
Marking Algorithms for Service Differentiation of TCP Traffic ∗

Technical Report: University of Virginia, CS-2003-04

Nicolas Christin J̈org Liebeherr
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

Abstract

Class-based service architectures for quality-of-service (QoS) differentiation typically provide loss,
throughput, and delay differentiation. However, proposals for class-based QoS differentiation generally
do not account for the needs of TCP traffic, which are characterized by a coupling of packet losses and
achievable throughput. Ignoring this coupling may result in poor service differentiation at the microflow
level. This paper shows how Explicit Congestion Notification (ECN) can be used to achieve service
differentiation for TCP traffic classes at the microflow level. We present a traffic marking algorithm for
routers, which, if used in conjunction with ECN, regulates the transmission rate of TCP sources in such
a way that packet drops due to buffer overflows are avoided. We demonstrate how the algorithm can be
integrated in a service architecture with absolute and proportional QoS guarantees. Simulation results
illustrate the effectiveness of the presented algorithms at avoiding packet losses and regulating traffic for
meeting service guarantees, and provide a comparison with other algorithms proposed in the literature.

Key Words: TCP, ECN, QoS, Packet Losses, Congestion Control.

∗This work is supported in part by the National Science Foundation through grants ANI-9730103 and ANI-0085955.

1 Introduction

Since the late 1990s, a significant amount of research, e.g., [5, 6, 8, 22, 28], has been devoted to devis-
ing simple and scalable architectures for quality-of-service (QoS) differentiation between classes of traffic.
These proposals, mainly formulated in the context of the Differentiated Services (DiffServ, [5]) framework,
generally provide loss, delay and throughput differentiation between classes of traffic.

However, the scheduling and/or buffer management algorithms involved usually do not take into ac-
count the sensitivity of TCP traffic to losses. TCP traffic, which accounts for more than 90% of the total
traffic on the Internet [7], is a feedback-driven protocol that uses losses as an indicator for congestion avoid-
ance and control [3, 23, 24]. Hence, TCP packet losses lead to significant performance degradation of the
throughput of TCP sources. Furthermore, due to the relatively complex relationship between packet losses
and TCP throughput [29] and the lack of discriminating mechanisms between flows belonging to the same
service class, quantitative loss differentiation on traffic aggregates can result in unpredictable throughput
differentiation between individual TCP flows.

In an effort to reduce losses in TCP/IP networks, Explicit Congestion Notification (ECN, [32]) has been
proposed as an additional congestion signal for TCP flows. ECN allows to mark packets with a Congestion
Experienced (CE) codepoint. When a packet marked with the CE codepoint is received by its destination,
the data is acknowledged with a packet containing the CE-ECHO codepoint. When the CE-ECHO marked
acknowledgment reaches the sender, the sender reduces its throughput, as if a loss had happened in the
network.

The emergence of ECN has stimulated research on appropriate marking algorithms that indicate conges-
tion to TCP sources to avoid packet losses resulting from buffer overflows [4, 14, 15, 16, 18, 20, 21, 26, 30].
The key idea behind these algorithms is to mark packets proactively, that is, before congestion occurs, to
limit the amount of lost traffic in the network. For instance, RED [18] and its extensions, e.g., [26], use a
smoothed average of the buffer occupancy,Q, to infer impending congestion. IfQ is between two thresh-
oldsminTH andmaxTH , packets are marked with a probability increasing inQ. Packets are only dropped
if Q > maxTH . Other algorithms, e.g., Blue [14] or Stochastic Fair Blue [15] use different factors such
as link utilization to infer congestion, or, in the case of Random Exponential Marking (REM, [4]), a price,
depending on the queue occupancy and the difference between aggregate input and output rates. The PI al-
gorithm [21] uses a feedback-based model for TCP arrival rates [27] to let the buffer occupancy converge to
a target value, but assumes a priori knowledge of the round-trip times and of the number of flows traversing
the router.

While all of the proactive marking algorithms discussed above can, to some extent, reduce the amount
of losses in the network, this paper tries to address a broader question. Since ECN provides congestion
signals that can be conveyed before any traffic is dropped, we are exploring if ECN can be integrated with
scheduling and buffer management into a service differentiation scheme for TCP traffic.

We first explore if it is feasible to devise a marking algorithm which can ensure that the traffic load
at a router remains at a level that entirely avoids losses due to buffer overflows at routers without wasting
available network bandwidth. The basic idea is to anticipate the behavior of TCP sources at the routers,
by tracking the window size and the round-trip time of flows at the router, and to use ECN marking to
have the senders adjust the window size of the flows. More precisely, when a router predicts future losses,

2

the router sends congestion signals to the sources via ECN with the goal of reducing the sources’ sending
rates before a loss occurs. To that effect, we present a reference marking algorithm that tracks and controls
all TCP flows at a router to prevent impending buffer overflows. This reference algorithm can probably
not be implemented in routers with the hardware currently available, due to the computational overhead
of maintaining per-flow information for all flows, but is useful to assess the viability of our design. To
address scalability issues, we note that in practice, only a small number of flows contribute to the majority
of traffic [2, 12, 13]. We conjecture that tracking and marking only these ”heavy-hitters” is sufficient for
avoiding packet drops. Based on this idea of filtering flows, we present a heuristic approximation of the
reference algorithm that we expect to be computationally efficient enough to be deployed in edge routers,
where congestion is most likely to occur [19]. Then, we examine if ECN can be used to concurrently pursue
both objectives of avoiding losses and regulating traffic to meet per-class service guarantees.

This paper is organized as follows. In Section2, we present the reference algorithm for avoiding buffer
overflows. In Section3, we describe the heuristic algorithm. In Section4, we show how the proposed
marking algorithms can be used for traffic regulation in the context of class-based service differentiation.
We compare the performance of the reference and heuristic algorithms to other algorithms in Section5, and
draw brief conclusions in Section6.

2 A Reference Marking Algorithm for Avoiding Losses

In this section, we describe a reference algorithm for marking TCP traffic at network routers. The objective
of the algorithm is to determine when to mark TCP traffic and which flows to mark in order to completely
avoid packet losses due to router buffer overflows, while maximizing the utilization of the network capacity.

Throughout this section, we assume that all traffic uses TCP. While in practice one can expect a mix
of flows using different protocols (e.g., TCP, UDP, SCTP), we can make this assumption without loss of
generality, since one can always reserve fixed resources at each router for TCP traffic such as a dedicated
buffer and a fixed portion of the output link capacity. Furthermore, we assume that ECN is available in
the network. This assumption is realistic for future networks, as ECN is being rapidly deployed on the
Internet: relatively recent operating systems such as FreeBSD 4.5 or Linux 2.4 already support ECN. For
the description of the reference algorithm in the remainder of this section, we assume that enough resources
are available to perform the needed computations.

