Dt

0 places all prob-
ability mass on at (for any α), i.e., vt = at. Also, the expected value of r should be
increasing in vt (since higher vt means higher detected violations), and vt = at takes a
maximum value of Uk for game GA,k. Thus, the above term is upper bounded by

εth max
α∈[0,1]

m−1∑
j=0

δjDE(r(Ot, j))[Uk, Uk, α]


Now, add the two bounds to get maximum profit from deviation in one round. Fur-

ther, using Property 1 and noting that the strategy is history independent for GA,k we
now obtain the desired result.

Claim. Assume function instantiations from Section ??. Thus, given ν(α) = µα −
(µ − 1)α2, we must have µ ≤ 2. Further, assuming C + 2(Rint − Rextp) ≥ 0 and
Rint ≤ Rextp, the εA,k from Theorem 1 is given by εthUkmax(Rint, Rextp)+∆IA,k,
where ∆IA,k is

2δImin

(
e

p
,

UkC

µ(1− p)(I − δI)

)
Using values from end of Section 3 we can get εthUkmax(Rint, Rextp) = 0.03 ∗
40 ∗ 150 = 180, also, the minimum in ∆IA,k is for e/p = 20. Assuming, δI = 0.5
(remember i0 = 1, assume the learning reduces region of uncertainty by half), we have
∆IA,k = 20. Thus, we get εA,k = $200.

Proof. Remember that Note that for ν(α) ≤ 1 to hold, it must be that µα−(µ−1)α2 ≤
1 for α ∈ [0, 1]. It can be readily verified that this happens only when µ ≤ 2. Remember
the linear functions assumption means C(st) = Cst and e(P t) = eP t.

max
α∈[0,1]

m−1∑
j=0

δjDE(r(Ot, j))[Uk, Uk, α] =

UkRextp+ Uk max
α∈[0,1]

(Rint −Rextp)ν(α)

The relevant part to maximize can be expanded as

(Rint −Rextp)(µα− (µ− 1)α2)

For µ < 2, (µα− (µ− 1)α2) increases with α ∈ [0, 1] (derivative is positive). Thus, if
Rint > Rextp then α = 1 is the maximizer else α = 0 is the maximizer. Then, it is not
difficult to conclude that the maximum value is Ukmax(Rint, Rextp).

Now observe that, since µ < 2, µ ≥ µ(α) ≥ 1 The utility function maximized by
the organization given the linear function and the example reputation function is (using
simple notation)

−εthRextpat − eP t − αtatC − ν(αt)atεth(Rint −Rextp) ,
−Rextpat − eP t − αtatC − ν(αt)at(Rint −Rextp)



in the reduced deterred region and reduced non-deterred region respectively. Observe
that for the non-deterred case, using assumption C+2(Rint−Rextp) ≥ 0 implies C+
µ(α)(Rint−Rextp) ≥ 0, since 2 > µ ≥ µ(α) ≥ 1 and all quantitiesC,Rint andRextp
are positive. Thus, the maximizer in non-deterred region is always 0, 0, irrespective of
the value of I , hence the difference in costs is zero for the cases when I is known
perfectly and when there is an error δI .

Assume UD+δI
max occurs for a point P ′, α′ and UDmax happens for a point P, α, and

learned valued of personal benefit is I . The interesting case is when P ′, α′ 6= P, α and
P, α lies on the curve defined by I+δI . Then suppose P ′, α′ lie on the curve defined by
I+ δI− ζ for 2δI ≥ ζ ≥ 0. Suppose P ′, α′′ and P ′′, α′ are points on the curve defined
by I + δI obtained by drawing straight lines from the point P ′, α′. Thus, P ′ ≤ P ′′ and
α′ ≤ α′′. Note that since P ′(ν(α′) + p(1− ν(α′))) = I + δI − ζ and ν(α), p ≤ 1, we
can claim that P ′ ≥ I − δI . Then we have

ζ = P ′′(ν(α′) + p(1− ν(α′)))− P ′(ν(α′) + p(1− ν(α′)))

or
P ′′ − P ′ = ζ

ν(α′)(1− p) + p
≤ ζ

p

Also,
ζ = P ′(ν(α′′) + p(1− ν(α′′)))− P ′(ν(α′) + p(1− ν(α′)))

or
ν(α′′)− ν(α′) = ζ

(1− p)P ′
≤ ζ

(1− p)(I − δI)
Note that

ν(α′′)− ν(α′) = µ(α′′ − α′)− (µ− 1)(α′′ − α′)((α′′ + α′))

thus, ν(α′′)− ν(α′) > µ(α′′ − α′) and hence

(α′′ − α′) ≤ ζ

µ(1− p)(I − δI)

