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ABSTRACT
We investigate the evolution of search-engine poisoning using data
on over 5 million search results collected over nearly 4 years. We
build on prior work investigating search-redirection attacks, where
criminals compromise high-ranking websites and direct search traf-
fic to the websites of paying customers, such as unlicensed phar-
macies who lack access to traditional search-based advertisements.
We overcome several obstacles to longitudinal studies by amalga-
mating different resources and adapting our measurement infras-
tructure to changes brought by adaptations by both legitimate op-
erators and attackers. Our goal is to empirically characterize how
strategies for carrying out and combating search poisoning have
evolved over a relatively long time period. We investigate how
the composition of search results themselves has changed. For in-
stance, we find that search-redirection attacks have steadily grown
to take over a larger share of results (rising from around 30% in late
2010 to a peak of nearly 60% in late 2012), despite efforts by search
engines and browsers to combat their effectiveness. We also study
the efforts of hosts to remedy search-redirection attacks. We find
that the median time to clean up source infections has fallen from
around 30 days in 2010 to around 15 days by late 2013, yet the
number of distinct infections has increased considerably over the
same period. Finally, we show that the concentration of traffic to
the most successful brokers has persisted over time. Further, these
brokers have been mostly hosted on a few autonomous systems,
which indicates a possible intervention strategy.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Abuse and crime involving comput-
ers

General Terms
Measurement, Security, Economics
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Figure 1: Example of search-engine poisoning. The first two
results returned here are sites that have been compromised to
advertise unlicensed pharmacies.

1. INTRODUCTION
Web traffic is valuable. By their ability to connect large num-

ber of users with online retailers, web search engines and social
networking sites have seen their valuation skyrocket, and have be-
come indispensable actors in the advertising industry.

The potential for monetizing web traffic has not been lost on
more questionable businesses. Counterfeit goods, dubious finan-
cial products and, of course, unlicensed pharmaceutical drugs have
long been available online; but the key change in recent years stems
from the way these products are advertised. Spam email, once the
main method to introduce less-than-reputable businesses to poten-
tial consumers, has been shown to be relatively ineffective [11].
As a result, email spam has seen increased competition from web-
based advertising.

Of course, illicit or fraudulent businesses do not have the lux-
ury of simply purchasing ads from major advertisers. For instance,
Google paid $500 million to settle a lawsuit with the U.S. De-
partment of Justice for accepting advertisements from unlicensed
pharmacies [3]. The company now has safeguards in place to pre-
vent accepting such ads. Instead, a viable alternative for those
shut out of legitimate search advertising is to compromise web-
sites, and then have them conspire to promote the desired prod-
ucts in response to certain queries. Figure 1 shows an example in
which the top two results obtained for the query “cheap viagra”
are compromised websites. The top result is the website of a news
center affiliated with a university. The site was compromised to
include a pharmacy store front in a hidden directory: clicking on
any of the links in that storefront sends the prospective customer to
pillsforyou24.com, a known rogue Internet pharmacy [19].

There are many variants on this basic idea. Certain compromised
sites are configured to automatically send their visitors to different
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pharmacies depending on the type of query being issued; others
simply contain spam links. The main takeaway is that compromis-
ing vulnerable websites to advertise illicit businesses appears to be
a lucrative strategy and thriving practice.

Such search-engine result “poisoning” has been getting increased
attention from the research community, that has attempted to mea-
sure and describe specific campaigns [10, 20, 29], infection tech-
niques [2, 15], or even economic properties [16, 21]. Most of the
aforementioned studies tend to either describe phenomena observed
on relatively short time-spans (e.g., presenting “search-redirection
attacks” observed over a few months [15]), or to describe longer-
term activities of specific actors (e.g., specific pharmaceutical affil-
iate networks [21], or a particular search-engine optimization bot-
net [29]).

In this paper, we combine multiple data sources, some used in
our previously published work, and some the fruit of new mea-
surements, to gain insights into the long-term evolution of search-
engine poisoning. With a primary focus on how unlicensed phar-
macies are advertised, we analyze close to four years (April 2010-
September 2013) of search-result poisoning campaigns. We do not
focus on a specific campaign or affiliate network, but instead an-
alyze measurements taken from the user’s standpoint. In partic-
ular, we study what somebody querying Google for certain types
of products would see. While we focus here on Google due to
their dominance in the US web search market [4], previous work
(e.g., [2]) showed other search engines (e.g., Yandex) are not im-
mune to search-result poisoning.

Contributions of the study. Our study has three primary objec-
tives, which also define our contributions. First, we describe the
relationship between attackers’ actions and defensive interventions.
We are notably interested in identifying the temporal characteristics
of attackers’ reactions to defensive changes in search-engine algo-
rithms. Second, we aim to determine whether, over a long enough
interval, we can observe changes in attitudes among the victims.
For instance, are compromised sites getting cleaned up faster in
2013 than they were in 2010? Have defenders been trying to tar-
get critical components of the infrastructure search-result poisoning
relies on? Third, we want to better understand the long-term evo-
lution of the thriving search-poisoning ecosystem, notably in terms
of consolidation or diversification of the players.

2. RELATED WORK
There has been a wealth of recent research on search-engine

abuse. For instance, Levchenko et al. [17] focus primarily on email
spam, but also provide some insights on “SEO” (search-engine op-
timization) by people involved in the online trade of questionable
products. A follow up work by the same group [21] analyzed the
finances of several large pharmaceutical “affiliate networks” and
provided evidence that search-result poisoning accounted for a non-
trivial part of the traffic brought to these pharmacies.

Closer to this paper, a number of measurement studies have been
dealing with observing the effect of search-result poisoning. Leon-
tiadis et al. [15], Lu et al. [20], John et al. [10] and Wang et al.
[29] describe various campaigns that involve either search-result
poisoning or “search-redirection attacks” where a malicious party
compromises websites both to take part in link farming in an at-
tempt to game search-engine ranking algorithms, and to automat-
ically redirect traffic coming to these compromised websites. For
instance, someone searching for “vicodin no prescription” could
see a top result with a link to a university’s parking services web-
site; clicking on the link would result in the compromised website
sending a HTTP 302 redirect message back, which would take the

user to a different site; after a couple of such automatic redirections,
the user would typically land on a pharmaceutical webpage. Mean-
while the administrators of the victimized website might not even
notice something is amiss, if the malicious software installed on
the server redirects only when the visitor is coming from a search-
engine, with drug-related terms in their query.

