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Abstract
Significant recent research advances have made it possi-
ble to design systems that can automatically determine
with high accuracy the maliciousness of a target website.
While highly useful, such systems are reactive by nature.
In this paper, we take a complementary approach, and at-
tempt to design, implement, and evaluate a novel classi-
fication system which predicts, whether a given, not yet
compromised website will become malicious in the fu-
ture. We adapt several techniques from data mining and
machine learning which are particularly well-suited for
this problem. A key aspect of our system is that the set
of features it relies on is automatically extracted from the
data it acquires; this allows us to be able to detect new
attack trends relatively quickly. We evaluate our imple-
mentation on a corpus of 444,519 websites, containing
a total of 4,916,203 webpages, and show that we man-
age to achieve good detection accuracy over a one-year
horizon; that is, we generally manage to correctly predict
that currently benign websites will become compromised
within a year.

1 Introduction
Online criminal activities take many different forms,
ranging from advertising counterfeit goods through spam
email [21], to hosting “drive-by-downloads” services
[29] that surreptitiously install malicious software (“mal-
ware”) on the victim machine, to distributed denial-of-
service attacks [27], to only name a few. Among those,
research on analysis and classification of end-host mal-
ware – which allows an attacker to take over the vic-
tim’s computer for a variety of purposes – has been a
particularly active field for years (see, e.g., [6, 7, 16]
among many others). More recently, a number of stud-
ies [8,15,20,22,36] have started looking into “webserver
malware,” where, instead of targeting arbitrary hosts for
compromise, the attacker attempts to inject code on ma-
chines running web servers. Webserver malware dif-
fers from end-host malware in its design and objectives.

Webserver malware indeed frequently exploits outdated
or unpatched versions of popular content-management
systems (CMS). Its main goal is usually not to com-
pletely compromise the machine on which it resides, but
instead to get the victimized webserver to participate in
search-engine poisoning or redirection campaigns pro-
moting questionable services (counterfeits, unlicensed
pharmaceuticals, ...), or to act as a delivery server for
malware.

Such infections of webservers are particularly com-
mon. For instance, the 2013 Sophos security threat re-
port [33, p.7] states that in 2012, 80% of websites hosting
malicious contents were compromised webservers that
belonged to unsuspecting third-parties. Various measure-
ment efforts [20, 25, 36] demonstrate that people engag-
ing in the illicit trade of counterfeit goods are increas-
ingly relying on compromised webservers to bring traf-
fic to their stores, to the point of supplanting spam as a
means of advertising [20].

Most of the work to date on identifying webserver
malware, both in academia (e.g., [8, 15]) and industry
(e.g., [3, 5, 14, 24]) is primarily based on detecting the
presence of an active infection on a website. In turn, this
helps determine which campaign the infected website is
a part of, as well as populating blacklists of known com-
promised sites. While a highly useful line of work, it is
by design reactive: only websites that have already been
compromised can be identified.

Our core contribution in this paper is to propose, im-
plement, and evaluate a general methodology to identify
webservers that are at a high risk of becoming malicious
before they actually become malicious. In other words,
we present techniques that allow to proactively identify
likely targets for attackers as well as sites that may be
hosted by malicious users. This is particularly useful for
search engines, that need to be able to assess whether
or not they are linking to potentially risky contents; for
blacklist operators, who can obtain, ahead of time, a list
of sites to keep an eye on, and potentially warn these
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sites’ operators of the risks they face ahead of the actual
compromise; and of course for site operators themselves,
which can use tools based on the techniques we describe
here as part of a good security hygiene, along with prac-
tices such as penetration testing.

Traditional penetration testing techniques often rely
on ad-hoc procedures rather than scientific assessment
[26] and are greatly dependent on the expertise of the
tester herself. Different from penetration testing, our ap-
proach relies on an online classification algorithm (“clas-
sifier”) that can 1) automatically detect whether a server
is likely to become malicious (that is, it is probably vul-
nerable, and the vulnerability is actively exploited in the
wild; or the site is hosted with malicious intent), and that
can 2) quickly adapt to emerging threats. At a high level,
the classifier determines if a given website shares a set
of features (e.g., utilization of a given CMS, specifics of
the webpages’ structures, presence of certain keywords
in pages, ...) with websites known to have been mali-
cious. A key aspect of our approach is that the feature
list used to make this determination is automatically ex-
tracted from a training set of malicious and benign web-
pages, and is updated over time, as threats evolve.

We build this classifier, and train it on 444,519
archives sites containing a total of 4,916,203 webpages.
We are able to correctly predict that sites will eventually
become compromised within 1 year while achieving a
true positive rate of 66% and a false positive rate of 17%.
This level of performance is very encouraging given the
large imbalance in the data available (few examples of
compromised sites as opposed to benign sites) and the
fact that we are essentially trying to predict the future.
We are also able to discover a number of content features
that were rather unexpected, but that, in hindsight, make
perfect sense.

The remainder of this paper proceeds as follows. We
review background and related work in Section 2. We de-
tail how we build our classifier in Section 3, describe our
evaluation and measurement methodology in Section 4,
and present our empirical results in Section 5. We dis-
cuss limitations of our approach in Section 6 before con-
cluding in Section 7.

2 Background and related work
Webserver malware has garnered quite a bit of attention
in recent years. As part of large scale study on spam,
Levchenko et al. [21] briefly allude to search-engine op-
timization performed my miscreants to drive traffic to
their websites. Several papers [17, 19, 20, 22] describe
measurement-based studies of the “search-redirection”
attacks, in which compromised websites are first be-
ing used to link to each other and associate themselves
with searches for pharmaceutical and illicit products;
this allows the attacker to have a set of high-ranked

links displayed by the search engine in response to such
queries. The second part of the compromise is to have
a piece of malware on the site that checks the prove-
nance of the traffic coming to the compromise site. For
instance, if traffic is determined to come from a Google
search for drugs, it is immediately redirected—possibly
through several intermediaries—to an illicit online phar-
macy. These studies are primarily empirical characteri-
zations of the phenomenon, but do not go in great details
about how to curb the problem from the standpoint of the
compromised hosts.

In the same spirit of providing comprehensive mea-
surements of web-based abuse, McCoy et al. [25] looks
at revenues and expenses at online pharmacies, includ-
ing an assessment of the commissions paid to “network
affiliates” that bring customers to the websites. Wang et
al. [36] provides a longitudinal study of a search-engine
optimization botnet.

Another, recent group of papers looks at how to de-
tect websites that have been compromised. Among these
papers, Invernizzi et al. [15] focuses on automatically
finding recently compromised websites; Borgolte et al.
[8] look more specifically at previously unknown web-
based infection campaigns (e.g., previously unknown in-
jections of obfuscated JavaScript-code). Different from
these papers, we use machine-learning tools to attempt to
detect websites that have not been compromised yet, but
that are likely to become malicious in the future, over a
reasonably long horizon (approximately one year).