We next describe the algorithm at a single router, for a single greedy TCP flow, i.e., a TCP flow that
always has data to transmit. For the time being, we assume that there is no other traffic in the network, and
that the only cause of packet losses at the router is a buffer overflow. The router estimates the congestion
window size and the round-trip time of the TCP flow. With these estimates, future traffic arrivals are pro-
jected, and impending buffer overflows are inferred, as illustrated in Fig.1. In the case of Fig.1, at timet,
a buffer overflow is projected for timet′. If a packet loss is projected, the algorithm reduces the congestion
window size of the TCP source by marking packets with ECN. By reducing the congestion window size,
the sending rate of the TCP source is reduced, and impending packet losses can be avoided. Note that the
proposed algorithm does not require any changes to TCP, and only relies on ECN to reduce the traffic load.

The remainder of this section describes the calculations at the router to project future packet losses. We
explain how to use the projections to mark traffic and avoid packet losses using the simplified model of a

3

Projected arrivals
(after packet marking)

Projected
Arrivals

t t’ time

tr
af

fi
c

Transmissions

B
uf

fe
r

Si
ze

Arrivals

Figure 1:Overview of the algorithm. At time t of a packet arrival, the router projects future arrivals, by
inferring how the TCP source will send traffic. When an impending buffer overflow is predicted, at timet′

here, a packet is marked to reduce future arrivals.

single TCP flow. We then generalize the proposed technique to multiple TCP flows with different sources
and destinations crossing paths at a same router.

2.1 Projecting Traffic Arrivals to Prevent Losses

Let us assume for now that packet losses can only be caused by a buffer overflow at the considered router,
and letBlim denote the size of the router’s buffer. We refer to the input curve,Rin(t), as the total amount
of traffic that has entered the router until timet, excluding dropped traffic. We refer to the output curve,
Rout(t), as the total amount of traffic that has left the router until timet. At any timet, the backlog at the
router is equal toRin(t)−Rout(t). Hence, we have the following constraint:

∀t : Rin(t)−Rout(t) ≤ Blim . (1)

Assume that the output link capacity of the router has a constant rateC, and that the router uses a work-
conserving scheduler. Thus, for anyt and τ > 0 such that traffic is always backlogged over[t, t + τ],

Rout(t + τ) = Rout(t) + C · τ . (2)

Since Eqn. (2) characterizesRout whenever there is a backlog, the algorithm only needs to inferRin(t + τ)
for τ > 0, to ensure Eqn. (1) holds att + τ , thereby avoiding impending buffer overflows. To clearly dis-
tinguish between known, measured values and future,projectedvalues of the arrivals and of the departures,
we defineR̃in

t (t + τ) as the value projected at timet for the input curve at timet + τ .
To project future arrivals̃Rin

t (t + τ) for τ > 0, we need to examine how traffic is sent at the source, so
that we can infer how much traffic is received by the router. For this discussion, we consider “segments” and

4

“packets” as synonymous. Furthermore, we ignore the slow-start phase of TCP, since the flow is unlikely to
send enough traffic to create a buffer overflow during slow-start, and only focus on the congestion avoidance
phase. Every time an acknowledgment is received at the source, the source sends a number of packets equal
to the maximum of the receiver’s advertised window size,adv(t), and the source’s congestion window
size,cwnd(t), 1 minus the number of packets sent and not yet acknowledged.cwnd(t) is increased by

1
cwnd(t) every time an acknowledgment is received, unless the acknowledgment is marked with the CE-
ECHO codepoint or a packet drop is inferred by reception of a triple-duplicate acknowledgment, in which
casecwnd(t) is decreased tocwnd(t)

2 . Last, if the retransmission timer of the TCP source expires,cwnd(t)
is reset to one and the flow is back to slow-start.

Sincecwnd(t) is conditioned by receiving acknowledgments at the source, the round-trip time (RTT),
that is, the time difference between a packet is sent and its acknowledgment is received at the source, is
central to the evolution ofcwnd(t). The RTT depends on time, due to variable queueing delays, and/or
changing routes. We denote byRTT (t) the value of the RTT at timet, and define a series of “rounds” as
follows. The first round starts when the first packet is sent by the source, and ends when the acknowledgment
to the first packet sent in the first round is received. The(k + 1)-th round starts immediately after thek-th
round ends. Therefore, denoting bysk the start time of thek-th round at the source, thesi are linked by the
recursive equation

si+1 = si + RTT (si) .

Now, within thei-th round, i.e., between timessi andsi+1, a TCP source sends at mostW (si) packets
with W (si) = max{adv(si), cwnd(si)}. Furthermore, it can be shown (see [29], or the example in [33],
Chap. 21) that, in absence of retransmission timer timeouts, and if the TCP source is not in slow-start mode,
W (si+1), the number of packets sent in the(i + 1)-th round is bounded by

1
2
W (si) ≤ W (si+1) ≤ W (si) + 1 . (3)

The lower bound is given by the fact that at most one ECN congestion signal is taken into account per
round [32], while the upper bound is reached only if all packets sent in thei-th round are successfully
acknowledged by the destination. Note that Eqn. (3) is general enough to capture the behavior of Delayed-
ACKs implementations, which issue on AVErage only one acknowledgment for each two data packets.

SinceW (t) andRTT (t) are not known by a router, Eqn. (3) tells us that a router that wants to estimate
future traffic arrivals must be able to estimate, at any timet, RTT (t), W (t), andsi for the current round.
We denote bŷW (t), R̂TT (t), andŝ(t) the estimates at the considered router ofW (t), RTT (t), and ofsi,
respectively.

These estimates are computed as follows. The first time a packet is received at the router, the current
time, T1, is recorded. When the second packet arrives at the router, at timeT2, the value ofR̂TT (t) is
initialized toT2 − T1,2 andŴ (t) is initialized to 1. At timeT2, ŝ(t) is initialized toT2.

After time T2, the key idea to update the RTT estimates is to discriminate the rounds. Measurement
studies [11, 31] show that the RTT is generally significantly larger than the time needed to receive all

1At the end hosts,cwnd(t) is internally expressed in bytes, which does not affect our present discussion.
2This method is equivalent to the SYN-ACK algorithm of [25].

5

packets from a given round.3 Thus, monitoring the packets’ interarrival times at the router can determine
alone if a new round has started. More specifically, if, for a constantK > 1, Ti−1 andTi satisfy

Ti − Ti−1 >
R̂TT (Ti−1)

K
, (4)

the router considers thatTi marks the start of a new round.
If Eqn. (4) does not hold,Ti−1 andTi are part of the same round, and̂RTT (t) is set equal tôRTT (Ti−1),

Ŵ (t) is set toŴ (Ti−1)+1, andŝ(t) is set equal tôs(Ti−1). Conversely, if Eqn. (4) holds, the router updates
the estimates as follows:

ŝ(t) = Ti ,

Ŵ (t) = 1 ,

R̂TT (t) = α · R̂TT (ŝ(Ti−1)) + (1− α) · (ŝ(t)− ŝ(Ti−1)) ,

where0 ≤ α ≤ 1 is a constant. The round-trip time estimator used at the TCP sources usesα = 0.9, which
has shown to provide reasonably accurate results [23]. We point out that except in rare cases of persistent
link failure, where packets end up being re-routed, the RTT does not vary significantly over time, and thus,
the algorithm should be rather insensitive to the selection ofα.