While originally the compromised sites participating in search-
redirection attacks did little more than simply send HTTP 302 redi-
rects, they have evolved toward more complex and evasive forms
of redirection, apparently in response to deployed defenses from
search engines. For instance, in a follow-up paper to our original
search-redirection measurements, we have described how a more
modern variant of search-redirections uses cookies to store state, in
order to look innocuous to web crawlers while still actively redi-
recting users behind a “real” browser [16]. We also explain that
attackers increasingly host “store fronts” under hidden directories
in the compromised webserver as shown in Figure 1 (second re-
sult). Borgolte et al. [2] describe more recent advances in redirect-
ing techniques, in particular JavaScript injections that are particu-
larly hard for crawlers to detect. Li et al. [18] describe techniques
to detect these JavaScript injections, and show that such injections
often are used to support a peer-to-peer network of compromised
hosts distributing malware.

Coming from a different angle, a recent paper by Wang et al. [28]
explores the effect of interventions against search-poisoning cam-
paigns targeting luxury goods, both by search-engine providers who
demote poisoned results and by brand-protection companies en-
forcing intellectual property law by seizing fraudulent domains.

Different from the previous work, we believe to be the first to
look at data on such a large scale and over a long time period. This
in particular allows us to observe trends in how attackers and de-
fenders have been adapting to each others’ strategies over the years.

3. BACKGROUND
Conceptually, there are three distinct components to a successful

search-redirection attack [15]: Source infections are sites that have
been compromised to participate in a search-redirection campaign.
Their owners frequently do not suspect a compromise has taken
place. These source infections are the sites that appear in search-
engine results to queries for illicit products.

Source infections redirect to an optional intermediate set of traf-
fic brokers (also called redirectors in related literature [15, 16]).

The traffic broker ultimately redirects traffic to a destination, typ-
ically an illicit business, e.g., an unlicensed pharmacy when en-
tering pharmaceutical search terms, or a distributor of counterfeit
software when entering software-related terms.

Among source infections, we can distinguish between results
that actively redirect at the time t of the measurement; inactive redi-
rects, i.e., sites that used to be redirecting at some point prior to t
but are not redirecting anymore—possibly because they have been
cleaned up, but have not yet disappeared from the Google search
results; and future redirects that appear in Google search results at
time t without redirecting yet, but that will eventually redirect at
a time t′ > t. Presumably those are sites that have been compro-
mised and already participate in link-farming [7], but have not yet
been configured to redirect.

As described above, the technology behind search redirections
has evolved over time. For the purpose of our study, active redi-
rects include fully automated redirections by HTTP 302, as well as
“embedded storefronts,” which result on HTTP 302 redirects when
a link is clicked on. Other types of redirections, such as JavaScript-
based redirects, or HTML “Refresh” meta-tags, could also be con-
sidered as active redirects, but we treat these separately.



4. DATA COLLECTION
Besides the time-consuming nature of such an endeavor, collect-

ing nearly four years’ worth of data is in itself a complex process.
Software and APIs used to acquire the data change over time, at-
tackers’ techniques evolve, and new defensive countermeasures are
frequently deployed. In other words, the target of the measure-
ments itself changes over time. Thus, we must rely on several dis-
tinct sources of data we collected over the measurement period for
our analysis. Because of the heterogeneous nature of these datasets,
not all the data available can be used for all the analyses we want
to conduct. We first characterize the queries used to produce these
different datasets, then the contents of the datasets, and finally our
methodology to combine the datasets.

4.1 Query corpus
The corpus of queries we use has a considerable influence on the

results we obtain. Owing to the prevalence of the trade of pharma-
ceutical products among search-engine poisoning activities, we use
a primary set of queries Q related to drugs. We complement this
first set with queries related to other types of goods and services
routinely sold through abusive means: luxury counterfeit watches,
software, gambling, and books. We refer to this second query set
as Q′.

Drug-related queries. For our set of drug-related queries, we elect
to use the set of 218 queries we defined in our previous work [15].
There are two reasons for that choice. First, using an identical
query set allows us to produce directly comparable results, and ex-
pand our relatively short-term initial analysis. Second, by compar-
ing results with those obtained from a query set based on an ex-
haustive list of U.S. prescription drugs, we have shown previously
that this relatively small set of queries provides adequate coverage
of the entire online prescription drug trade.

The entire set of queries Q can itself be partitioned according
to the presumed intention of the person issuing the query. For in-
stance, in the pharmaceutical realm, queries such as “prozac side
effects” appear to be seeking legitimate information—we term such
queries as benign queries. The set of all benign queries is denoted
byB (resp. B(t) at time t). On the other hand, certain queries may
denote questionable intentions. For example, somebody search-
ing for “vicodin without a prescription” would certainly expect a
number of search results to link to contraband sites. We call such
queries representing potentially illicit intent as such, and denote
them as being in a set I (resp. I(t) at time t). Finally, a number
of queries, e.g., “buy ativan online,” may not easily be classified as
exhibiting illicit or benign intent. We refer to these queries as being
in the gray set, G (resp. G(t) at time t).

Table 1 breaks down the query corpus Q between the illicit, be-
nign, and gray sets I , B, and G. Overall, the queries clearly as-
sociated with illicit intentions are the minority of the total queries
(22%), while the majority is placed in the gray category. This bias
of the query corpus towards informative types of queries (i.e. gray
and benign – 88% of total), rather than queries exhibiting illicit in-
tent, suggests that the extent and effects of the search-redirection
attack we previously presented [15] mainly affects individuals with
non-illicit intentions.

Other queries. We construct an additional query corpus Q′ com-
posed of an extra 600 search terms. We create and track Q′ to
provide evidence that search-poisoning is not tied to pharmaceu-
tical terms, and to study whether or not miscreants share parts of
their infrastructure to advertise different products and services. Q′

consists of six categories: antivirus, software (in general), pirated
software, e-books, online gambling, and luxury items (specifically,

Type of query Count %

Illicit (|I|) 26 22%
Benign (|B|) 75 34.4%
Gray (|G|) 117 53.6%
Total (|Q|) 218 100%

Table 1: Intention-based classification of the 218 queries in the
drug query corpus (Q).

watches). We choose these topics based on the amount of email
spam we have received in spam traps we are running. For each
category, we use Google’s Keyword Planner to select the 100 most
queried keyword suggestions associated with the category name.
Except for pirated software queries, we manually filter out queries
that do not denote benign or gray intent.