The research most closely related to this paper is the
recent work by Vasek and Moore [35]. Vasek and Moore
manually identified the CMS a website is using, and stud-
ied the correlation between that CMS the website secu-
rity. They determined that in general, sites using a CMS
are more likely to behave maliciously, and that some
CMS types and versions are more targeted and compro-
mised than others. Their research supports the basic in-
tuition that the content of a website is a coherent basis
for making predictions about its security outcome.

This paper builds on existing techniques from machine
learning and data mining to solve a security issue. Di-
rectly related to the work we present in this paper is
the data extraction algorithm of Yi et al. [38], which we
adapt to our own needs. We also rely on an ensemble of
decision-tree classifiers for our algorithm, adapting the
techniques described by Gao et al. [13].

3 Classifying websites
Our goal is to build a classifier which can predict with
high certainty if a given website will become malicious
in the future. To that effect, we start by discussing the
properties our classifier must satisfy. We then elaborate
on the learning process our classifier uses to differentiate
between benign and malicious websites. Last, we de-
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scribe an automatic process for selecting a set features
that will be used for classification.

3.1 Desired properties
At a high level, our classifier must be efficient, inter-
pretable, robust to imbalanced data, robust to missing
features when data is not available, and adaptive to an
environment that can drastically change over time. We
detail each point in turn below.

Efficiency: Since our classifier uses webpages as an in-
put, the volume of the data available to train (and test)
the classifier is essentially the entire World Wide Web.
As a result, it is important the the classifier scale favor-
ably with large, possibly infinite datasets. The classifier
should thus use an online learning algorithm for learning
from a streaming data source.

Interpretability: When the classifier predicts whether a
website will become malicious (i.e., it is vulnerable, and
likely to be exploited; or likely to host malicious con-
tent), it is useful to understand why and how the classifier
arrived at the prediction. Interpretable classification is
essential to meaningfully inform website operators of the
security issues they may be facing. Interpretability is also
useful to detect evolution in the factors that put a website
at risk of being compromised. The strong requirement
for interpretability unfortunately rules out a large number
of possible classifiers which, despite achieving excellent
classification accuracy, generally lack interpretability.

Robustness to imbalanced data: In many applications
of learning, the datasets that are available are assumed
to be balanced, that is, there is an equal number of ex-
amples for each class. In our context, this assumption
is typically violated as examples of malicious behavior
tend to be relatively rare compared to innocuous exam-
ples. We will elaborate in Section 5 on the relative sizes
of both datasets, but assume, for now, that 1% of all ex-
isting websites are likely to become malicious, i.e., they
are vulnerable, and exploits for these vulnerabilities exist
and are actively used; or they are hosted by actors with
malicious intent. A trivial classifier consistently predict-
ing that all websites are safe would be right 99% of the
time! Yet, it would be hard to argue that such a classi-
fier is useful at all. In other words, our datasets are im-
balanced, which has been shown to be problematic for
learning—the more imbalanced the datasets, the more
learning is impacted [30].

At a fundamental level, simply maximizing accuracy
is not an appropriate performance metric here. Instead,
we will need to take into account both false positives
(a benign website is incorrectly classified as vulnerable)
and false negatives (a vulnerable website is incorrectly
classified as benign) to evaluate the performance of our
classifier. For instance, the trivial classifier discussed

above, which categorizes all input as benign, would yield
0% false positives, which is excellent, but 100% of false
negatives among the population of vulnerable websites,
which is obviously inadequate. Hence, metrics such as
receiver-operating characteristics (ROC) curves which
account for both false positive and false negatives are
much more appropriate in the context of our study for
evaluating the classifier we design.

Robustness to errors: Due to its heterogeneity (many
different HTML standards co-exist, and HTML engines
are usually fairly robust to standard violations) and its
sheer size (billions of web pages), the Web is a notori-
ously inconsistent dataset. That is, for any reasonable set
of features we can come up with, it will be frequently the
case that some of the features may either be inconclusive
or undetermined. As a simple example, imagine consid-
ering website popularity metrics given by the Alexa Web
Information Service (AWIS, [1]) as part of our feature
set. AWIS unfortunately provides little or no information
for very unpopular websites. Given that webpage pop-
ularity distribution is “heavy-tailed [9],” these features
would be missing for a significant portion of the entire
population. Our classifier should therefore be robust to
errors as well as missing features.

Another reason for the classifier to be robust to errors
is that the datasets used in predicting whether a web-
site will become compromised are fundamentally noisy.
Blacklists of malicious websites are unfortunately in-
complete. Thus, malicious sites may be mislabeled as
benign, and the classifier’s performance should not de-
grade too severely in the presence of mislabeled exam-
ples.

Adaptive: Both the content on the World Wide Web,
and the threats attackers pose vary drastically over time.
As new exploits are discovered, or old vulnerabilities are
being patched, the sites being attacked change over time.
The classifier should thus be able to learn the evolution
of these threats. In machine learning parlance, we need a
classifier that is adaptive to “concept drift” [37].

All of these desired properties led us to consider an en-
semble of decision-tree classifiers. The method of using
an ensemble of classifiers is taken from prior work [13].
The system works by buffering examples from an input
data stream. After a threshold number of examples has
been reached, the system trains a set of classifiers by re-
sampling all past examples of the minority class as well
as recent examples of the majority class. While the type
of classifier used in the ensemble may vary, we chose to
use C4.5 decision trees [31].

The system is efficient as it does not require the stor-
age or training on majority class examples from the far
past. The system is also interpretable and robust to errors
as the type of classifier being used is a decision-tree in
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timet t+h
Past Future(Present)

desired test time

Known data

available data for prediction

(a) Using the present to predict the future

timet−h t
Past

desired test timeavailable for prediction

Future(Present)

Known data

(b) Using the past to predict the present

Figure 1: Prediction timeline. Attempting to predict
the future makes it impossible to immediately evaluate
whether the prediction was correct (a). A possible alter-
native (b) is to use past data to simulate a prediction done
in the past (at t �h) that can then be tested at the present
time t.

an ensemble [13]. Periodically retraining our classifiers
makes them robust to concept drift as long as retrain-
ing occurs sufficiently often. Finally, the system handles
class imbalance by resampling the input stream, namely,
it resamples from the set of all minority class training
examples from the past as well as recent majority class
examples.

3.2 Learning process
The type of classification we aim to perform presents
unique challenges in the learning process.

Lack of knowledge of the future: Assume that at a
given time t, our classifier predicts that a given website
w is likely to become compromised in the future. Be-
cause the website has not been compromised yet—and
may not be compromised for a while—we cannot imme-
diately know whether the prediction is correct. Instead,
we have to wait until we have reached a time (t + h) to
effectively be able to verify whether the site has become
compromised between t and (t + h), or if the classifier
was in error. This is particularly problematic, since just
training the classifier—let alone using it—would require
to wait at least until (t + h). This is the situation illus-
trated in Figure 1(a).