With the estimates of the RTT and the window size, the router can project future window sizes. Specif-
ically, for any timet and any timeτ > 0, denoting bỹWt(t + τ) the projection of the window size at time
t + τ , the router computes̃Wt(t + τ) as

W̃t(t + τ) =

Ŵ (t) if t + τ < ŝ(t) + R̂TT (t),
Ŵ (t) + 1 if t + τ ≥ ŝ(t) + R̂TT (t)

and no packet has been
marked (or dropped)
in [ŝ(t), t],

1
2Ŵ (t) if t + τ ≥ ŝ(t) + R̂TT (t)

and at least one packet
has been marked (or
dropped) in[ŝ(t), t].

(5)

The router can discover if a packet has been marked (or dropped upstream) in[ŝ(t), t] by checking the ECN
bits and the TCP sequence numbers. From Eqn. (5), the router projects that the window size does not change
until the end of the current round, and that its value at the beginning of the next round depends on whether
or not a packet has been dropped or marked during the current round. Thus, Eqn. (5) captures the fact that,
at the earliest, ECN signals have an effect only at the beginning of thenextround.

We shall note that this projection is correct only when all packets in a round have been received by the
router. This may seem a restriction, but since the RTT is generally much larger than the time needed to
receive all packets in a given round [11, 29, 31], the projection is generally accurate. With̃Wt(t + τ) given
by Eqn. (5), a router can project the input curve with the following expression:

R̃in
t (t + τ) = Rin(t) + MSS · γt(τ) · W̃t(t + τ) , (6)

3The same assumption is used in [29] for modeling the sending rate of a TCP source, and has been confirmed in experimental
measurements.

6

whereMSS is the maximum segment size of the TCP flow, and

γt(τ) =

{
1 if t + τ ≥ ŝ(t) + R̂TT (t),
0 otherwise.

That is, a router can assume that all traffic sent in the next round arrives in a batch right at the start of the
next round. This projection thus assumes a ”worst-case scenario.” In practice, such bursts of traffic are rarely
observed.

Next, we discuss the marking algorithm. To determine if an arrival at timet must be marked, a router
checks that the flow has not already been marked (or has experienced some losses) during the current round.
This test is necessary since at most one ECN-marked packet per round has an impact on the arrivals. If the
flow has not experienced any losses or packet marking during[ŝ(t), t], the router verifies if the following
condition holds:

R̃in
t (t + τ)−Rout(t)− C · τ ≤ Blim . (7)

This condition tests if a buffer overflow is going to occur at he beginning of the next round. Since ECN
feedback does not have any impact until the beginning of the next round, the condition in Eqn. (7) is checked
for τ = ŝ(t) + R̂TT (t) − t. If the condition of Eqn. (7) is violated, then the router marks the packet at
the head of the transmission queue with the CE codepoint. Marking the packet at the head of the queue
minimizes the delay needed for the ECN feedback to reach the source.

We conclude with a discussion on the robustness of the above estimators. If the constantK in Eqn. (4)
is too small (e.g.,K < 1), or if W (t) is extremely large and data transmission appears continuous, the test
described in Eqn. (4) may not be able to discriminate between rounds. In the worst-case, the router may
never infer the start of a new round, and̂W grows unbounded. To address this problem, we use a safeguard,
based on Eqn. (3) as follows. If, at timeTi, we have4

Ŵ (Ti) > Ŵ (ŝ(Ti)−) + 1 ,

the router infers thatTi marks the start of a new round,even if Eqn. (4) does not hold. Now, if K is too
large (e.g.,K > 1000), the router incorrectly infers that each packet arrival marks the start of a new round,
and thus,̂W and R̂TT underestimateW andRTT . In the worst-case, when̂W → 0 and R̂TT → 0,
no projection is performed, thus no traffic is marked, and the algorithm degenerates to Drop-Tail. Our
experiments show that the algorithm is quite robust to changes of the parameters. In fact, the experimental
results gathered in Section5 with K = 10, α = 0.9 are almost identical to those obtained with any value
10 ≤ K < 100, and0.7 < α < 1.

2.2 Generalization to Multiple TCP Flows

We next consider a more general situation withN greedy TCP flows. We usêRTT i(t), Ŵi(t), MSSi, and
ŝi(t) to denote the estimated round-trip time, congestion window size, maximum segment size and start time
of the current round for TCP flowi, respectively. Let us assume, for the moment, that the router is able to
monitor allN TCP flows and can keep track of all thêRTT i(t), Ŵi(t), MSSi andŝi(t).

4For any timet, we definet− aslimε→0{t− ε}, with ε > 0.

7

Now, by defining for each flowi, at any timet,

τi = ŝi(t) + R̂TT i(t)− t , (8)

i.e.,τi is the (estimated) remaining time before the start of the next round for TCP flowi, and by iterating the
projection technique of Section2.1 for all flows, the router first computes the projected congestion window
in the next round,̃Wi,t(t + τi) for each flowi, using Eqn. (5). Then, for anyτ > 0, the projected arrivals
are

R̃in
t (t + τ) = Rin(t) +

∑
i

MSSi · γi,t(τ) · W̃i,t(t + τ) , (9)

where

γi,t(τ) =

{
1 if τ ≥ τi,
0 otherwise.

If the condition given in Eqn. (7) is violated for any of theτi’s of Eqn. (8), the algorithm proactively marks
the oldest backlogged packet from flowj with

j = arg max{i | W̃i,t(t + τi) = Ŵi(t) + 1} , (10)

that is, the algorithm marks the flow with the largest congestion window that has not yet been marked (or
experienced a packet drop) during in its current round. As soon as the oldest backlogged flow-j packet is
marked,̃Wj,t(t + τj) is set toŴj(t)/2, and the condition of Eqn. (7) is reevaluated. The marking process is
repeated until Eqn. (7) does not hold for any of theτi’s, or all flows have one packet marked in the current
round.

3 Emulating the Reference Algorithm with a Scalable Heuristic

The per-flow information required by the algorithm presented in Section2 involves a significant amount of
overhead. We now present a heuristic approximation of the reference algorithm, which uses flow filtering
to reduce the number of tracked TCP flows, and employs linear interpolation to reduce the computational
complexity of the projection algorithm. Our goal is to design a heuristic algorithm that is deployable in an
edge or an access router.