4.2 Search result datasets
We use data collected on a daily basis between April 12, 2010,

and September 16, 2013. While we had already put smaller, older
portions of the data in the public domain, we make all datasets
we use in this paper publicly available for research reproducibility
purposes.1 Each dataset has its own particularities, summarized in
Table 2, which we discuss next.

Dataset 1 (4/12/2010-11/15/2010): This first dataset represents
data collected daily between April 12, 2010 and November 15,
2010 (time interval T1), and was used in previous work examin-
ing the impact of the attack and the victims’ characteristics. The
data contains daily search results for the pharmaceutical query cor-
pus Q, without preserving any ranking information, beyond noting
that only the top-64 results (at most) are collected. Likewise, the
redirection corpus contains all the sites visited (including “redirec-
tion chains”) at a given time t, but those are not mapped to specific
queries. In other words, if two queries q1 and q2 produce results
{u, v, w}, we do not know which of q1 or q2 yielded each of u, v,
w, nor how u, v and w ranked among all search results. Redirec-
tions in this first corpus are only gathered by following HTTP 302
redirects.

Dataset 2 (11/15/2010-10/09/2011): The second dataset spans from
November 15, 2010 through October 8, 2011 – time interval T2 –
and was partially used in previous work [15, 16].

Different from Dataset 1, this dataset contains information about
the search rankings for the pharmaceutical query corpus. Here
again, only the top 64 results per query are collected. We further-
more have the mappings between a given query and the results it
produces, but, regrettably, not the full mapping between a given
query, its results, and the ranking of the results. Going back to
our previous example, for two queries q1 and q2, we know that
q1 yielded (u, v) and q2 yielded (v, w), and we know the ranks at
which each result appeared overall, but we do not know if v ap-
peared as the top result in response to q1 or q2. Here too, redirec-
tions are gathered by following HTTP 302 redirects.

Dataset 3 (10/13/2011-9/16/2013): The third dataset was col-
lected specifically for the present analysis.

It provides complete mapping between a query, the results it pro-
duces and their associated rankings, as well as the possible redirec-
tion chains that follow from clicking on each result.

Our collection infrastructure is markedly different from that used
for Datasets 1 and 2. Datasets 1 and 2 were assembled by having a

1See https://arima.cylab.cmu.edu/rx/.
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Dataset 1 2 3 4

Period covered T1 T2 T3

4/12/2010–11/15/2010 11/15/2010–10/08/2011 10/08/2011–9/16/2013

Source Publicly available [15] Mixed (own measurements, [15]) Own measurements
Queries used Q Q Q(t) ( Q Q′(t) ( Q′

Search results/query 64 64 16 to 32
Ranking info? No Aggregate only Yes
Mapping queries-results No Partial Yes
Total size of result corpus 260 824 3 609 675 1 530 099 2 244 723
Unique URLs in results 150 955 189 023 122 382 122 567
Unique domains in results 25 182 36 557 30 881 24 339
Total size of redir. corpus 50 821 929 809 522 017 111 361
Unique redir. URLs 50 784 71 935 62 288 27 973
Unique redir. domains 5 546 8 738 11 157 3 974

Table 2: Datasets for pharmaceutical queries. Dataset 1 only contains search results and no ranking information. Dataset 2 contains
search results and overall rankings, but no individual rankings per query. Dataset 3 contains everything we need, but only for a strict
time-varying subset of all queries.

graphical web browser run the queries against Google’s search en-
gine. Here, we use an automated (command-line) script, increasing
the level of automation in collecting search results.

Because attackers are known to perform cloaking, that is, to
make malicious results look benign when suspecting a visit from
an automated agent as opposed to a customer, we periodically spot-
checked the results our automated infrastructure collection gath-
ered with what a full-fledged graphical browser would obtain. In
addition, we ran all of our queries over the Tor network [6], chang-
ing Tor circuits frequently. This had two effects: we obtained ge-
ographical diversity in the results since queries were apparently is-
sued by hosts in various countries; and we escaped IP-based de-
tection (and potential identification), which is frequently used as a
decision to cloak results [15]. We were worried that, because Tor
exit IP addresses are well-known, they could be subject to cloak-
ing as well. Spot-checking the results we obtained by comparing
results from Tor exits as opposed to non-Tor exits did not yield any
significant indication this was the case. In short, during our data
collection interval, either unlicensed pharmacy operators were not
aware of the existence of Tor, or, more plausibly, tolerated people
connecting to their servers using the Tor network.

Regrettably, on November 30th 2011, less than two months after
we initiated the data collection, the Google API introduced certain
restrictions, reducing both the number of queries we could run on
a daily basis, and the number of search results we could collect per
query.2 These restrictions came one year after Google announced
the deprecation of the Search API, giving it a phasing out period of
three years.

The upshot is that we could only run a random strict subset of Q
on a daily basis. The size and composition of the query set varies
over time, but, on average, consists of 64 queries. Likewise, instead
of collectingN = 64 results per query, we were limited to between
N = 16 and N = 32.

We refer as T3 the collection interval over which we collected
this dataset. During the collection of this third dataset, on April
9, 2012, we updated our collection infrastructure. Instead of sim-
ply considering redirections characterized by HTTP 302 messages,

2Recent research, e.g., [2], uses the Yandex search engine instead
of Google search in an apparent effort to overcome some of the
limitations of the Google API. For the sake of comparability with
Datasets 1 and 2, and also because it appears that search-redirection
attacks primarily target the Google search engine, we continued to
use the Google API.

our crawler became able to detect more advanced (cookie-based)
redirection techniques, as described in Section 3. We did not ob-
serve “Refresh” META tag redirections. We also realized that we
can never be sure that we are able to detect all forms of attacks, as
attackers always deploy new attack variants. To address this limita-
tion, we elected to capture the first 200 lines of raw HTML content
present at each source infection, using both a user-agent string de-
noting a search-engine spider and a user-agent string denoting a
regular browser. The data so captured can then be analyzed af-
ter the fact to determine if there was cloaking, and to attempt to
reverse-engineer types of attacks that were unknown at data collec-
tion time. For instance, while our crawler was not able to detect
JavaScript-redirections at data collection time, we were ultimately
able to analyze how prevalent they were in our data corpus.

Dataset 4 (10/31/2011-9/16/2013): This dataset has the same
properties as Dataset 3, but uses the query setQ′. As with Dataset 3,
the number of actual queries Q′(t) issued every day is a varying
subset of Q′. On average, 64 queries per day are issued for each
category (gambling, watches, ...).