A second, related issue, is that of defining a mean-
ingful “time horizon” h. If h is too long, it will be im-
possible to even verify that the classifier was right. In
an extreme case, when h ! •, the performance of the
classifier cannot be evaluated.1 Selecting a time horizon
too short (e.g., h = 0) would likewise reduce to the prob-
lem of determining whether a website is already compro-
mised or not—a very different objective for which a rich
literature already exists, as discussed earlier.

1Given the complexity of modern computer software, it is likely that
exploitable bugs exist in most, if not all webservers, even though they
might have not been found yet. As a result, a trivial classifier predicting
that all websites will be compromised over an infinite horizon (h ! •)
may not even be a bad choice.

We attempt to solve these issues as follows. First, de-
ciding what is a meaningful value for the horizon h ap-
pears, in the end, to be a design choice. Unless other-
wise noted, we will assume that h is set to one year. This
choice does not affect our classifier design, but impacts
the data we use for training.

Second, while we cannot predict the future at time t,
we can use the past for training. More precisely, for train-
ing purposes we can solve our issue if we could extract a
set of features, and perform classification on an archived
version of the website w as it appeared at time (t � h)
and check whether, by time t, w has become malicious.
This is what we depict in Figure 1(b). Fortunately, this is
doable: At the time of this writing, the Internet Archive’s
Wayback Machine [34] keeps an archive of more than
391 billion webpages saved over time, which allows us
to obtain “past versions” of a large number of websites.

Obtaining examples of malicious and benign web-
sites: To train our classifier, we must have ground truth
on a set of websites—some known to be malicious, and
some known to be benign. Confirmed malicious websites
can be obtained from blacklists (e.g., [28]). In addition,
accessing historical records of these blacklists allows us
to determine (roughly) at what time a website became
malicious. Indeed, the first time at which a compromised
website appeared in a blacklist gives an upper bound on
the time at which the site became malicious. We can then
grab older archived versions of the site from the Way-
back Machine to obtain an example of a site that was
originally not malicious and then became malicious.

We obtain benign websites by randomly sampling
DNS zone files, and checking that the sampled sites are
not (and have never been) in any blacklist. We then also
cull archives of these benign sites from the Wayback ma-
chine, so that we can compare at the same time in the
past sites that have become malicious to sites that have
remained benign.

We emphasize that, to evaluate the performance of the
classifier at a particular time t, training examples from
the past (e.g., t�h) may be used; and these examples can
then be used to test on the future. However, the converse
is not true: even if that data is available, we cannot train
on the present t and test on the past (t�h) as we would be
using future information that was unknown at the time of
the test. Figure 1(b) illustrates that data available to build
predictions is a strict subset of the known data.

Dealing with imbalanced datasets: As far as the learn-
ing process is concerned, one can employ class re-
balancing techniques. At a high level, class re-balancing
has been studied as a means to improve classifier perfor-
mance by training on a distribution other than the natu-
rally sampled distribution. Since we sample only a ran-
dom subset of sites which were not compromised, we
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already perform some resampling in the form of a one-
sided selection.

3.3 Dynamic extraction of the feature list
Any classifier needs to use a list of features on which to
base its decisions. Many features can be used to charac-
terize a website, ranging from look and feel, to traffic, to
textual contents. Here we discuss in more details these
potential features. We then turn to a description of the
dynamic process we use to update these features.

3.3.1 Candidate feature families

As potential candidates for our feature list, we start by
considering the following families of features.

Traffic statistics. Website statistics on its traffic, popu-
larity, and so forth might be useful in indicating a spe-
cific website became compromised. For instance, if a
certain website suddenly sees a change in popularity, it
could mean that it became used as part of a redirection
campaign. Such statistics may be readily available from
services such as the aforementioned Alexa Web Informa-
tion Service, if the website popularity is not negligible.

Filesystem structure. The directory hierarchy of the
site, the presence of certain files may all be interesting
candidate features reflecting the type of software run-
ning on the webserver. For instance the presence of a
wp-admin directory might be indicative of a specific
content management system (WordPress in that case),
which in turn might be exploitable if other features in-
dicate an older, unpatched version is running.

Webpage structure and contents. Webpages on the
website may be a strong indicator of a given type of
content-based management system or webserver soft-
ware. To that effect, we need to distill useful page
structure and content from a given webpage. The user-
generated content within webpages is generally not use-
ful for classification, and so it is desirable to filter it out
and only keep the “template” the website uses. Extract-
ing such a template goes beyond extraction of the Docu-
ment Object Model (DOM) trees, which do not provide
an easy way to differentiate between user-generated con-
tents and template. We discuss in the next section how
extracting this kind of information can be accomplished
in practice.

Page content can then distilled into features using
several techniques. We chose to use binary features
that detect the presence of particular HTML tags in a
site. For instance, “is the keyword joe’s guestbook/v1.2.3
present?” is such a binary feature. Of course, using such
a binary encoding will result in a rather large feature set
as it is less expressive than other encoding choices. How-
ever the resulting features are extremely interpretable

and, as we will see later, are relatively straightforward
to extract automatically.

Perhaps more interestingly, we observed that features
on filesystem structure can actually be captured by look-
ing at the contents of the webpages. Indeed, when
we collect information about internal links (e.g., <a
href=”../top.html”>) we are actually gathering informa-
tion about the filesystem as well. In other words, features
characterizing the webpage structure provide enough in-
formation for our purposes.

3.3.2 Dynamic updates

We consider traffic statistics as “static” features that we
always try to include in the classification process, at least
when they are available. On the other hand, all of the
content-based features are dynamically extracted. We
use a statistical heuristic to sort features which would
have been useful for classifying recent training examples
and apply the top performing features to subsequent ex-
amples.

4 Implementation
We next turn to a discussion of how we implemented our
classifier in practice. We first introduce the data sources
we used for benign and soon-to-be malicious websites.
We then turn to explaining how we conducted the parsing
and filtering of websites. Last we give details of how we
implemented dynamic feature extraction.

4.1 Data sources
We need two different sources of data to train our clas-
sifier: a ground truth for soon-to-be malicious websites,
and a set of benign websites.

Malicious websites. We used two sets of blacklists as
ground truth for malicious websites. First, we obtained
historical data from PhishTank [28]. This data contains
11,724,276 unique links from 91,155 unique sites, col-
lected between February 23, 2013 and December 31,
2013. The Wayback machine contained usable archives
for 34,922 (38.3%) of these sites within the required
range of dates.

We then complemented this data with a list of web-
sites known to have been infected by “search-redirection
attacks,” originally described in 2011 [20, 22]. In this
attack, miscreants inject code on webservers to have
them participate in link farming and advertise illicit
products—primarily prescription drugs. From a related
measurement project [19], we obtained a list, collected
between October 20, 2011 and September 16, 2013, of
738,479 unique links, all exhibiting redirecting behav-
ior, from 16,173 unique sites. Amazingly, the Wayback
machine contained archives in the acceptable range for
14,425 (89%) of these sites.
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Figure 2: Cumulative distribution function of the
number of pages scraped. Benign websites very fre-
quently contain only a handful of pages.