3.1 Flow Filtering

As observed in measurement studies [2, 12, 13], only a small percentage of flows (“heavy-hitters”) accounts
for a large percentage of traffic. These heavy-hitters transmit at a high data rate due to (1) a large congestion
window, and (2) a relatively small round-trip time. From the description of the reference algorithm in
Section2, these are generally the only flows that marked by the reference algorithm. Thus, by limiting the
tracking algorithm to the heavy-hitters we expect that the reference algorithm can be closely approximated.

To identify the heavy-hitters, we use the serial multistage filter proposed in [9]. The objective of the
multistage filter is to identify, at any timet, the flows that have sent more thanM bytes during the time
interval(bt/∆c ·∆, t), whereM is a given threshold,∆ > 0 is a fixed time constant denoting the sampling
interval used for measurement. The serial multistage filter proposed in [9] works as follows. Every time

8

a packet arrives at the router, a hash function is applied to the source and destination IP addresses and
port numbers. Flows are then grouped into buckets depending on the value returned by the hash function.
Then, flows in the largest buckets are hashed by a second, independent, hash function and grouped into
second-level buckets. The same type of hashing operation is repeated a third time. Flows belonging to the
largest buckets after the third hash are recorded into memory. The authors of [9] showed that the serial
multistage filter minimizes false positives (i.e., only a few flows with a small sending rate are assumed to be
heavy-hitters) and avoids false negatives (i.e., all flows with a large sending rate are tracked).

We implement flow filtering as follows. We use two linked lists in the router’s memory,L1 for current
sampling, andL2 for flows previously recorded. Initially, bothL1 andL2 are empty. In the first sampling
interval, flows are added toL1 only if they pass the multistage filter, whileL2 remains empty. At time
t = ∆, L1 is copied intoL2 before being reset.5 The process is iterated every∆ seconds. At any timet, the
router updates the estimateŝRTT , Ŵ , andŝ for all flows inL1 andL2.

Only the flows inL2 are used for the projections, and therefore, the projection of Eqn. (9) always
underestimates the input curve. To alleviate this problem, at any timet, we introduce a correction factor,
ρ(t), whose value is updated att = k∆, wherek is a positive integer, with

ρ(t) =
Rin(t)−Rin((k − 1) ·∆)∑

i∈L2

(
Rin

i (t)−Rin
i ((k − 1) ·∆)

) ,

whereRin
i (t) denotes the amount of flow-i traffic received by the router by timet. That is, at any timet,

ρ(t) denotes the ratio of the total amount of traffic received by the router in the previous sampling interval
over the amount of traffic that was identified in the previous sampling interval. Note that we always have

ρ(t) ≥ 1 .

The caseρ(t) = 1 is an extreme case where all flows pass the filter during the previous sampling interval.
As an example, fort = 5.5 seconds, and∆ = 1 second, ifρ(t) = 1.1, we know that 90.9 % of all traffic
received by the router in the time interval(4 s, 5 s) has been identified. At any timet, the projection of the
input curve for the Class-n traffic aggregate,̃Rin

i,t is set equal to the sum of the projection of the input curves
of the flows inL2, multiplied by the correction factorρ(t), that is

R̃in
t (t + τ) = ρ(t) ·

∑
i∈L2

R̃in
i,t(t + τ) .

Remark:We note that the selection of the parameters∆ andM presents a trade-off between computational
overhead and accuracy of the algorithm. With a larger sampling interval∆, the updates to main memory,
L2, are performed less frequently, at the expense of using possibly obsolete data. With a larger value for
M , the number of recorded flows,X, remains small, but the accuracy of the projections may be poor. Thus,
we infer that bothM and∆ should be tuned according to the computational power available. In particular,
routers at high-speed access points, and a large number of flows, should be configured with relatively large
values forM and∆.

5This operation can be implemented efficiently by swapping the two pointers onL1 andL2, and resetting the pointer onL1.

9

l (
t+

)τ

1E
xc

es
s

T
ra

ff
ic

B
lim

Projected Arrivals
(reference algorithm)

Linear Interpolation
(heuristic)

Transmissions

t

tr
af

fi
c

timeτiit+max ()

Figure 2:Linear interpolation. In the heuristic, only the valuẽRin
t (t+maxi{τi}) is computed, and is used

to determine the excess traffic that will arrive at the router.

3.2 Linear Interpolation

Flow filtering limits the amount of state information recorded at the router, but does not alleviate the com-
putational overhead for constructing the projected input curve. We next describe a technique that reduces
the complexity of the projection of Eqn. (9).

First, instead of using individual values of the congestion windows of all recorded flows in the construc-
tion of the projected input curve, we consider that all recorded flows have a congestion window size (in
bytes) equal to the mean congestion window size (in bytes),Ω̄, given by

Ω̄(t) =
1
X

∑
i∈L2

MSSi · Ŵi(t) .

Since we perform flow filtering and ignore flows with small congestion windows, this approximation is
reasonably accurate.

Second, we use linear interpolation to reduce the complexity of the construction of the projected input
curve and illustrate our method in Figure2. Rather than constructing the whole projected input curve, only
the valueR̃in

t (t + maxi{τi}) is computed. Intermediary values̃Rin
t (t + τ) for 0 < τ < maxi{τi} are

approximated using a linear interpolation, based on the value obtained forR̃in
t (t + maxi{τi}). The reason

for selectingmaxi{τi} as the basis for the linear interpolation, instead of, for instance,mini{τi}, is that the
projection can take into account all recorded flows.

Next, Eqn. (7) tells us that

l1(t) = R̃in
t (t + max

i
{τi})−Rout(t)− C ·max

i
{τi} −Blim

10

is the amount by which the traffic must be reduced to prevent buffer overflows. Froml1(t) andΩ̄(t), the
algorithm can infer the number of flows that have to be marked, and only update the projected input curve
once, which reduces the worst-case complexity of the entire projection algorithm toO(1). If l1(t) > 0,
the marking process performs at mostO(Q) operations whereQ is the number of backlogged packets. The
worst-case occurs when all packets backlogged have to be marked at the same time. In practice however, we
only expect at most a couple of flows to be marked upon each packet arrival, since projections are performed
over short time intervals, which makes this heuristic efficient in practice.

4 Traffic Regulation with ECN Marking in Class-Based Service Architec-
tures

In this section, we build on the algorithms we described in Sections2 and3 to describe how ECN marking
can be used to support class-based service guarantees for TCP traffic. We consider a QoS architecture that
supports class-based service guarantees at each router (on a hop-by-hop basis). Traffic in the same class has
the same QoS requirements. We assume that there is no admission control and no signaling, and the only
method to control the traffic into a router is by dropping or by notifying TCP sources using ECN. Our goal
is to design a novel approach, solely relying on ECN, for traffic regulation in QoS networks.