Finally, given the long term nature of measurements, there are
periods with incomplete or no daily measurements. These measure-
ments gaps are attributed to glitches with the measurement equip-
ment (e.g. power or network outage), or upgrades to the measure-
ment infrastructure. Out of the 1 254 days in the measurement pe-
riod, we have complete measurements for 1 004 days.

4.3 Combining the datasets
Since, in Datasets 3 and 4, all mappings between queries, results,

and rankings are recorded, as well as more complete redirection in-
formation, we can carry out more in-depth analysis than with the
first two datasets. On the other hand, the reduced number of queries
used and results collected per query makes it slightly more com-
plicated to combine Dataset 3 with Datasets 1 and 2. (Dataset 4
concerns a different set of queries, and as such does not need to be
combined with the other datasets.)

It also means that we cannot necessarily claim to have the same
desirable coverage properties reported in our earlier work [15]. How-
ever, we can attempt to combine all datasets to obtain results over
the entire collection interval; this essentially consists of sampling
some of the queries and some of the results in Datasets 1 and 2 to
match the statistical properties of Dataset 3.



Sampling queries. In Datasets 1 and 2, for all t, the whole setQ of
queries is issued. In Dataset 3, a different random subsetQ(t) ( Q
of all queries is used every day. Within that subset, the proportion
of illicit I(t) and benign B(t) queries follows the Beta distribu-
tion with parameters (α = 22.49, β = 194.29). The proportion of
gray queries G(t) follows the normal distribution with parameters
(µ = 0.57, σ2 = 0.03). Because these results are slightly different
from the proportions in Q (see Table 1), we also need to sample
from Q in the first two datasets to be able to perform meaningful
comparisons when looking at the entire measurement interval. Un-
fortunately, as there is no association between individual queries
and results in Dataset 1, we may only be able to use Datasets 2 and
3 when looking at metrics for which the specific types of queries
used has importance. Given the known expected probabilities of
I(t), B(t), and G(t) in Dataset 3, we create samples of queries for
each day in T2 that follow the same distributions. In turn, we con-
sider only the daily results in Dataset 2 associated with each daily
query sample.

Sampling results. Dataset 3 (and 4) is often limited to N = 32
results, while Datasets 1 and 2 contain the top-64 results for each
query. Arguably, from a user standpoint, the difference is minimal:
Given that the probability of clicking on a link decreases exponen-
tially with its position in the search results [9], results in position
33 and below are unlikely to have much of an impact. Unfortu-
nately, Dataset 1 does not contain any ranking information; as such
we cannot use it for direct comparisons with Dataset 3 in terms of
search-result trends. We can, however, use Dataset 1 when we are
only concerned about measuring how long certain hosts appear in
the measurements (e.g., for survival analysis).

Dataset 2, on the other hand, contains some ranking information.
From the above discussion, for each result we obtained, we know
what was its ranking at the time; there may however be uncertainty
as to which query produced that result when results occur in re-
sponse to more than one query. We include each result u with a
probability p(u) corresponding to the number of times u appears at
a rank below 32 divided by the total number of times u appears in
the whole dataset. That is, (i) results that never appear in the top-32
results are always excluded (p = 0), (ii) results that always appear
in the top-32 results are always included (p = 1), and (iii) results
appearing both in and out of the top-32 results are included with a
probability characterizing how often they are in the top 32 .

Combining query and result sampling, we use approximately
14.7% of the search results in Dataset 2. Another 12.3% appear
both in ranks 1–32 and above 32 and are probabilistically included.

5. SEARCH RESULT ANALYSIS
We now turn to analyzing the datasets we have, and first look at

the evolution of search results over intervals T2 and T3 (November
2010 through September 2013), corresponding to Datasets 2 and
3.3 We start with an analysis of the whole interval, before looking
into the dynamics of the search results.

5.1 Overview
We focus here on pharmaceutical goods, where we identify sev-

eral different categories of search results issued in response to queries
containing drug names. For the sake of comparison, we use some
of the definitions provided in our earlier work [15], extending this
taxonomy whenever required.

Licensed pharmacies, are those having been verified by Legit-
script [19].
3Recall that the information available from Dataset 1 is too coarse
to be useful in this section.

Health resources, associated with (usually benign) websites, and
providing information about drugs. We use information from the
Open Directory Project [8] to make that determination.

Unlicensed pharmacies, characterized as such by Legitscript and
directly appearing in the organic search results.

Content injection (blog and forum spam), which point to discus-
sion websites with drug-related spam posts. We identify such sites
through URL parameter names they commonly use—containing
terms such as “blog,” or “forum” for instance.

Search-redirections, as defined in Section 3. Domains in this cat-
egory have generally nothing to do with prescription drugs and are
merely used as a feed to online pharmacies.

Content injection (compromised), which represent websites other
than blogs and forums, in which an attacker injected drug-related
content, but never exhibit signs of search-redirection. For this cat-
egory, we consider the characteristics of URLs that are search-
redirecting with embedded storefronts; the FQDNs contain no drug-
or pharmacy-related keywords, while the trailing paths do. We then
apply this heuristic to the set of results not placed in any of the pre-
cious five categories.

Finally, we mark as unclassified sites that do not fit into any of
the above categories.

Result category % of results Range (%) # of results

Active search-redirection 38.8 [8.7, 61.7] 621 623
Unclassified 18.8 [6.3, 35.4] 300 427
Unlicensed pharmacies 16.9 [12.1, 30.1] 271 045
Health resources 7.7 [4.2, 14.5] 123 883
Blog & forum spam 7.1 [3.0, 16.4] 113 250
Content injection (compromised) 4.7 [1.9, 10.0] 74 556
Future search-redirection 4.1 [0.0, 6.7] 65 548
Inactive search-redirection 1.8 [0.0, 10.6] 28 976
Licensed pharmacies 0.2 [0.0, 0.9] 2 779
Total 1 602 087

Table 3: Search-result composition. Results collected between
November 2010 and September 2013.

Table 3 shows the breakdown of results in each category over the
roughly three years that T2 and T3 span. We combine Datasets 2
and 3 by sampling Dataset 2 as described in Section 4. In the end,
we examine 1 602 087 search results over the entire interval. Out of
those, more than 38% are active redirections; on any given day be-
tween 8.7% and 61.7% of the obtained results actively redirect. In-
active and future redirects represent another 5.9% altogether, while
blog and forum spam, and compromised sites, taken together, ac-
count for another 11.8%. Shortly stated, the vast majority of results
are illicit or abusive. Particularly telling is the fact that legitimate
pharmacies only consist of 0.2% of the entire results!