We use these two blacklists in particular because we
determined, through manual inspection, that a large per-
centage of sites in these lists have either been compro-
mised by an external attacker or are maliciously hosted.
On the other hand, various other blacklists often label
sites that are heavily spammed or contain adult content
as malicious, which we do not think is appropriate.

Benign websites. We randomly sampled the entire
.com zone file from January 14th, 2014. For each do-
main, we enumerated the available archives in the Way-
back machine. If at least an archive was found, we
selected one of the available archives in the range of
February, 20, 2010 to September 31, 2013. This yielded
337,191 website archives. We then removed all archives
that corresponded to sites known as malicious. We re-
moved 27 of them that were among the set of sites known
to have been infected by search-redirection attacks, and
another 72 that matched PhishTank entries. We also dis-
carded an additional 421 sites found in the DNS-BH [2],
Google SafeBrowsing [14], and hpHosts [23] blacklists,
eventually using 336,671 websites in our benign corpus.

Structural properties. Figure 2 shows some interest-
ing characteristics of the size of the websites we con-
sider. Specifically, the cumulative distribution function
of the number of pages each website archive contains dif-
fers considerably between the datasets. For many benign
sites, that were randomly sampled from zone files, only a
few pages were archived. This is because many domains
host only a parking page or redirect (without being ma-
licious) to another site immediately. Other sites are very
small and host only a few different pages.

On the other hand, malicious sites from both of our
blacklists contain more pages per site, since in many
cases they are reasonably large websites that had some
form of visibility (e.g., in Google rankings), before be-
coming compromised and malicious. In some other
cases, some of the blacklisted sites are sites maliciously
registered, that do host numerous phishing pages.

4.2 Parsing and filtering websites
We scraped web pages from the Wayback Machine us-
ing the Scrapy framework [4], and a collection of custom
Python scripts.

Selecting which archive to use. The scripts took in a
URL and a range of dates as inputs, and then navigated
The WayBack Machine to determine all the archives that
existed for that URL within the specified range.

Sites first appear in a blacklist at a particular time t. If
a site appears in multiple blacklists or in the same black-
list multiple times, we use the earliest known infection
date. We then search for snapshots archived by the Way-
back machine between t�12 months and to t�3 months
prior to the site being blacklisted. The choice of this
range is to satisfy two concerns about the usefulness of
the archive data. Because compromised sites are not gen-
erally instantaneously detected, if the date of the archive
is chosen too close to the first time the site appeared in
a blacklist, is is possible that the archived version was
already compromised. On the other hand, if the archived
version was chosen too far from the time at which the
site was compromised, the site may have changed dra-
matically. For instance, the content management system
powering the site may have been updated or replaced en-
tirely.

If multiple archives exist in the range t � 3 months–
t � 12 months, then we select an archive as close to t �
12 months as possible; this matches our choice for h =
1 year described earlier. We also download and scrape
the most recent available archive, and compare it with the
the one-year old archive to ensure that they are using the
same content management system. In the event that the
structure of the page has changed dramatically (defined
as more than 10% changes) we randomly select a more
recent archive (i.e., between zero and one year old), and
repeat the process.

Scraping process. We scrape each archived site, using
a breadth-first search. We terminate the process at ei-
ther a depth of two links, or 20 pages have been saved,
and purposefully only download text (HTML source, and
any script or cascading style sheets (CSS) embedded in
the page, but no external scripts or images). Using a
breadth-first search allows us to rapidly sample a large
variety of web pages. It is indeed common for websites
to contain multiple kinds of webpages, for example fo-
rums and posts, blogs and guestbooks, login and con-
tact pages. A breadth-first search provides an idea of the
amount of page diversity in a site without requiring us to
scrape the entire site. Limiting ourselves to 20 pages al-
lows us to quickly collect information on a large number
of websites, and in fact allows us to capture the vast ma-
jority of websites in their entirety, according to Figure 2,
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Figure 3: DOM and style trees. The figure, adapted from Yi et al. [38], shows two DOM trees corresponding to two
separate pages, and the resulting style tree.

while—as we will see later—providing enough informa-
tion to our classifier to be able to make good decisions.

Filtering. Once a batch of webpages has been saved for
a given website, we filter each of them to remove user-
generated content. We define user-generated content as
all data in webpage, visible and invisible, which is not
part of the underline template or content-management
system. This includes for instance blog posts, forum
posts, guestbook entries, and comments. Our assumption
is that user-generated content is orthogonal to the secu-
rity risks that a site a priori faces and is therefore simply
noise to the classifier. User-generated content can, on the
other hand, indicate that a site has already been compro-
mised, for instance if blog posts are riddled with spam
links and keywords. But, since our objective is to detect
vulnerable (as opposed to already compromised) sites,
user-generated content is not useful to our classification.

The process of extracting information from webpages
is a well-studied problem in data mining [10, 11, 32, 38,
39]. Generally the problem is framed as attempting to
isolate user-generated content which otherwise would be
diluted by page template content. We are attempting to
do the exact opposite thing: discarding user-generated
content while extracting templates. To that effect, we
“turn on its head” the content-extraction algorithm pro-
posed by Yi et al. [38] to have it only preserve templates
and discard contents.

Yi et al. describes an algorithm where each webpage
in a website is broken down into a Document Object
Model (DOM) tree and joined into a single larger struc-
ture referred to as a style tree. We illustrate this con-
struction in Figure 3. In the figure, two different pages in
a given website produce two different DOM trees (DOM
1 and DOM 2 in the figure). DOM trees are essentially
capturing the tags and attributes present in the page, as
well as their relationship; for instance, ¡table¿ elements
are under ¡body¿.

The style tree incorporates not only a summary of the
individual pieces of content within the pages, but also
their structural relationships with each other. Each node
in a style tree represents an HTML tag from one or pos-
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Figure 4: C.d.f. of CompImp over the style tree
generated for dailyshotofcoffee.com. We use
1,000 pages to generate the style tree.

sibly many pages within the site and has a derived prop-
erty called composite importance (CompImp), which is
an information-based measure of how important the node
is. Without getting into mathematical details—which can
be found in Yi et al. [38]—nodes which have a CompImp
value close to 1 are either unique, or have children which
are unique. On the other hand, nodes which have a Com-
pImp value closer to 0 typically appear often in the site.

While Yi et al. try to filter out nodes with CompImp
below a given threshold to extract user content, we are
interested in the exact opposite objective; so instead we
filter out nodes whose CompImp is above a threshold.