Also, UD(P, α) > UD(P ′′, α′) and UD(P, α) > UD(P ′, α′′) and, UD+δI
max − UDmax =

UD+δI(P ′, α′)− UD(P, α) means that

UD+δI
max − UDmax ≤ min(UD+δI(P ′, α′)− UD(P ′′, α′),

UD+δI(P ′, α′)− UD(P ′, α′′))

Also, UD+δI(P ′, α′)− UD(P ′′, α′) is given by

−e(P ′ − P ′′) ≤ eζ

p

Also, UD+δI(P ′, α′)− UD(P ′, α′′) is given by

−at(α′ − α′′)C − at(ν(α′)− ν(α′′))εth(Rint −Rextp)



which can be simplified to

at(α′′ − α′)(C + (µ− (µ− 1)(α′′ + α′))εth(Rint −Rextp))

Using result 1 ≤ µ ≤ 2, we have 2 ≥ µ− (µ− 1)(α+α′) ≥ 0. Using assumption C+
2(Rint−Rextp) ≥ 0 we can say that (C+(µ−(µ−1)(α+α′))εth(Rint−Rextp)) ≥ 0.
Also, sinceRint ≤ Rextp, we have (C+(µ−(µ−1)(α+α′))εth(Rint−Rextp)) ≤ C.
Thus, using the inequalities above and ζ ≤ 2δI , UD+δI

max − UDmax is less than

2δImin

(
e

p
,

atC

µ(1− p)(I − δI)

)
which is maximized for at = Uk.

Reminder of Theorem 2. Assume that budget is fixed in every round and is sufficient
to deter A, and the number of tasks performed by A in every round in fixed. Let v∗o be
the maximum PPE payoff that D can obtain. Further suppose there exists a PPE Em in
which D always plays some action in the deterred region and the utility for D with Em
is v∗o . Then a committed utility maximizing and privacy preservingD will choose to play
Em. Further, the action in Em coincides with the action chosen by simple commitment
strategy profile in each round.

Proof. If D always plays deterred points in Emax then the best option A has is to
perform 0 violations (with an εth probability of maximum violations). Let P, α be the
point in the deterred region that provides highest payoff toD (under 0 violations and εth
probability of maximum violations). In Emax, D will always plays P, α. This because
playing any other point in the deterred region results in a profitable single stage devia-
tion by switching to P, α. Since Emax is a PPE, there must exist a punishment strategy
(low continuation payoff) that makes switching to a non-deterred point non-profitable
for D [22].

Hence the total discounted payoff in Emax is UD(P, α, 0), thus, UD(P, α, 0) = v∗o .
A commitment based utility maximizingD would prefer a PPE with the highest payoff,
and further assuming she chooses the best privacy preserving PPE among those, D
would want the Emax PPE to be played. D will ensure Emax is played by committing
to its strategy. Thus, for the class of PPE strategies the point P, α will be chosen with
the assumptions of the theorem.

Now, we claim that with the simple commitment strategy the same point P, αwill be
chosen by D. To prove this, suppose on the contrary that a point P ′, α′ is chosen in the
non-deterred region. (Note that no other point in deterred region can be chosen - because
P, α is the point in the deterred region that provides highest payoff to the D). Let the
maximum number of violations be a. Then it must be the case that UND(P ′, α′, a) >
UD(P, α, 0). Also, (P ′, α′), a is a Nash equilibrium of the stage game. This is easily
proven by observing that a number of violations maximizes A’s utility when P ′, α′ is
played by D and P ′, α′ maximizes D’s utility when a violations are committed by A.
A Nash equilibrium played in all rounds is a PPE [22]. Then the PPE that results from
playing the above NE in all rounds yields payoff UND(P ′, α′, a), but, by assumption
that UD(P, α, 0) = v∗o , we obtain that this PPE payoff is greater than v∗o . This is a
contradiction as v∗o is the maximum payoff that D can obtain in any PPE. Thus, with
our strategy P, α will be chosen by D.



B.1 Repeated Product Game - Definition and Results

If two players play multiple (repeated) independent games in parallel then it is possible
to consider a composition of these games which is itself a (repeated) game. By indepen-
dent games we mean that these games are played without any influence from the other
games in parallel. We define the composition below for a repeated game.