We consider a router in the network with output link capacityC, and assume that each classn is trans-
mitted at timet with a service ratern(t), such that for anyt,

∑
n rn(t) = C, wherern(t) > 0 only if there

is a positive backlog of Class-n packets.
Let us introduce the “Class-n delay”, Dn(t), as the queueing delay experienced by the last Class-n

packet that has been transmitted before timet. Consider that a given classn is offered a bounddn on the
queueing delay of all packets in Classn, i.e., for all t, Dn(t) ≤ dn, and a guaranteed throughputµn such
that at all times Classn traffic is backlogged,rn(t) ≥ µn. Denoting byRin

n,∗(t) the Class-n input curve
(i.e., the total amount of Class-n traffic to have arrived by timet) and byRout

n,∗(t) the Class-n output curve,
following [6], a sufficient condition for all Class-n traffic to meet its delay and throughput guarantees at any
time t when Classn is backlogged is

rn(t) ≥ rmin
n (t) = max

{
µn,

Rin
n,∗(t)−Rout

n,∗(t)
dn −Dn(t)

}
.

Thus, at any timet, we need to have

∑
n

max

{
µn,

Rin
n,∗(t)−Rout

n,∗(t)
dn −Dn(t)

}
≤ C . (11)

If the condition of Eqn. (11) is violated, one can reduceRin
n,∗(t) by dropping traffic. Since our objective is

to avoid any traffic drops, we use the projections described earlier to ensure that theRin
n,∗(t)’s always satisfy

Eqn. (11).
Assuming the throughput guarantees are appropriately chosen, that is,∑

n

µn < C ,

11

we propose the following approach. At timet, in addition to the projections on the input curve of all flowsi

in Classn, R̃in
n,i,t(t + τ), which is given by Eqn. (6), and the class-n projected input curve, given by

R̃in
n,∗,t(t + τ) =

∑
i

R̃in
n,i,t(t + τ) .

We also project the Class-n output curve,R̃out
n,∗,t(τ) by

R̃out
n,∗,t(t + τ) = Rout

n,∗(t) + τ · rn(t) ,

whereτ > 0. If the rate allocationrn remains unchanged betweent andt+τ , this projection ofR̃out
n,∗,t(t+τ)

is exact. Since we only use the projection for small values ofτ (in the order of a round-trip time) we can
assume that the projection is reasonably accurate, even ifrn changes betweent andt + τ . Furthermore,
let us assume that the delay of Classn remains roughly constant during[t, t + τ]. With these projections
defined, we can project the minimum service ratesr̃min

n,t (t + τ) needed at timet + τ , so that all service
guarantees on throughputs and delays are met:

r̃min
n,t (t + τ) = max

{
µn,

R̃in
n,∗,t(t + τ)− R̃out

n,∗,t(t + τ)
dn −Dn(t)

}
.

To ensure that the set of service rates required for meeting service guarantees is always feasible, we must
enforce ∑

n

r̃min
n,t (t + τi) ≤ C , (12)

for all τi’s defined by Eqn. (8). If Eqn. (12) does not hold, the incoming traffic needs to be reduced. To that
effect, we propose to first identify the set of classes wherer̃min

n,t (t + τ) > µn, which are the classes where
decreasing the traffic arrivals has an effect on the minimum service rate required. Since

∑
n µn < C, we

know that there is at least one class in that set.
Once the classes whose traffic need to be throttled have been identified, the marking process is carried

out in the same manner as in the case of an impending buffer overflow, by merely replacing the condition
given in Eqn. (7) by the condition given in Eqn. (12).

5 Evaluation

In this section, we evaluate our proposed algorithms via simulation, using thens-2network simulator [1].
The evaluation has three objectives. First, we compare the performance of the reference and heuristic al-
gorithms. Second, we compare the performance of our proposed algorithms to state-of-the-art active queue
management algorithms. Third, we illustrate the potential of the proposed approach for traffic regulation in
class-based service architectures. To that effect, we propose two simulation experiments. The first experi-
ment evaluates the efficiency of the proposed approach with respect to buffer management, while the second
experiment evaluates the performance of the heuristic algorithm for traffic regulation when providing QoS
guarantees.

12

 5

 10

 15

 20

 10 20
 0

 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)
 30

(a) Drop-Tail

 5

 10

 15

 20

 10 20
 0

 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)
 30

(b) RED

 5

 10

 15

 20

 10 20
 0

 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)
 30

(c) PI w/ approximate tuning

 5

 10

 15

 20

 10 20
 0

 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)
 30

(d) PI w/ exact tuning

 5

 10

 15

 20

 10 20
 0

 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)
 30

(e) Reference algorithm

 5

 10

 15

 20

 10 20
 0

 40 50 60 70

L
os

s
R

at
e

(%
)

Simulation Time (s)
 30

(f) Heuristic algorithm

Figure 3: Loss rates. The figures compare the loss rates obtained with all six algorithms. Note that the
reference algorithm does not discard any traffic.

 2

 4

 6

 8

 10

 12

 10 20 40 50 60 70

A
gg

re
ga

te
 (

M
bp

s)

Simulation Time (s)

Throughput
Goodput

 30
 0

(a) Drop-Tail

 2

 4

 6

 8

 10

 12

 10 20 40 50 60 70

A
gg

re
ga

te
 (

M
bp

s)

Simulation Time (s)

Throughput
Goodput

 30
 0

(b) RED

 2

 4

 6

 8

 10

 12

 10 20 40 50 60 70

A
gg

re
ga

te
 (

M
bp

s)

Simulation Time (s)

Throughput
Goodput

 30
 0

(c) PI w/ approximate tuning

 2

 4

 6

 8

 10

 12

 10 20 40 50 60 70

A
gg

re
ga

te
 (

M
bp

s)

Simulation Time (s)

Throughput
Goodput

 30
 0

(d) PI w/ exact tuning

 2

 4

 6

 8

 10

 12

 10 20 40 50 60 70

A
gg

re
ga

te
 (

M
bp

s)

Simulation Time (s)

Throughput
Goodput

 30
 0

(e) Reference algorithm

 2

 4

 6

 8

 10

 12

 10 20 40 50 60 70

A
gg

re
ga

te
 (

M
bp

s)

Simulation Time (s)

Throughput
Goodput

 30
 0

(f) Heuristic algorithm

Figure 4: Measured throughput and goodput at the receivers. The figures compare the aggregate
throughput and goodput seen at the receivers with all six algorithms. All schemes are efficient at maxi-
mizing the utilization of the bottleneck link (10 Mbps). A perfectly tuned PI, and both the reference and
heuristic algorithm have a goodput (amount of traffic passed to the application layer at the destinations) al-
most equal to the throughput (total amount of traffic received at the destinations) by avoiding packet drops.