The fairly large proportion of “unclassified” results (18.8% of all
results) led us to further examine them. Unclassified results may
be (i) benign websites with information about drugs, (ii) malicious
websites (compromised or redirections) that we failed to identify
as such, or (iii) results only marginally related to the search query.
We need to obtain the contents of these sites rather than their mere
URL to make this determination. By using the Internet Archive
Wayback Machine [26], we attempted to access the content of all
45 213 unclassified results collected in 2013. We managed to find
matches archived roughly at the time of our own crawls for 41 547
of them. 14 993 (33.1%) of the examined unclassified results did in
fact contain drug-related terms. Given that they were not legitimate
pharmacies or health resources (otherwise they would have been
classified as such), this is a strong indication that a non-negligible



number of unclassified results may actually present some form of
illicit behavior.

5.2 Search result dynamics
In Figure 2, we examine how search results, which appear to be

dominated by malicious links, dynamically evolve over time. The
graph shows, as a function of time, the proportion of results be-
longing to each category, averaged over a 7-day sliding window.
Vertical lines denote events of interest that occur during data col-
lection. In particular, C1 corresponds to the switch from Dataset 2
to Dataset 3, and C2 corresponds to an update in our crawler to
detect more advanced types of search-redirections. From late 2010
through late 2012 active redirects have not only been dominating
the search results, but they have also been steadily growing to a
peak of nearly 60%. Meanwhile, unclassified results are decreas-
ing overall, unlicensed pharmacies remain stable around 15–20%,
and licensed pharmacies constantly hover near zero. Spam contents
seems to marginally decrease until late 2012 as well.

Then, in early 2013 we notice a change in trends: active redi-
rections seem to finally decrease somewhat steadily, while, on the
other hand content injection (both spam and compromised web-
sites), as well as unclassified results enjoy a bit of a resurgence.
Even more interestingly, we also observe that unlicensed pharma-
cies mirror very closely the trend of active redirections in 2013.
Whenever redirections become more frequent, direct links to unli-
censed pharmacies become rarer, and vice versa. This suggests that
attackers use direct links to pharmacies as a kind of alternative to
search redirections.

Search-engine interventions. The lines marked G1, G2 and G3
correspond to documented changes in search-engine behavior. We
examine their impact on the search results using the Mann-Whitney
non-parametric U-test of significance, and data we collected within
30 days before and after each event.

On February 23, 2011 (G1) Google deployed an improved rank-
ing algorithm to demote low quality search results [24]. This ap-
parently caused a statistically-significant drop in redirecting results
by 2.3% (p = 0.003), and by 2.7% for spam websites (p < 0.001).
However, the improvement was only transient: Starting in May
2011 we observe a sharp increase until August 2011 in the propor-
tion of results that are actively redirecting. Specifically, the median
difference in the proportions of redirecting results collected in April
and in June of 2011 shows an increase by 15.5% (p < 0.001). Ap-
parently, after being initially impacted, attackers managed to find
countermeasures to defeat Google’s improved ranking algorithm.

Between October 2011 (G2, [12]) and March 2012 (G3, [23]),
Google updated its service again to gradually remove information
from the HTTP Referrer field about the query that produced the re-
sult. In theory, this should have reduced active redirects, which
originally relied primarily on the Referrer information to deter-
mine how to handle incoming traffic. In practice, the effect was
non-existent, as redirects continued increasing in the time interval
G2–G3. Indeed, comparing the proportion of results identified as
redirecting within 30 days beforeG2 and 30 days afterG3, we find
a statistically-significant median increase by 9.9% (p < 0.001).
Here again, attackers seem to have been able to adapt to a coun-
termeasure from the search engine. Furthermore, since Google an-
nounced the change well in advance of its implementation in or-
der to accommodate the many legitimate websites affected by the
change, those perpetrating poisoning attacks also had plenty of time
to adapt before being adversely impacted.

Browser evolution. A series of major changes to Internet browsers
occurred in the second half of 2012 and beginning of 2013. On July

17, 2012 (B1) Firefox 14 was released. This was the first major
browser (roughly 25% of reported market share at the time accord-
ing to StatCounter) to use HTTPS search by default, which only
lists the previous domain (but no URL parameters) in the Referrer.
On September 19, 2012, Safari followed suit (B2); and on January
13, 2013, Google Chrome, the browser with the dominant mar-
ket share also switched to HTTPS search (B3). At that point, the
majority of desktop browsers were using HTTPS search by default.
Perhaps coincidentally, we started observing a stagnation and even-
tual decrease in the number of active redirections. While we em-
phasize we cannot affirm causality, a plausible explanation is that
traditional, simple Referrer-based redirection techniques, by early
2013, stopped working for a large proportion of the population,
which led to alternative techniques being used (e.g., cookie-based
redirections). We periodically still see some large spikes (e.g., in
early Summer 2013), perhaps attributable to short-lived campaigns.
We conversely observe an increase in “direct advertising” of unli-
censed pharmacies.

Top-10 search results. The previous discussion deals with the
overall evolution of search results. However, Joachims et al. [9]
have shown that 98.8% of users click on results that appear in the
first 10 positions. To verify that malicious search results are posi-
tioned high enough in the search results to drive significant traffic,
we focus in Figure 3 on the evolution of the top-10 search results
to our queries.

While the previous observations are still valid at a high-level for
the top-10 results, we point out that the actively redirecting results
occur about 10% less frequently on a daily basis; unfortunately,
organic results pointing directly to unlicensed pharmacies are con-
versely 10% more frequent.

Among the top-10 results, we also briefly examine the top search
result (not represented in the figure), and observe that here too, an
overwhelming proportion of the results consist of direct links to
unlicensed pharmacies and active search redirections. Direct links
to unlicensed pharmacies appear to occur slightly more often at the
top result than in the rest of the top-10 results overall.

Undetected infections. An alternative explanation for the plateau-
ing and decrease of search-redirections observed since early 2013
might be that attackers’ tactics have evolved, and are not captured
by our crawlers anymore. To determine whether that is the case, we
take a closer look at the “unclassified” category. Recall, that from
April 2012 (C2) through the end of our measurement interval, we
record the first 200 lines of HTML code of each source infection,
posing both as a search-engine spider, and as a regular browser.
When we observe a difference in the HTML returned between the
two treatments, we infer there might have been cloaking.

In February 2014, we submitted to VirusTotal [27] the 213 705
unique samples we had collected (based on their SHA1 hash) for
examination. The idea was that evidence of malicious injections
in webpages (e.g., JavaScript redirects as used by RedKit [18] or
other variants described earlier [2]) would likely be detected by at
least some malware URL blacklists.