We provide an illustration with the example of
dailyshotofcoffee.com. We built, for the pur-
pose of this example, a style tree using 1,000 randomly
sampled pages from this website. We plot the Com-
pImp of nodes in the resulting style tree in Figure 4. A
large portion of the nodes in the style tree have a Com-
pImp value of exactly 1 since their content is completely
unique within the site. The jumps in the graph show
that some portions of the site may use different templates
or different variations of the same template. For exam-
ple, particular navigation bars are present when viewing
some pages but not when viewing others.

We illustrate the effect of selecting different values as
a threshold for filtering in Figure 5. We consider a ran-

7

dailyshotofcoffee.com
dailyshotofcoffee.com


(a) Original (b) CompImp > 0.99 (c) CompImp > 0.6 (d) CompImp > 0.1

Figure 5: Impact of various thresholds on filtering. The figure shows how different CmpInt thresholds affect the
filtering of the webpage shown in (a). Thresholds of 0.99 and 0.6 produce the same output, whereas a threshold of 0.1
discards too many elements.
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Figure 6: C.d.f. of CompImp over all style trees gen-
erated for 10,000 random sites. We use 1,000 pages per
website to generate the style tree.

dom page of dailyshotofcoffee.com showed in
Figure 5(a). In Figures 5(b), (c), and (d), we show the re-
sult of filtering with a threshold value of 0.99, 0.6 and 0.1
respectively. There is no difference between using 0.99
and 0.6 as a threshold since there are very few nodes in
the style tree that had a CompImp between 0.6 and 0.99,
as shown in Figure 4. There is a notable difference when
using 0.1 as a threshold since portions of the page tem-
plate are present on some but not all pages of the site.

In general, style trees generated for other sites seem to
follow a similar distribution, as shown in Figure 6 where
we plot the aggregated CompImp c.d.f. over all style
trees generated for 10,000 sites. The aggregation does
have a slight curve around the CompImp value 1 which
indicates that a few sites do have style trees with nodes in
this space. Such sites typically use a fixed template with
the exception of a few pages such as 404 error pages,
login, and registration pages.

A concern with applying style trees for filtering in this
setting occurs in instances where there are only a few ex-
amples of pages from a particular site. Trivially, if there
is only a single page from the site, then the style tree is
just the page itself, and if only a few examples are found
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Figure 7: C.d.f. of CompImp over the style tree gen-
erated for dailyshotofcoffee.com using only 5
pages. The plot represents the fraction of nodes less than
a threshold in the style tree generated from only five ran-
dom pages from dailyshotofcoffee.com.

then the estimates of nodes in the style tree will be highly
dependent on where in the site those pages were sampled
from. In Figure 7, we plot the cumulative distribution
function for CompImp over the style tree generated for
dailyshotofcoffee.com, but this time, only using
five random pages from the site. Compared to Figure 4,
we see that the particular cutoffs are slightly different
from when we used 1,000 pages; but the general shape
still remains the same. Manual inspection over many
sites has indicates that this approach still works well with
as few as five pages. This serves as further justification
to our design decision of only scraping 20 pages at most
from each website.

With all of these experiments in mind, we selected
a thresholding value of 0.99 for our system, and elim-
inated from our filtering process sites where we could
only scrape less than five pages.

4.3 Feature extraction
We derived the set of features used in classification from
two main sources, the Alexa Web Information Service
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Feature Discretization fn. Values

AWIS Site Rank dlog(SiteRank)e [0 . . .8]
Links to the site dlog(LinksIn)e [0 . . .7]
Load percentile bLoadPercentile/10c [0 . . .10]
Adult site? (Boolean) {0,1}
Reach per million dlog(reachPerMillion)e [0 . . .5]

Table 1: AWIS features used in our classifier and
their discretization. Those features are static—i.e., they
are used whenever available.

(AWIS) and the content of the saved web pages. Fea-
tures generated from the pages content are dynamically
generated during the learning process according to a cho-
sen statistic. For the classification process we use an en-
semble of decision trees so that the input features should
be discrete. In order to obtain useful discrete features
(i.e., discrete features that do not take on too many val-
ues relative to the number of examples), we apply a map-
ping process to convert continuous quantities (load per-
centile) and large discrete quantities (global page rank)
to a useful set of discrete quantities. The mappings used
are shown in Table 1.

4.3.1 AWIS features

For every site that was scraped, we downloaded an en-
try from AWIS on Feb 2, 2014. While the date of the
scrape does not match the date of the web ranking infor-
mation, it can still provide tremendous value in helping
to establish the approximate popularity of a site. Indeed,
we observed that in the overwhelming majority of cases,
the ranking of sites and the other information provided
does not change significantly over time; and after dis-
cretization does not change at all. This mismatch is not
a fundamental consequence of the experiment design but
rather a product retrospectively obtaining negative train-
ing examples (sites which did not become compromised)
which can be done in real time.

Intuitively, AWIS information may be useful because
attackers may target their resources toward popular hosts
running on powerful hardware. Adversaries which host
malicious sites may have incentives to make their own
malicious sites popular. Additionally, search engines are
a powerful tool used by attackers to find vulnerable tar-
gets (through, e.g., “Google dorks [18]”) which causes a
bias toward popular sites.

We summarize the AWIS features used in Table 1. An
AWIS entry contains estimates of a site’s global and re-
gional popularity rankings. The entry also contains es-
timates of the reach of a site (the fraction of all users
that are exposed to the site) and the number of other
sites which link in. Additionally, the average time that
it takes users to load the page and some behavioral mea-
surements such as page views per user are provided.

The second column of Table 1 shows how AWIS infor-
mation is discretized to be used as a feature in a decision-
tree classifier. Discretization groups a continuous feature
such as load percentile or a large discrete feature such as
global page rank into a few discrete values which make
them more suitable for learning. If a feature is contin-
uous or if too many discrete values are used, then the
training examples will appear sparse in the feature space
and the classifier will see new examples as being unique
instead of identifying them as similar to previous exam-
ples when making predictions.

For many features such as AWIS Site Rank, a loga-
rithm is used to compress a large domain of ranks down
to a small range of outputs. This is reasonable since for
a highly ranked site, varying by a particular number of
rankings is significant relative to much lower ranked site.
This is because the popularity of sites on the Internet fol-
lows a long tailed distribution [9].

Dealing with missing features. Some features are not
available for all sites, for example information about the
number of users reached by the site per million users was
not present for many sites. In these cases, there are two
options. We could reserve a default value for missing
information; or we could simply not provide a value and
let the classifier deal with handling missing attributes.

When a decision-tree classifier encounters a case of
a missing attribute, it will typically assign it either the
most common value for that attribute, the most common
value given the target class of the example (when train-
ing), or randomly assign it a value based on the estimated
distribution of the attribute. In our particular case, we
observed that when a feature was missing, the site also
tended to be extremely unpopular. We asserted that in
these cases, a feature such as reach per million would
probably also be small and assigned it a default value.
For other types of missing attributes such as page load
time, we did not assign the feature a default value since
there is likely no correlation between the true value of
the attribute and its failure to appear in the AWIS entry.