13

5.1 Experiment 1: Active Queue Management

In the first simulation experiment, we consider a bottleneck link with capacityC = 10 Mbps, and buffer size
of B = 150,000 bytes. All traffic at this single bottleneck link is TCP (NewReno), and is generated by 60
greedy FTP flows, and 180 on-off flows, aiming at emulating HTTP connections. The sources of the on-off
flows send on average 300 packets during an “on” period, and pause on average for one second between two
“on” periods. The actual number of packets sent and the wait time between two transmissions are exponen-
tially distributed. All packets have a size of 500 bytes. In the absence of queueing and transmission delays
in the network, the RTTs of all flows are independent identically distributed random variables uniformly
distributed between 24 ms and 180 ms, and to avoid synchronization effects, sources start transmitting at
different times, uniformly distributed between 0 s and 5 s. The experiment lasts for 70 seconds of simulated
time, and ECN is available in the entire network. We compare the performance of six different algorithms
at the router governing the bottleneck link:

• Drop-Tail. We use Drop-Tail to have an estimate of the loss rates encountered without active queue
management. With Drop-Tail, incoming packets are discarded only when the buffer is full.

• RED [18]. We use RED with thegentle variant [17], with a minimum thresholdminTH = 37,500
bytes, and a maximum thresholdmaxTH = 75,000 bytes. The parametermaxP is set to 0.1, and the
weight used in the computation of the average queue size is set towq = 0.002. While minTH and
maxTH are chosen so that traffic is dropped with a probability of one only if the buffer is full, other
parameters are the default RED parameters inns-2, and are therefore expected to cover a large range
of operating conditions. RED is instructed to use ECN when needed.

• PI [21] with approximate parameter tuning. To account for the uncertainty on estimates of the
RTTs and of the number of flows at router configuration time, we configure here the PI algorithm
with crude estimates of the RTTs and of the number of flows. That is, we use a lower bound on the
number of flows ofN = 50, and a maximum RTTR+ = 300 ms, with a sampling frequency of 160
Hz, yielding parameter values ofa = 0.2395e − 4 andb = 0.2388e − 4. The target queue length is
set toQref=100,000 bytes.

• PI with exact parameter tuning. We configure the PI algorithm with the exact RTTs and number
of flows we use in our simulation. In other words, we use a lower bound ofN = 60 on the number
of flows, and a tight upper bound on the round-trip timesR+ = 180 ms, with a sampling frequency
of 160 Hz, and geta = 1.643e − 4 andb = 1.628e − 4. The target queue lengthQref is set to
100,000 bytes. Note that such an exact parameter tuning is unrealistic in practice, since it imposes a
priori knowledge of the number of flows and of the round-trip times of the flows that will traverse the
router at router configuration time.

• Reference algorithm.This is the reference algorithm described in Section2. Results are obtained for
K = 10, α = 0.9. We achieved similar results with parameter settings in the range10 ≤ K < 100
and0.7 < α < 1, which tends to show that our proposed algorithm is relatively insensitive to the
parameter selection.

14

Max. buffer size

 100

 150

 200

 10 20 30

 50

 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

 0

Simulation Time (s)
 40

(a) Drop-Tail

min th = 37.5 KB

Max. buffer size

max th = 75 KB

 10 20 30 40 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

Simulation Time (s)

 150

 200

 100

 50

 0

(b) RED

Qref

Max. buffer size
 200

 10 20 30 40 50

 150

 100

Simulation Time (s)
 60 70

 50

Q
ue

ue
 L

en
gt

h
(K

B
)

 0

(c) PI w/ approximate tuning

Qref

Max. buffer size

 150

 200

 10 20 30 40 50

Q
ue

ue
 L

en
gt

h
(K

B
)

 100

Simulation Time (s)
 60 70

 50

 0

(d) PI w/ exact tuning

Max. buffer size

 100

 150

 200

 10 20 30

 50

 50 60 70
Q

ue
ue

 L
en

gt
h

(K
B

)
 0

Simulation Time (s)
 40

(e) Reference algorithm

Max. buffer size

 100

 150

 200

 10 20 30

 50

 50 60 70

Q
ue

ue
 L

en
gt

h
(K

B
)

 0

Simulation Time (s)
 40

(f) Heuristic algorithm

Figure 5:Queue lengths. The figures compare the queue lengths at the router for all six algorithms.

• Heuristic algorithm. This is the heuristic algorithm described in Section3. The multistage filter
consists of 3 stages of 8 buckets. The admission threshold is set toM =200,000 bits and∆ = 1 s.

For each algorithm, we monitor the loss rates over a sliding window of size 0.25 s, and present our results
in Fig. 3. We start monitoring at timet = 10 s to ignore transient effects linked to the fact the network is
initially empty. Fig.3(a) tells us that, without active queue management, one can expect loss rates in the
order of 12 %. Fig.3(b) and (c) show that RED with the default parameters, which turn out to be unsuitable
for the traffic mix at hand, and a crudely configured PI algorithm, drop almost as much traffic as Drop-Tail.
Conversely, a perfectly tuned PI algorithm manages to avoid most packet drops. The reference algorithm
completely avoids packet losses, and the heuristic rarely drops any packets. Thus, the heuristic algorithm
delivers results close to the reference algorithm.

Next, we monitor the aggregate throughput and goodput observed at the receivers, averaged over a
moving window of size 0.25 s and present our results in Fig.4. The throughput characterizes the total
amount of traffic received by the transport layer at the destination, while the goodput characterizes the
amount of traffic that is passed by the transport layer to the application layer. The main observation is
that all schemes manage to achieve an aggregate throughput roughly equal to the capacity of the bottleneck
link. Furthermore, we note that, by avoiding packet losses, an exactly tuned PI, and both the reference and
heuristic algorithms manage to achieve a goodput close to the throughput.

Last, we monitor the queue size, averaged over a moving window of size 0.25 s, and we present our re-
sults in Fig.5. Not surprisingly, the Drop-Tail queue is almost always full, which explains the relatively high
loss rates. RED manages to stabilize the queue length aroundmaxTH = 75,000 bytes. (This observation
coupled with the result presented in Fig.3 indicates that RED drops some packets proactively even when
ECN is available.) With an approximate tuning of the configuration parameters, PI does not manage to track
the desired queue lengthQref = 100,000 bytes, and instead, the queue is almost always full. Conversely,
a properly tuned PI algorithm manages to achieve the targetQref , albeit with some oscillations around the

15

Number of QoS Guarantees
Class on-off Delay Loss Throughput

flows Rate

1 5 ≤ 10 ms ≤ 1 % ≥ 5 Mbps

2 10 ≈ 1
4D3 ≈ 1

2p3 –

3 15 ≈ 1
4D4 ≈ 1

2p4 –

4 20 – – –

Table 1:Traffic mix and service guarantees.The second column indicates the number of on-off flows, and
in the third and fourth rows,pn denotes the loss rate of Classn over a busy period,Dn denotes the delay of
Classn.