Figure 4 presents the proportion of unclassified results detected
as malicious by VirusTotal. Typically, the malicious websites con-
tain trojans (such as JS/Redirector.GR), backdoors (such as
PHP/WebShell.J, or C99), and exploits (for instance, the no-
torious HTML/IframeRef.AS). Overall, 19.5% of unclassified
results appear as malicious. We see that websites with malicious
content are relatively infrequent when search-redirection attack is
experiencing its peak towards the end of 2012 (Figure 2). How-
ever, in 2013 we observe an increase of malicious websites among
unclassified results. This may be an indication that miscreants are
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Figure 4: Percentage of unclassified search results detected
as malicious based on the content by VirusTotal (May 2012–
August 2013).

increasingly using other forms of manipulation our crawler did not
detect, like JavaScript-based compromises. However, returning to
Figure 2, this potential increase in infections does not compensate
for the decrease observed in redirections overall. At most one third
of all unclassified results (up to 7% of all results in 2013) are com-
promised in this way, whereas the active redirections have them-
selves dropped by roughly 20 percentage points.

Despite the decrease observed in 2013, claiming success in solv-
ing the search-redirection problem would be a stretch. Indeed, redi-

rections still constitute the largest proportion of results for the query
set we used.

5.3 User intentions
Our measurements appear to point at a large amount of mali-

cious search results overall. A natural question is then whether or
not users are actively looking for questionable results. If that is
the case, it would then be hard to fault search engines for actually
providing the users with what they are seeking.

To answer this question, we assess the impact of user intentions
on search results by plotting, in Figure 5, the proportion of results
we get for illicit, gray, and benign queries over time. The key take-
away is that regardless of the type of query, active redirects dom-
inate results. Unlicensed pharmacies also appear significantly not
only in the results for illicit queries, but also for gray queries. We
therefore reject the notion that active redirects only appear in search
engines because users are seeking access to unlicensed pharmacies.
Rather, unlicensed pharmacies appear to be successfully poisoning
search results regardless of the queries’ intent.

6. CLEANUP-CAMPAIGN EVOLUTION
Thus far we have examined how the proportion of search results

with search-redirection attacks has changed over time. This helps
in understanding the overall attack impact, and gives us a sense of
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Figure 5: Percentage of search results per category, based on
the type of query. Active redirections dominate results regard-
less of the intention of the query.

the progress defenders (such as search engines) have made in com-
bating this method of abuse. We now study much more explicitly
how the interplay between those perpetrating search-redirection at-
tacks and those working to stop them has evolved.
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Figure 6: Survival probability for source infections. We use the
entire measurement interval T1, T2, T3 to compute this metric.

Several conditions must simultaneously hold for a search-redirection
attack to be successful. First, the source infection must appear in
the search results for popular queries. Second, the infection must
remain on the website appearing in the results. Third, any interme-
diate traffic brokers must remain operational. Fourth, the destina-
tion website must stay online. Defenders may disrupt any one of
these components to counter search-redirection attacks. In this sec-
tion we examine how effective defenders have been in combating
each component of the attack infrastructure. We first study the per-
sistence of source infections over time, before investigating traffic
brokers and destinations.

6.1 Cleaning up source infections
A key measure of defense is the time source infections persist

in the search results and continue redirecting traffic elsewhere. We
calculate the survival time of a source infection as the number of
days a fully-qualified domain name (FQDN) is first and last ob-
served to be actively redirecting to different domains while appear-

ing in the search results.4 Thus, source infections can be “cleaned”
in two ways: either the responsible webmaster removes the infec-
tion that triggers the redirection or the website gets demoted from
the search results because the search engine detects foul play.

Figure 6 shows the survival probability of the 26 673 source in-
fections observed throughout the entire time period. Any measure
of infection lifetimes involves “censored” data points, that is, in-
fections that have not been remedied by the end of the observation
period. In our dataset, 1 178 source infections were still actively
redirecting at the end of data collection and are therefore censored.
Survival analysis can deal with such incompleteness in the data by
building an estimated probability distribution that takes censored
data points into account. Figure 6 plots the survival probability as
calculated using the Kaplan-Meier estimator [13].
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Figure 7: (Top) Median time (in days) to cleanup source in-
fections over time. (Middle) Source infections per 100 results
over time. (Bottom) Median time (in days) to cleanup source
infections by TLD.

We can see from the figure that many infections are short-lived.
One-third last five days or less, while the median survival time for
infections is 19 days. Nonetheless, it is noteworthy that some infec-
tions persist for a very long time. 17% of infections last at least six
months, while 8% survive for more than one year. 459 websites,
1.7% of the total, remain infected for at least two years! Hence,
while most infections are remedied in a timely fashion, a minority
persist for much longer.

We next investigate how the time required to cleanup source in-
fections has changed over time. We computed a survival function
for each month from April 2010 to March 2013. We included all
source infections that were first identified in that month. To make
4We treat different URLs on the same FQDN as coming from a
single infection. The reason we consider different FQDNs shar-
ing the same second-level domain name as distinct infections is
that frequently differing FQDNs represent distinct servers (e.g.,
bronx.mit.edu and strategic.mit.edu both appear in
our sample). There is one exception to this policy. Whenever we
observe multiple FQDNs cleaned up on the same day, we treat them
as a single infection.



comparisons consistent across months, we censored any observed
survival time greater than 180 days.5

Figure 7 (top) reports the median survival time (in days) for each
monthly period. We can immediately see that the median time is
highly volatile, ranging from 42 days in April 2010 to 2 days in
June 2012. However, the overall trend is down, as indicated by the
best-fit orange dotted line. Judging by the trend line, it appears that
the median time to clean up source infections has fallen by around
10 days in three years.

While this is a welcome trend, we wondered what impact, if any,
expedited cleanup times could have on the attacker’s strategy. In
particular, shorter-lived source infections could lead attackers to
simply compromise more websites than before. Figure 7 (mid-
dle) plots the number of source infections per 100 search results
observed each month.6 Here we observe a strongly positive ef-
fect. While the number of infected FQDNs hovered around 1 per
100 search results in 2010 and early 2011, observed infections in-
creased substantially beginning in late 2011. This rose to nearly 4
infections per 100 search results by late 2012, before falling some-
what. Hence, it does appear that any crackdown in cleaning up
source infections has been matched by an uptick in new infections,
which helps to explain the increase in the percentage of search re-
sults that redirect as shown in Section 5.