Definition 3. (Repeated Product Games) Let the two players play the independent one-
shot stage games G1, G2..., Gn in parallel in each round of the corresponding n re-
peated games. A composition of the n stage games is a single-shot game G given by
player i’s (i = 1, 2) action space Si = S1i × S2i... × Sni, and the payoff function
ri(s1, s2) =

∑n
j=1 ri(sj1, sj2) where sji ∈ Sji and si ∈ Si. A repeated product game

is a repeated game with the stage game in every round given by G.

We can extend the above definition to games with imperfect monitoring and public
signaling, similar to the manner in which a standard repeated game is extended. Ob-
serve that any strategy σ of a repeated product game can be decomposed into strategies
σ1, ..., σn of the component games, because of the independence assumption of the
component games. This decomposition leads to the following useful results summa-
rized in the lemma below:

Lemma 1. Let RG be a repeated product game with the stage game given by G, such
that G is a parallel composition of G1, G2..., Gn as defined in Definition 3. Consider
a strategy σ of RG with the decomposition into strategy σi for each component game.
Then

– The strategy σ is a SPE iff the strategy σi is a SPE for the repeated game with stage
game Gi for all i.

– The strategy σ is an (
∑n
i=1 ε1i,

∑n
i=1 ε2i)-SPE if the strategy σi is a (ε1i, ε2i)-SPE

for the repeated game with stage game Gi for all i.

Proof. For the first case assume σi is a SPE for the repeated game with stage game
Gi for all i. Since σ is given by σ1, ..., σn any unilateral deviation from σ results in
a unilateral deviation from one or more of σ1, ..., σn, suppose it is σj. By assumption
that is not profitable for repeated game given by the stage game Gj. Since the payoff
in G is the sum of payoffs in G1, ..., Gn and payoffs of games other than jth game
remains same, the deviation is not profitable for G also.

The other direction is very similar. Assume σ is a SPE. Since σ is given by σ1, ..., σn
any unilateral deviation from σj results in a unilateral deviation from σ. By assumption
that is not profitable for repeated game given by the stage game G. Since the payoff
in G is the sum of payoffs in G1, ..., Gn and payoffs of games other than jth game
remains same, the deviation is not profitable for Gj also.

Next, for the second part since the payoff of G is the sum of payoff’s of Gi’s and
any any unilateral deviation from σ results in a unilateral deviation from one or more
of σ1, ..., σn, then it is not difficult to check that the profit from deviation will not
more than the sum of profit from deviation in each of the repeated games defined by
G1, ..., Gn. Thus, the maximum profit from deviation for player j is

∑
εji.



B.2 Determining Pf and Punishment

In addition to the action dependent utilities above, the players also get an fixed util-
ity in each round of GA, which is the salary SalA for A and the value created by the
employee g × SalA for D. Note that this is the salary and value created for the dura-
tion of one audit cycle. Also, note that this fixed utility is not part of any game GA,k.
Let Rk be the maximum loss of reputation possible for violation of type k (when all
tasks are violations that are externally detected). We assume that the maximum pun-
ishment ~Pf,A(k) rate for each type k is proportional to Rk. Since the employee can
make mistakes, in the worst case he can lose an expected amount of εth

∑
k
~Pf,A(k)Uk.

This loss must be less than a fixed fraction net of SalA, or else the employee is bet-
ter off quitting and getting betters expected payoff in every round in some other job.
Thus, we must have εth

∑
k
~Pf,A(k)Uk = net · SalA, which yields a value ~Pf,A(k) =

Rknet · SalA/(εth
∑
k RkUk). Observe that an employee with higher salary can be

punished more. For example, supposeA does two types k, k′ of tasks such that in every
week Uk = 40, Uk′ = 400 and Rk′ = 0.5Rk and net = 0.15 with weekly salary $500.
Then, ~Pf (k) = 10.4 and ~Pf (k

′) = 5.2.
Next, consider the case the the employee is non-deterred for violations of type k.

Then suppose the expected loss to the organization in every round for such a case is
maximum of UkLk, where Lk is maximum per violation cost (dependent on α) that can
be calculated from our model. In such a case if it happens that UKL ≥ (g − 1)SalA
then the organization obtains no benefit from employing A. Thus, in such a case the
organization must fire the employee.