Delay Bound

0
50 60 704030

20

40

60

80

100

C
la

ss
-1

 D
el

ay
s

(m
s)

20
Simulation Time (s)

10

(a) without traffic regulation

Delay Bound

0
50 60 704030

20

40

60

80

100

C
la

ss
-1

 D
el

ay
s

(m
s)

20
Simulation Time (s)

10

(b) with traffic regulation

Figure 6: Class-1 packet delays.Note that the number of violations is significantly lower with traffic
regulation, and the violations are much smaller in magnitude.

target value. While stabilizing the queue length is not the primary objective of our algorithms, the reference
algorithm manages to keep the queue length almost constant around 40,000 bytes. The heuristic algorithm
also keeps the queue length in the vicinity of 40,000 bytes, with oscillations of a magnitude comparable to
those of a well-configured PI controller. These oscillations are mostly due to the fact that the sampling inter-
val is set to 1 s, and are reduced for higher sampling frequencies, at the expense of a higher computational
overhead.

5.2 Experiment 2: Providing Service Guarantees

Next, we assess the effectiveness of our algorithms at regulating traffic for providing service guarantees. To
that effect, we run a second experiment, with a bottleneck link with capacityC = 45 Mbps, and a buffer
size ofB = 250, 000 bytes. All traffic at the bottleneck link is TCP (NewReno), and consists of 12 greedy
TCP flows, and 50 on-off TCP flows, following the same on-off pattern as in the first experiment. The RTTs
of all greedy TCP flows are equal to 44 ms, and the RTTs of the on-off flows, in the absence of propagation
and transmission delays, are uniformly distributed between 44 ms and 80 ms. All sources start transmitting
at timet = 0 for 70 seconds of simulated time, and ECN is available.

16

40
0

0.5

10

1.5

2

Simulation Time (s)

L
os

s
R

at
e

(%
) Class 4

Class 3
Class 2
Class 1

1

20 30 706050

(a) without traffic regulation

3010
0

0.5

1

1.5

2

Simulation Time (s)

L
os

s
R

at
e

(%
) Class 4

Class 3
Class 2
Class 1

20 70605040

(b) with traffic regulation

Figure 7:Loss rates.The traffic regulation algorithm prevents any traffic from being dropped.

We consider four classes of traffic, with the service guarantees and traffic mix described in Table1. In
addition to the on-off flows, each class contains three greedy TCP flows. We compare the performance of
two algorithms in this experiment. The first algorithm is the algorithm described in [6], which can provide
delay and loss guarantees to traffic classes, but does not regulate traffic. The second algorithm combines the
algorithm of [6] with the traffic regulation algorithm described in Section4 and the heuristic approximations
described in Section3, using a multistage filter of 3 stages of 8 buckets,∆ = 0.1 s,M = 200, 000 bits.

We plot the delays encountered by each Class-1 packet at the bottleneck link in Fig.6. Fig. 6(a) shows
that, given the traffic mix considered, about 11 % of all Class-1 packets exceed the delay bound of 10 ms,
with queueing delays going as high as 100 ms. This is due to the fact that, when a loss guarantee and a
delay bound conflict due to the absence of admission control, the algorithm of [6] gives precedence to the
loss guarantee and relaxes the delay bound. Conversely, Fig.6(b) shows that when the traffic regulation
algorithm we described in this paper is used, violations rarely happen (< 2 %), and the delay does not
exceed 20 ms.

Next, in Fig.7, we plot the loss rates averaged over the length of the current busy period. Fig.7(a) show
that all loss guarantees are respected, notably the 1 % bound on Class-1 losses. However, as we have seen
in Fig. 6(a), the loss rate bound is respected at the expense of the delay bound. Fig.7(b) shows that, with
the addition of the algorithm of Section4, no packets are lost, and therefore, the objective of completely
avoiding packet drops to meet service guarantees is met.

Finally, in Fig.8 we present the throughput obtained by each class at the bottleneck link. Fig.8(a) shows
that in the absence of traffic regulation, severe oscillations of the throughput can be observed. Worse, the
throughput bound on Class-1 is sometimes violated, due to the fact that there is not enough Class-1 traffic
present in the router. Fig.8(b) shows that traffic regulation stabilizes these oscillations in throughput, and
that the throughput guarantee on Class 1 is always respected. We also note that both algorithms manage to
achieve an aggregate throughput equal to the capacity of the bottleneck link, meaning that the stabilization
in the throughputs provided by the traffic regulation algorithm does not come at the expense of under-
utilization.

17

70

20

T
hr

ou
gh

pu
t (

M
bp

s)
Aggregate

Class 4
Class 3

60

Class 1

Simulation Time (s)

50

40

0

30

20

10

Class 2

10 30

80

40 706050

(a) without traffic regulation

2010
0

10

20

30

40

50

60

70

80

T
hr

ou
gh

pu
t (

M
bp

s)

Aggregate
Class 4
Class 3
Class 2
Class 1

Simulation Time (s)
30 5040 7060

(b) with traffic regulation

Figure 8:Per-class throughputs.Without traffic regulation, we observe oscillations and sporadic violations
of the Class-1 throughput guarantee. The traffic regulation algorithm stabilizes these oscillations and ensures
the throughput guarantees are respected.

6 Conclusions and Discussion

We investigated whether marking algorithms for ECN can be used for regulating traffic in the context of
class-based service architectures, while avoiding packet losses due to buffer overflows. To that effect, we
first described two packet marking algorithms for IP routers, which attempt to eliminate packet losses in
TCP flows. The proposed approach infers how traffic is sent by TCP sources, by tracking the window size
and RTT of large flows, and accordingly makes the marking decisions. We then showed how the proposed
algorithms can be used for traffic regulation in the context of QoS architectures, in lieu of traffic policing or
admission control. Experimental results illustrated the potential of the approach.

We note that the techniques used in the algorithms can be further improved by more accurate and robust
estimators of the RTT values, e.g., [25], and of the congestion window sizes. Another area for improvement
resides in the type of filter used in the heuristic algorithm. While the serial multistage filter [9] we use in
this paper appears to exhibit good performance, a follow-up work described in [10], indicates that parallel
multistage filters typically perform better than serial multistage filters, and are more amenable to mathemat-
ical analysis of their properties, such as probabilities of false negatives. Using a parallel multistage filter
could therefore open the door for an analytical evaluation of our proposed algorithms, and help quantify
the trade-offs in parameter selection. Furthermore, our current approach assumes TCP Reno or NewReno;
extending it to other flavors of TCP such as SACK or Vegas is left for future research. Last, the heuristic
algorithm proposed is probably efficient enough to be deployed at relatively low-speed links, such as the
links at the edges of the network, where the speed is in the order of a few hundred megabits per second,
but it is our belief that the proposed heuristic might still have a computational overhead too important to
consider deployment in core routers operating at speeds in the order of tens of gigabits per second. Hence,
further work is probably needed to propose heuristics that can also be deployed in the core of the network.