Finally, Figure 7 (bottom) examines how cleanup times have
changed for source infections on different top-level domains (TLDs).
In our earlier work [15], we found that .eduwebsites remained in-
fected for much longer than others, and that .org and .com were
cleaned more quickly. The figure shows that .com websites (de-
noted by the long dashed brown line) still in fact closely follow
the overall trends in cleanup times. Notably, however, .edu web-
sites (indicated by the dashed green line) went from considerably
above-average survival times in 2010 to following the average by
mid-2011. In their place, however, .org websites began to lag be-
hind starting in mid-2011. The timing suggests that attackers may
have even shifted to targeting .org websites once .edu websites
started to be cleaned up.

6.2 Cleaning up traffic brokers and destina-
tions

Source infections are not the only hosts that can be targeted by
defenders when combating search-redirection attacks. Traffic bro-
kers and destinations can also be shut down. We now compare the
survival times of these to source infections.

Figure 8 (top) plots the survival time for source infections, traffic
brokers and destinations. For traffic brokers and destinations, we
report the second-level domain survival time, since subdomains of-
ten change to match drug names (e.g., zoloft.example.com).7

We also report the survival time for websites appearing for at least
two days, since this removes a substantial number of false positives.

The graph shows that source infections are removed fastest, fol-
lowed by destinations and traffic brokers. For example, 43% of
sources are removed within three weeks, compared to 29% of traf-
fic brokers and 36% of destinations. The median survival time for
source infections is 34 days, compared to 59 days for destinations
and 86 days for traffic brokers. So while the median traffic broker
performs worst, the story changes slightly in the tail of the distri-
bution: the 20% longest-lived source infections survive at least 6

5This censoring also explains why we do not report anything for
the final six months of the study.
6The missing points in Figure 7 (middle) are from months when
there are temporary 50% or greater drops in gathered search results.
7We removed 7 traffic brokers and 5 destinations from considera-
tion here because they are known URL shortening services.
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Figure 9: Major autonomous systems hosting traffic brokers.
The plot shows the number of redirection chains using brokers
from these ASes. In early 2013, US1 stopped hosting traffic
brokers, which seemingly moved to NL.

months, compared to 9 months for traffic brokers and 11 months
for destinations.

Figure 8 (bottom) tracks how the median survival time changes
over time for source infections, traffic brokers and destinations.
The median times are calculated quarterly, rather than monthly as
in Figure 7 (bottom), due to the smaller number of traffic brokers
and destinations compared to sources. We see once again the slow
but steady improvement in reduced survival times for source infec-
tions. However, we see much greater vacillation for the survival
times of traffic brokers and destinations. For some quarters the me-
dian time is around 5 months, whereas in others it follows more
closely the survival times of sources. Notably, the survival times of
traffic brokers and destinations are positively correlated.

We conclude from this analysis that traffic brokers and destina-
tions have not received the same levels of pressure from defenders
as source infections have. This is reflected in the longer survival
times, as well as in the smaller number of domains ultimately used.

Where are traffic brokers hosted? The previous set of findings
led us to look up the autonomous system (AS) each traffic broker
belongs to. It turns out that only 7 ASes (3 in the US, 3 in Ger-
many, 1 in the Netherlands) support more than 10 traffic brokers
every day. We plot on Figure 9, the number of redirection chains



Daily average (FQDNs) Per broker
Traffic brokers # % Infections Pharmacies

Redirecting to a single pharmacy 23.1 61.1% 18.9 URLs 1 URL
Redirecting to many pharmacies 14.4 33.8% 11.8 URLs 2.8 URLs
Redirecting to other brokers 3.8 5.2% - -

Table 4: Characteristics of traffic brokers. The data is given
in averages of daily means over T3.

supported by brokers belonging to these 7 ASes as a function of
time. None of these autonomous system provides “bulletproof host-
ing.” In fact, US1 is a known cloud-service provider. Some time in
2013, US1 seemingly decided to shutdown these brokers that had
been using their service for more than a year. Some of them con-
sequently shifted to NL, but what is most striking in this plot is the
high concentration in traffic brokers over a few autonomous sys-
tems, especially since mid-2012. Coordinated take-downs among
these ASes could be a very promising avenue for intervention.

7. ADVERTISING NETWORK
We next turn to a deeper discussion of the redirection chains

involved in search-redirection attacks. Redirection chains can in-
deed yield valuable insights about the “advertising network” used
by criminals to peddle their products. We study traffic brokers and
destinations in this section. We only focus on interval T3, since
from Table 2, neither Datasets 1 nor 2 contain enough information
to be able to extract the information we discuss here. In the remain-
der of this section, we always look at traffic brokers and pharmacies
at the fully-qualified domain name level.

Source infections to traffic brokers. We start by looking at the
connections between source infections and traffic brokers. On av-
erage, over 95% of the source infections a given day actually work;
that is, less than 5% fail to take the visitor to a questionable site,
instead landing on a parking page.

About a quarter (25.1%) of these source infections send traffic
directly to a pharmacy without any intermediate traffic broker.

Another 42.8% use dedicated brokers that only get traffic from
a single infection. More interestingly, on average about 14.8% of
source infections send traffic to a broker shared with other source
infections. Such brokers on average send traffic to 2.4 different
pharmacies.

Traffic broker characteristics (Table 4). Unsurprisingly, in light
of what we saw above, 61.1% of brokers drive traffic to a single
pharmacy, receiving traffic from 18.9 infected URLs on average.
33.8% of brokers redirect to multiple pharmacies, and receive on
average traffic from 11.8 URLs. Finally only 5.2% of traffic brokers
send traffic to other traffic brokers.

Pharmacies (Table 5). We see that 56% of pharmacies do not rely
on any broker and get their traffic, on average, from 4.6 infected
URLs. 17.8% of all pharmacies get traffic from a dedicated broker,
which feeds them traffic coming from about 24.2 distinct infected
URLs. Slightly less than a third of all pharmacies use a shared traf-
fic broker, which—interestingly enough—forward traffic from only
5.2 infected URLs. In other words, dedicated traffic brokers appear
to be driving considerably more traffic than “co-hosted” solutions
using shared traffic brokers. This in turn seems to give further cre-
dence to the belief that “advertising networks” (e.g., pharmaceuti-
cal affiliates) are highly heterogeneous, with actors ranging from
powerful “dedicated” brokers to others operating on a shoe-string
budget. The proportion of pharmacies directly linked to infections,
without a traffic broker, is high – and can be explained by the dif-

Daily average (FQDNs) Per pharmacy
Pharmacies # % Infections Traffic brokers

Without traffic broker 59.0 55.9% 4.6 URLs -
With dedicated traffic broker 17.8 18.1% 24.2 URLs 1.3 URLs
With shared traffic broker 32.0 28.4% 5.4 URLs 2.2 URLs

Table 5: Characteristics of pharmacies. Data given as averages
of daily means (over T3).