4.3.2 Content-based features

The content of pages in the observed sites provides ex-
tremely useful information for determining if the site will
become malicious. Unlike many settings where learning
is applied, the distribution of sites on the web and the
attacks that they face vary over time.

Many Internet web hosts are attacked via some ex-
ploit to a vulnerability in a content-management system
(CMS), that their hosted site is using. It is quite common
for adversaries to enumerate vulnerable hosts by look-
ing for CMSs that they can exploit. Different CMSs and
even different configurations of the same CMS leak in-
formation about their presence through content such as
tags associated with their template, meta tags, and com-
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ments. The set of CMSs being used varies over time:
new CMSs are released and older ones fall out of favor,
as a result, the page content that signals their presence is
also time varying.

To determine content-based features, each of the pages
that survived the acquisition and filtering process de-
scribed earlier was parsed into a set of HTML tags.
Each HTML tag was represented as the tuple (type, at-
tributes, content). The tags from all the pages in a site
were then aggregated into a list without repetition. This
means that duplicate tags, i.e., tags matching precisely
the same type, attributes and content of another tag were
dropped. This approach differs from that taken in typi-
cal document classification techniques where the docu-
ment frequency of terms is useful, since for example a
document that uses the word “investment” a dozen times
may be more likely to be related to finance than a docu-
ment that uses it once. However, a website that has many
instances of the same tag may simply indicate that the
site has many pages. We could balance the number of
occurrences of a tag by weighting the number of pages
used; but then, relatively homogeneous sites where the
same tag appears on every page would give that tag a
high score while less homogeneous sites would assign a
low score. As a result, we chose to only use the existence
of a tag within a site but not the number of times the tag
appeared.

During the training phase, we then augmented the lists
of tags from each site with the sites’ classification; and
added to a dictionary which contains a list of all tags
from all sites, and a count of the number of positive and
negative sites a particular tag has appeared in. This dic-
tionary grew extremely quickly; to avoid unwieldy in-
crease in its size, we developed the following heuristic.
After adding information from every 5,000 sites to the
dictionary, we purged from the dictionary all tags that
had appeared only once. This heuristic removed approxi-
mately 85% of the content from the dictionary every time
it was run.

Statistic-based extraction. The problem of feature ex-
traction reduces to selecting the particular tags in the dic-
tionary that will yield the best classification performance
on future examples. At the time of feature selection, the
impact of including or excluding a particular feature is
unknown. As a result, we cannot determine an optimal
set of features at that time. So, instead we use the follow-
ing technique. We fix a number N of features we want to
use. We then select a statistic ŝ, and, for each tag t in the
dictionary, we compute its statistic ŝ(t). We then simply
take the top-N ranked entries in the dictionary according
to the statistic ŝ.

Many statistics can be used in practice [12]. In our im-
plementation, we use N = 200, and ŝ to be ACC2. ACC2

is the balanced accuracy for tag x, defined as:

ŝ(x) =
����
|{x : x 2 w,w 2 M }|

|M | � |{x : x 2 w,w 2 B}|
|B|

���� ,

where B and M are the set of benign, and malicious
websites, respectively; the notation x 2 w means (by a
slight abuse of notation) that the tag x is present in the
tag dictionary associated with website w. In essence, the
statistic computes the absolute value of the difference be-
tween the tag frequency in malicious pages and the tag
frequency in benign pages.

A key observation is that these top features can be pe-
riodically recomputed in order to reflect changes in the
statistic value that occurred as a result of recent exam-
ples. In our implementation, we recomputed the top fea-
tures every time that the decision tree classifiers in the
ensemble are trained.

As the distribution of software running on the web
changes and as the attacks against websites evolve, the
tags that are useful for classification will also change. A
problem arises when the dictionary of tags from previ-
ous examples is large. For a new tag to be considered a
top tag, it needs to be observed a large number of times
since |M | and |B| are very large. This can mean that
there is a significant delay between when a tag becomes
useful for classification and when it will be selected as a
top feature, or for example in the case of tags associated
with unpopular CMSs, which will never be used.

A way of dealing with this problem is to use window-
ing, where the dictionary of tags only contains entries
from the last K sites. By selecting a sufficiently small
window, the statistic for a tag that is trending can rapidly
rise into the top N tags and be selected as a feature. The
trade-off when selecting window size is that small win-
dow sizes will be less robust to noise but faster to capture
new relevant features while larger windows will be more
robust to noise and slower to identify new features.

An additional strategy when calculating the statistic
value for features is to weight occurrences of the feature
differently depending on when they are observed. With
windowing, all observations in the window are weighted
equally with a coefficient of 1, and all observations out-
side of the window are discarded by applying a coeffi-
cient of 0. Various functions such as linear and expo-
nential may be used to generate coefficients that scale
observations and grant additional emphasis on recent ob-
servations of a feature.

5 Experimental results
We evaluate here both our dynamic feature extraction al-
gorithm, and the overall performance of our classifier, by
providing ROC curves.
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Feature Stat.

meta{’content’: ’WordPress 3.2.1’, ’name’: ’generator’} 0.0569
ul{’class’: [’xoxo’, ’blogroll’]} 0.0446
You can start editing here. 0.0421
meta{’content’: ’WordPress 3.3.1’, ’name’: ’generator’} 0.0268
/all in one seo pack 0.0252
span{’class’: [’breadcrumbs’, ’pathway’]} 0.0226
If comments are open, but there are no comments. 0.0222
div{’id’: ’content disclaimer’} 0.0039

Table 2: Selection of the top features after processing
the first 90,000 examples. These features are a chosen
subset of the top 100 features determined by the system
after 90,000 examples had been observed and using win-
dowing with a window size of 15,000 examples and lin-
ear attenuation.

5.1 Dynamic Feature Extraction
We analyzed dynamic features by logging the values of
the statistic AAC2 after adding every example to the sys-
tem. We selected a few particular features from a very
large set of candidates to serve as examples and to guide
intuition regarding dynamic feature extraction. The pro-
cess of feature extraction could be performed indepen-
dently of classification and was run multiple times under
different conditions to explore the effect of different pa-
rameters such as the use of windowing and attenuation.
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Figure 8: Statistic value for various tags corre-
sponding to different version of the Wordpress con-
tent management system.

Dynamic feature extraction is essential, as it allows
the system to automatically identify features useful in
predicting if a domain will become malicious; this au-
tomation is imperative in a concept-drifting domain. For
example, Figure 8 shows the computed statistic value for
various features that correspond directly to different ver-
sions of the Wordpress CMS. Over time, the usefulness
of different features changes. In general, as new versions
of a CMS are released, or new exploits are found for ex-
isting ones, or completely new CMSs are developed, the
set of the features most useful for learning will be con-
stantly evolving.