18

Acknowledgments

We wish to thank Cristian Estan for providing us with his implementation of the multistage filters used in
the heuristic algorithm.

References

[1] ns-2network simulator.http://www.isi.edu/nsnam/ns/ .

[2] Packet sizes and sequencing, May 2001.http://www.caida.org/outreach/resources/learn/

packetsizes .

[3] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC 2581, April 1999.

[4] S. Athuraliya, D. Lapsley, and S. Low. An enhanced random early marking algorithm for internet flow control.
In Proceedings of IEEE INFOCOM 2000, pages 1425–1434, Tel-Aviv, Israel, April 2000.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated services.
IETF RFC 2475, December 1998.

[6] N. Christin, J. Liebeherr, and T. F. Abdelzaher. A quantitative assured forwarding service. InProceedings of
IEEE INFOCOM 2002, volume 2, pages 864–873, New York, NY, June 2002.

[7] K. Claffy, G. Miller, and K. Thompson. The nature of the beast: recent traffic measurement from an Internet
backbone. InProceedings of INET ’98, Geneva, Switzerland, July 1998.

[8] C. Dovrolis and P. Ramanathan. A Case for Relative Differentiated Services and the Proportional Differentiation
Model. IEEE Networks, 13(5):26–34, September 1999. Special issue on Integrated and Differentiated Services
on the Internet.

[9] C. Estan and G. Varghese. New directions in traffic measurement and accounting. InProceedings of the 2001
ACM SIGCOMM Internet Measurement Workshop, pages 75–80, San Francisco, CA, November 2001.

[10] C. Estan and G. Varghese. New directions in traffic measurement and accounting. InProceedings of ACM
SIGCOMM ’02, pages 323–336, Pittsburgh, PA, August 2002.

[11] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno, and SACK TCP.ACM Computer Commu-
nications Review, 26(3):5–21, July 1996.

[12] W. Fang and L. Peterson. Inter-AS traffic patterns and their implications. InProceedings of IEEE GLOBECOM
’99, pages 1859–1868, Rio de Janeiro, Brazil, December 1999.

[13] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True. Deriving traffic demands for
operational IP networks: methodology and experience. InProceedings of ACM SIGCOMM ’00, pages 257–270,
Stockholm, Sweden, August 2000.

[14] W.-C. Feng, D. Kandlur, D. Saha, and K. Shin. Blue: A new class of active queue management algorithms.
Technical Report CSE-TR-387-99, University of Michigan, April 1999.

[15] W.-C. Feng, D. Kandlur, D. Saha, and K. Shin. Stochastic fair blue: a queue management algorithm for enforcing
fairness. InProceedings of IEEE INFOCOM 2001, volume 3, pages 1520–1529, Anchorage, AK, April 2001.

[16] W.-C. Feng, D. Saha, D. Kandlur, and K. Shin. A self-configuring RED gateway. InProceedings of IEEE
INFOCOM ’99, volume 3, pages 1320–1328, New York, NY, March 1999.

19

http://www.isi.edu/nsnam/ns/
http://www.caida.org/outreach/resources/learn/packetsizes
http://www.caida.org/outreach/resources/learn/packetsizes

[17] S. Floyd. Recommendation on using thegentle variant of RED, March 2000. Seehttp://www.icir.

org/floyd/red/gentle.html .

[18] S. Floyd and V. Jacobson. Random early detection for congestion avoidance.IEEE/ACM Transactions on
Networking, 1(4):397–413, July 1993.

[19] C. Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi. Packet-level traffic measurements from a tier-1 IP
backbone. Technical Report TR-01-ATL-110101, Sprint ATL, November 2001.

[20] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. A control-theoretic analysis of RED. InProceedings of IEEE
INFOCOM 2001, volume 3, pages 1510–1519, Anchorage, AK, April 2001.

[21] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. On designing improved controllers for AQM routers supporting
TCP flows. InProceedings of IEEE INFOCOM 2001, volume 3, pages 1726–1734, Anchorage, AK, April 2001.

[22] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara. ABE: providing low delay service within best effort.IEEE
Networks, 15(3):60–69, May 2001. See alsohttp://www.abeservice.org .

[23] V. Jacobson. Congestion avoidance and control. InProceedings of ACM SIGCOMM ’88, pages 314–329,
Stanford, CA, August 1988.

[24] V. Jacobson. Modified TCP congestion avoidance algorithm. Note sent to end2end-interest mailing list, April
1990. ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail .

[25] H. Jiang and C. Dovrolis. Passive estimation of TCP round-trip times.ACM Computer Communication Review,
pages 75–88, July 2002.

[26] D. Lin and R. Morris. Dynamics of random early detection. InProceedings of ACM SIGCOMM ’97, pages
127–137, Cannes, France, September 1997.

[27] V. Misra, W. Gong, and D. Towsley. A fluid-based analysis of a network of AQM routers supporting TCP flows
with an application to RED. InProceedings of ACM SIGCOMM 2000, pages 151–162, Stockholm, Sweden,
August 2000.

[28] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Barghavan. Delay differentiation and adaptation in core
stateless networks. InProceedings of IEEE INFOCOM 2000, pages 421–430, Tel-Aviv, Israel, April 2000.

[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple model and its empirical
validation.Proceedings of ACM SIGCOMM ’98, pages 303–314, August 1998.

[30] R. Pan, B. Prabhakar, and K. Psounis. CHOKe: A stateless active queue management scheme for approximating
fair bandwidth allocation. InProceedings of IEEE INFOCOM 2000, volume 2, pages 942–951, Tel-Aviv, Israel,
April 2000.

[31] V. Paxson. Automated packet trace analysis of TCP implementations. InProceedings of ACM SIGCOMM ’97,
pages 167–179, Cannes, France, August 1997.

[32] K. Ramakrishnan, S. Floyd, and D. Black. The addition of explicit congestion notification (ECN) to IP. IETF
RFC 3168, September 2001.

[33] W. R. Stevens.TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, Reading, MA, 1998.

20

http://www.icir.org/floyd/red/gentle.html
http://www.icir.org/floyd/red/gentle.html
http://www.abeservice.org
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

	Introduction
	A Reference Marking Algorithm for Avoiding Losses
	Projecting Traffic Arrivals to Prevent Losses
	Generalization to Multiple TCP Flows

	Emulating the Reference Algorithm with a Scalable Heuristic
	Flow Filtering
	Linear Interpolation

	Traffic Regulation with ECN Marking in Class-Based Service Architectures
	Evaluation
	Experiment 1: Active Queue Management
	Experiment 2: Providing Service Guarantees

	Conclusions and Discussion