Graph characteristics Daily average Range
# %

Number of nodes 1055.4 100 [228, 2309]
Redirecting results 908 (URLs) 86.0 [193, 1 927]
Traffic brokers 41.3 (FQDNs) 3.9 [9, 238]
Pharmacies 106.1 (FQDNs) 10.1 [26, 181]
Connected components 82.6 - [25, 129]

Smallest connected component

Number of nodes 2 nodes 5.7 (combined) [2, 2]
2-node components 30.0 35.9 [9, 56]

Largest connected component

Size of largest connected component 390 nodes 39.1 [72, 1 091]
Redirecting results 379.6 (URLs) 38.1 [66, 1067]
Traffic brokers 5.8 (FQDNs) 0.6 [0, 16]
Pharmacies 4.6 (FQDNs) 0.4 [1, 31]

Table 6: Connected components in the graph describing daily
observed redirection chains.

ficulties search-redirection attacks experienced in 2013, and evi-
denced in Figure 2.

Network characteristics. Table 6 provides an overview of the
graphs consisting of all redirection chains on any given day. We
observe a very strong network heterogeneity, with large connected
components that appear to dominate the graph. In other words, the
illicit advertising business is dominated by a few large players. The
same observation was reported in earlier work [15, 21].

It is worth examining whether this concentration in advertisers
changes over time. Figure 10 provides some elements of answer.
We plot, as a function of time the maximum (top) and average (bot-
tom) degree of traffic brokers and destinations. The degree is de-
fined here as the sum of the number of links going in (in-degree)
and out (out-degree) of a given “node” (traffic broker or destina-
tion). Each datapoint represents a 7-day moving average. The verti-
cal lines correspond to the events introduced in Section 5. The size
of the largest traffic brokers varies drastically over time—the spikes
observed in late 2012 seem to have been caused by particularly vir-
ulent campaigns (where a few brokers received a large amount of
traffic from many infected sites) that took time to be fended off by
search engines. Since early 2013, the size of the largest brokers
has decreased a fair bit, reflecting the trend that search-redirection
might be less popular than it was in 2012.

Shared infrastructure. We complete our analysis of the redirec-
tion network by looking at the traffic brokers used for different
(non-pharmaceutical) types of trades, and the extent to which they
overlap with the pharmaceutical trade. Table 7 gives an overview of
these results over the time interval 10/31/2011–09/16/2013. Over a
long enough time interval, there is modest overlap between the vari-
ous types of products. Source infections are rarely used for multiple
campaigns; traffic broker domains tend to show a bit more over-
lap, presumably due to the fact that miscreants take advantage of
lax verification policies at certain hosting providers. At the FQDN
level, though, both destinations (i.e., shops) and brokers show little
evidence of overlap, which is surprising given the known fact that
certain botnets operate over multiple markets. Even in such cases,
the different business domains appear to be kept separate.
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Figure 10: Maximum and average degree of traffic brokers and
destinations over time.

Type and granularity of node Drugs Other mkts. combined Shared # Jaccard index (%)

Source infection FQDNs 14 770 3 975 167 0.9
Traffic broker Domains 382 202 34 6.2
Traffic broker FQDNs 735 297 33 3.3
Destination domains 2 232 1 388 120 3.4
Destination FQDNs 2 249 1 388 119 3.4

Table 7: Overlap in the criminal infrastructures. The fourth
column is computed as the Jaccard index between the two sets.

8. LIMITATIONS
In addition to the numerous difficulties one faces when dealing

with such long-range datasets, this study presents two major limita-
tions. First, we have only looked at Google results. We justify this
by the market share dominance of Google, at least in the US [4],
but point out that other studies [2, 22] have shown other search en-
gines are not immune to search-poisoning. Second, we have mostly
looked at search results based on their presence or not in the result
corpora. What is more important, however, is their position in the
results. While top links are frequently clicked on, it has been shown
that links past the tenth result have close to zero probability of be-
ing used [9]. Weighing the results we obtained by click probabil-
ity would probably yield a better insight into which operations are
profitable. We do note, however, that in our previous work we show
that the type of results (e.g., search-redirection attacks vs. health re-
sources) remained fairly consistent regardless of position [15]. Our
brief examination of top-10 results in periods T2 and T3 confirms
that active redirects and direct links to unlicensed pharmacies ap-
pear frequently among top results, and are thus expected to drive
significant amounts of traffic.

9. CONCLUSIONS
Search engines are invaluable tools that deliver enormous value

to consumers by referring them to the most relevant resources quickly
and effortlessly. Search-engine poisoning threatens to undermine
this value proposition, and could conceivably lead users to reduce
their online activities [1].

We have presented the results of a longitudinal, large-scale em-
pirical investigation into search-engine poisoning. Our long-term
view has enabled us to draw several new and important insights.
First, despite the best efforts of search engines to demote low-
quality content and browsers to protect the privacy of search queries,
miscreants have readily adapted. In fact, the share of results taken
over by search-redirection attacks doubled from late 2010 to late
2012, before falling slightly. Second, efforts to clean up the com-

promised websites that initiate the redirections have improved: the
persistence of source infections has steadily fallen from one month
to two weeks. But here too, the attackers have adapted, notably
by simply compromising more websites. Third, we continue to ob-
serve extensive concentration in the funneling of traffic from source
infections to destinations via a small number of central brokers.

A key takeaway from this investigation is that uncoordinated in-
terventions by individual stakeholders – a search engine ranking
algorithm tweak here, a push by some hosting providers to clean
up infected servers there – is not sufficient to disrupt persistent poi-
soning attempts. Examining this problem using Crime Script Anal-
ysis [5], Leontiadis has shown that focusing instead on key points
of concentration and in cooperation across stakeholders is required
to have measurable impact [14]. For instance, coordinated traffic
broker take-downs at the AS level, in conjunction with the demo-
tion or removal of poisoned search results at the search engine level
(e.g., using proactive identification techniques [25]), could impact
the economics of search engine poisoning significantly, and, hope-
fully, durably.
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