Table 2 shows a selection of the 200 tags with highest
statistic value after 90,000 examples had been passed to
the system using a window size of 15,000 examples and a
linear weighting scheme. A meaningful feature, i.e., with
a large statistic value, is either a feature whose presence
is relatively frequent among examples of malicious sites,
or whose presence is frequent among benign sites. Of
the 15,000 sites in the window used for generating the
table, there were 2,692 malicious sites, and 12,308 be-
nign ones. The feature ul{’class’: [’xoxo’, ’blogroll’]}
was observed in 736 malicious sites and 1,027 benign
ones (461.34 malicious, 538.32 benign after attenuation)
making it relatively more frequent in malicious sites. The
feature div{’id’: ’content disclaimer’} was observed in
no malicious sites and 62 benign ones (47.88 benign af-
ter attenuation) making it more frequent in benign sites.
After manual inspection, we determined that this feature
corresponded to a domain parking page where no other
content was hosted on the domain.
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Figure 9: Statistic value for meta{’content’: ’Word-

Press 3.3.1’, ’name’: ’generator’} over time. The
statistic was computed over the experiment using win-
dow sizes of 1,000, 5,000, 15,000, 50,000 and 100,000
samples and uniform weighting.

 0  50000  100000  150000  200000  250000  300000  350000  400000

A
C

C
2
 V

a
lu

e

Sample #

Exponential Weighting

 0

 0.01

 0.02

 0.03

 0.04

Linear Weighting

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1
Uniform Weighting

Figure 10: Statistic value for meta{’content’: ’Word-

Press 3.3.1’, ’name’: ’generator’} over time. The
statistic was computed over the experiment using a win-
dow size of 15,000 samples and various weighting tech-
niques.
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Figure 11: Statistic value for div{’id’: ’con-

tent disclaimer’} over time. The statistic was com-
puted over the experiment using a window of size 15,000
samples and linear attenuation.

The calculation of the ACC2 statistic for a feature
at a particular time is parameterized by the window
size and by a weighting scheme. As an example, Fig-
ure 9 shows the value of the statistic computed for the
tag meta{’content’: ’WordPress 3.3.1’, ’name’: ’gen-
erator’} over the experiment using different window
sizes. When using a window, we compute the statistic by
only considering examples that occurred within that win-
dow. We made passes over the data using window sizes
of 1,000, 5,000, 15,000, 50,000 and 100,000 samples,
which approximately correspond to 3 days, 2 weeks,
7 weeks, 24 weeks, and 48 weeks respectively.

A small window size generates a statistic value ex-
tremely sensitive to a few observations whereas a large
window size yields a relatively insensitive statistic value.
The window size thus yields a performance trade-off.
If the statistic value for a feature is computed with a
very small window, then the feature is prone to being in-
correctly identified as meaningful, but will correctly be
identified as meaningful with very low latency as only a
few observations are needed. A large window will result
in less errors regarding the usefulness of a feature but
will create a higher latency.

Figure 10 shows the effect of varying the weighting
scheme with a constant window size. Using a weight-
ing scheme gives higher weight to more recent examples
and the effect is very similar to simply decreasing the
window size. There is almost no difference between ex-
ponential and linear decay.

Features belonging to positive (malicious) and nega-
tive (benign) examples often carry with them their own
characteristics. The statistic values of negative examples
tend to be relatively constant and time-invariant as the
example in Figure 11 shows. These are generally fea-
tures that indicate a lack of interesting content and there-
fore a lack of malicious content—for instance, domain
parking pages. Conversely, the statistic value of positive
examples tend to contain a large spike as evidenced by
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Figure 12: Statistic value for meta{’content’: ’Word-

Press 3.3.1’, ’name’: ’generator’} over time. The
statistic was computed over the experiment using a win-
dow of size 15,000 samples and linear attenuation.

the example in Figure 12. The features correspond to
vulnerable software and spike when an attack campaign
exploiting that vulnerability is launched. Occasionally,
additional spikes are observed, presumably correspond-
ing to subsequent campaigns against unpatched software.

A design consideration when working with dynamic
features is whether or not it is appropriate to use features
that were highly ranked at some point in the past in ad-
dition to features that are currently highly ranked. As
discussed above, negative features tend to be relatively
constant and less affected, unlike positive features which
fluctuate wildly. These positive features tend to indicate
the presence of software with a known vulnerability that
may continue to be exploited in the future.

Since it may happen that a feature will be useful in
the future, as long as computational resources are avail-
able, better classification performance can be achieved
by including past features in addition to the current top
performing features. The result of including past features
is that in situations where attack campaigns are launched
against previously observed CMSs, the features useful
for identifying such sites do not need to be learned again.

5.2 Classification performance
We ran the system with three different configurations to
understand and evaluate the impact that different con-
figurations had on overall performance. We send input
to our ensemble of classifiers as “blocks,” i.e., a set of
websites to be used as examples. The first configuration
generated content features from the very first block of
the input stream but did not recompute them after that.
The second configuration recomputed features from ev-
ery block in the input stream but did not use past features
which did not currently have a top statistic value. The
third configuration used dynamic features in addition to
all features that had been used in the past.

For all configurations, we used a block size of 10,000
examples for retraining the ensemble of C4.5 classifiers.
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We also used a window size of 10,000 samples when
computing the statistic value of features, and we relied
on features with the top 100 statistic values. We gener-
ated ROC curves by oversampling the minority class by
100% and 200% and undersampling the majority class
by 100%, 200%, 300%, and 500%. We ran each combi-
nation of over- and undersampling as its own experiment,
resulting in a total of 10 experiments for each configura-
tion. The true positive rate and false positive rate2 for
each experiment is taken as the average of the true pos-
itive and false positive rates for each block, that is, each
block in the input stream to the system is tested on before
being trained on, and the rates are taken as the average
over the tested blocks.
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Figure 13: ROC plot for three different strategies of
dynamic features. The classifier was run using three
different configurations for dynamic features. The first
configuration corresponds to classifiers trained on both
current and past top features; the second corresponds
to classifiers trained using only current top features; the
third corresponds to classifiers trained using the top fea-
tures from the first 5,000 samples.

Figure 13 shows the ROC curves generated for the
three configurations described. The points resulting from
the experiments have been linearly connected to form the
curves. One can see that the configuration which used
past features performed the best, followed by the con-
figuration which used only current top dynamic features
and the configuration which did not use dynamic features
at all. The best operating point appears to achieve a true
positive rate of 66% and a false positive rate of 17%.

The configuration which did not use dynamic features
ended up selecting a feature set which was heavily biased
by the contents of first block in the input data stream.
While the features selected were useful on learning the
first block, they did not generalize well to future exam-
ples since the distribution of pages that were observed
had changed. This is a problem faced by all such sys-
tems in this setting that are deployed using a static set

2The false negative rate and true negative rates are simple comple-
ments of the respective positive rates.

of features, unless the features set is fully expressive of
the page content, i.e., all changes in the page content are
able to be uniquely identified by a corresponding change
in the feature values, then the features will eventually be-
come less useful in classification as the distribution of
pages changes.

The configuration which only used the current top dy-
namic features also performed relatively poorly. To un-
derstand why this is the case, we can see that in Fig-
ures 11 and 12 some features have a statistic value which
oscillates to reflect the change in usefulness of the fea-
ture due to the time varying input distribution. One can
also see that when a feature becomes useful, the corre-
sponding increase in the statistic value lags behind since
a few instances of the feature need to be observed be-
fore the statistic can obtain a high value again. During
this transient period, the system fails to use features that
would be useful in classification and so performance suf-
fers. This problem may be partially addressed by shrink-
ing the input block size from the data streams well as the
window for computing the static value to a smaller value
to reduce the transient. However such a strategy will still
be outperformed by the strategy which remembers past
features.

Block Number

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  5  10  15  20  25  30  35  40

A
re

a
 U

n
d
e
r 

R
O

C
 C

u
rv

e

 0.5

Figure 14: AUC plot for the system over time us-
ing current and past dynamic features. The system
was run using both current and past top dynamic fea-
tures. ROC curves were generated for each block of ex-
amples that was processed and the corresponding AUC
value was computed.

For each input block in the experiments using past fea-
tures, we recorded the true positive and false positive
rates and used them to generate an ROC curve. We then
used the ROC curve to approximate the area under the
curve (AUC) which is a value that gives some intuitive
understanding of how well the classifier performed on
that block. Figure 14 shows the AUC values for each
block in the experiment. The system performed rela-
tively poorly until a sufficient number of blocks had been
processed at which point the performance increased to a
threshold value. We believe that the difficulty in achiev-
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ing better performance is due to the nature of the prob-
lem, specifically it is not always the case that the content
of a site and its traffic statistics are a factor in whether or
not it will become compromised. We discuss this issue
in more details in the limitations section.

Finally, we observed that when classification yielded
a prediction that a site would become compromised, the
reasoning can be read as the conjunction of conditions
from the decision tree. For example the classifica-
tion of www.bisoft.org which appeared in the
search redirection data set was described as (Global
Site Rank = 8) ^ ( <META NAME=”Generator”
CONTENT=”EditPlus”>= 1) ^ (<script
type=”text/javascript” src=”/static/js/analytics.js”> =
1). The classification of benign examples was generally
less obvious.

The conditions resulting in incorrect classification
tended to follow a few main types. The first type are
instances where a website would in the future become
malicious, but very few examples like it exist at classi-
fication time. These sites contained content that would
eventually yield prominent features for identifying sites
that would become malicious but were not classified cor-
rectly due to latency in the dynamic feature extraction.
As an example, consider in Figure 12 the samples that
occurred just before the first significant spike.

The second type of instance that was incorrectly clas-
sified were examples that did not become malicious, but
were classified as becoming so based on some strong
positive content features that they contained. It is likely
that after an initial attack campaign, vulnerable CMSs
are less targeted due to the incremental number of com-
promises that could be yielded from them.

The third type of instance that was incorrectly clas-
sified were examples that would be become malicious
for seemingly no apparent reason. These examples
that would become malicious did not follow the general
trend of large spikes corresponding to attack campaigns
against a CMS, and have been observed with positive fea-
tures both before and after its initial spike as well as with
strong negative features. It is believed that these exam-
ples are cases where a site is becoming malicious for rea-
sons completely independent of its content or traffic pro-
file. It could be the case that an attack is launched where
default login credentials for many CMSs are being at-
tempted resulting in a few seemingly random breaks. It
could also be the case that the domain in question was
sold or rebuilt after observing it causing the system to er-
roneously predict its future malicious status from its old
content.

6 Limitations
The limits on the classification performance of the sys-
tem can be attributed to the following few difficulties in
predicting if a site will become malicious.

Our system assumes the factors responsible for
whether or not a site will become compromised can be
summarized by its content and its traffic statistics. This
assumption is sometimes violated, since for example
sites may be compromised and become malicious due
to weak administrator passwords being guessed or being
retrieved via social engineering. Other examples may in-
clude adversaries who host their own sites with malicious
intent. While it is often the case that such actors use sim-
ilar page templates due to their participation in affiliate
networks or out of convenience, such sites may introduce
examples where the factors for the site being malicious
are independent of its content. In such situations, the
system will fail to perform well since the factors for site
becoming malicious are outside its domain of inputs.

The nature of adversaries who compromise sites may
also be perceived as a limitation on what our system
can do. It has been observed that attack campaigns
are launched where adversaries appear to enumerate
and compromise sites containing a similar vulnerability.
While adversaries do attack many sites which contain a
particular vulnerability, it is generally not a reasonable
assumption that they will systematically attack all sites
containing this vulnerability both at the time of the cam-
paign and in the future. The impact of this behavior on
the system is that sites which contain similar content to
those which were compromised in the campaign will be
classified as becoming malicious in the future, when they
actually may not since attackers have chosen to ignore
them. While this does deteriorate the performance of the
system, we argue that this does not take away its useful-
ness since these misclassifications represent sites which
are still at considerable security risk and need attention.

The dynamic feature extraction system also presents
at least two main limitations. The first is a correlation
of features that are selected as top features at any given
point in time. Tags often rise to the top of the list because
they are part of some page template which has come up
frequently. There may be multiple tags associated with a
particular page template which all rise at the same time,
and so a few of the top tags are redundant since they are
identifying the same thing. It would be desirable to mea-
sure the correlation of the top features in order to select
a more diverse and useful set however no attempt to do
this was made in our experiments.

Another limitation of the dynamic features is that for
system configurations which use past features in addition
to the current top features, the size of the feature set is
monotonically increasing. Thus, it will take longer over
time train the classifiers and run the system. It would be
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useful to further investigate the trade-offs between clas-
sification performance and limited feature lists.

Last, dynamic features introduce a unique opportunity
for adversarial machine learning approach to poison the
performance of the system. Adversaries which control
a website may attempt to remove, change, or insert tags
into their pages in order to damage the effectiveness of
feature generation. For example, adversaries that host or
control sites that have distinguishing tags may either try
to remove them or rewrite them in semantically equiv-
alent ways to prevent the system from using them for
classification. Since the sites examined by the system are
typically not under adversarial control at the time of eval-
uation, we believe that the impact of such attacks should
be minimal; but it deserves further analysis.

7 Conclusions
We discussed a general approach for predicting a web-
sites propensity to become malicious in the future. We
described a set of desirable properties for any solution
to this problem which are interpretability, efficiency, ro-
bustness to missing data, training errors, and class im-
balance, as well as the ability to adapt to time chang-
ing concepts. We then introduced and adapted a num-
ber of techniques from the data mining and machine
learning communities to help solve this problem, and
demonstrated our solution using an implementation of
these techniques. Our implementation illustrates that
even with a modest dataset, decent performance can be
achieved since we are able to operate with 66% true pos-
itives and only 17% false positives at a one-year horizon.
We are currently working on making our software pub-
licly available.
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