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Instructions 

• Type or neatly write the answers to the following problems. 
• Save or scan this file as a pdf and submit to Gradescope 

Exercises	

1. (1.5	pts)	For	each	of	the	following	Boolean	formulae	f1	and	f2,	write	a	truth	table	
that	shows	the	value	of	the	formula	for	each	possible	combination	of	assignments	to	
the	Boolean	variables	A,	B	and	C.	Use	1	for	True	and	0	for	False.	

a. f1	=	A	∧	(B	∨	C)	
b. f2	=	¬	A	∨	(¬	B	∧	¬	C)	
c. What	kind	of	a	relationship	do	you	observe	about	the	formulae	f1	and	f2	by	

looking	at	their	truth	tables,	in	particular,	at	columns	for	A,	B,	C,	f1,	and	f2?		

Hint:	Remember	how	we	create	truth	tables.	We	systematically	list	all	
possible	combinations	of	the	truth	values	for	the	variables	in	the	Boolean	
formula,	and	the	truth	values	of	expressions	involving	these	variables.	For	
example,	for	Part	a,	all	you	need	to	do	is	to	fill	in	the	table	below.		

A     B     C    (B ∨ C)    A ∧ (B ∨ C) 
--------------   -------    ------------ 
0     0     0 
0     0     1 
0     1     0 
0     1     1 
1     0     0 
1     0     1 
1     1     0 
1     1     1 
 
 
 
 
 
 
 
 
 
 
 



2. (2	pts)	The	laws	of	Boolean	Algebra,	presented	in	the	slides	for	the	lecture	on	
"Boolean	Logic,	Gates,	Combinational	Circuits,	Levels	of	Abstraction,"	can	be	used	to	
show	that	two	formulae	are	equivalent	by	transforming	one	into	the	other.	For	
example,	here	is	the	proof	that	A	∧	(B	∧	A)	is	equivalent	to	A	∧	B:	

Step    Formula Justification (Rule) 
1. A ∧ (B ∧ A)  
  Commutative 
2. A ∧ (A ∧ B)  
  Associative 
3. (A ∧ A) ∧ B      
  Idempotence 
4. A ∧ B  

The	commutative	rule	lets	us	switch	the	order	of	two	terms,	while	the	associative	
rule	lets	us	move	parentheses	around	(or	add	or	remove	them)	when	the	
connectives	are	all	the	same.	The	above	table	shows	that	step	2	was	derived	from	
step	1	via	the	commutative	rule,	step	3	was	derived	from	step	2	via	the	associative	
rule,	and	step	4	was	derived	from	step	3	via	the	idempotence	rule.	

We	can	also	use	DeMorgan's	Law	to	transform	expressions	(as	in	lecture).	Here	is	
the	proof	that	¬	(A	∧	(B	∨	C))	is	equivalent	to	¬	A	∨	(¬	B	∧	¬	C):	

Step    Formula Justification (Rule) 
1. ¬ (A ∧ (B ∨ C))  
  DeMorgan's Law 
2. ¬ A ∨ ¬ (B ∨ C)      
  DeMorgan's Law 
3. ¬ A ∨ (¬ B ∧ ¬ C)  

a. How	can	you	explain	your	answer	to	1.c.	in	terms	of	De	Morgan's	Law?	Hint:	
See	the	derivation	above.	
	
	
	
	
	
	
	
	
	
	



b. The	formula	f1	from	Problem	1	represents	a	Boolean	function.	Draw	the	
combinational	circuit	that	can	compute	f1	using	AND,	OR	and	NOT	gates.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	

c. Draw	a	combinational	circuit	that	computes	the	equivalent	of	the	Boolean	
function	f2	that	uses	a	single	AND,	a	single	OR	and	a	single	NOT	gate.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

d. How	could	you	realize	the	expression	¬	(A	∧	¬	(B	∧	C))	using	only	NAND	
gates	and	no	other	type	of	gate?	
	
	
	
	
	
	
	
	
	
	
	
	



3. (2.5	pts)	Let	ABCD	represent	a	4-bit	binary-coded	decimal	number.	For	example,	the	
decimal	number	2	would	be	represented	by	the	binary	number	0010,	which	is	
expressed	by	letting	A	=	0,	B	=	0,	C	=	1	and	D	=	0.	

A	seven-segment	display	can	be	used	to	form	each	of	the	ten	decimal	digits	as	shown	
below.	

	

We	can	define	a	circuit	abstractly	below	that	requires	four	Boolean	inputs	A,	B,	C,	
and	D,	and	produces	seven	Boolean	outputs	s1,	s2,	...,	s7	to	make	the	segments	of	the	
display	form	digits:	

	

A	segment	si	is	lit	if	si	is	1	(True)	and	not	lit	if	si	is	0	(False).	

a. Derive	a	Boolean	formula	for	s7	that	is	True	(1)	if	and	only	if	segment	s7	is	lit.		

Your	answer	should	be	of	the	following	form:	



s7	=	(________)	∨	(________)	∨	(________)	∨	...	

where	each	missing	section	is	a	Boolean	expression	with	all	4	input	variables	
that	is	True	when	ABCD	represents	a	decimal	digit	that	results	in	the	
segment	s7	of	the	display	being	lit.	To	help	you	get	started,	the	digit	0	(binary	
0000)	will	light	segment	s7,	so	the	first	expression	in	the	formula	above	
would	be	

(¬A	∧	¬B	∧	¬C	∧	¬D)	

since	s7	would	be	True	(i.e.	1)	if	A	=	0,	B	=	0,	C	=	0,	and	D	=	0.	You	will	need	to	
find	all	of	the	other	missing	expressions	for	s7.		Hint:	Consider	all	the	digits	
for	which	s7	would	be	lit.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b. Derive	a	simple	Boolean	expression	for	s6	that	is	True	(i.e.	1)	if	and	only	if	the	
segment	s6	is	lit.	(HINT:	Segment	s6	is	lit	for	all	digits	except	when	the	digit	is	
the	number	2.)	
	
	
	
	
	
	
	
	
	
	
	
	



4. (2	pts)	Draw	a	circuit	using	2	full	adders	that	adds	two	two-bit	binary	values.	The	
slides	from	lecture	show	a	full	adder	for	adding	2	one-bit	binary	values	A	and	B.	
Using	that	circuit	as	a	basis	build	a	circuit	to	add	two	two-bit	values	A1	A2	and	B1	
B2:	A2	will	be	added	to	B2	(possibly	with	a	carry)	and	then	A1,	B1,	and	the	carry	(if	
it	exists)	will	be	added	to	get	the	result.	Your	solution	should	show	the	actual	
circuitry	in	terms	of	gates,	such	as	the	one	on	Slide	with	title	"Full	Adder	(FA)".		

	 	



5. (2	pt)		
a. A	word	size	is	characteristic	to	a	given	computer	architecture.	It	denotes	the	

number	of	digits	that	a	CPU	can	process	at	one	time.	Modern	processors,	
usually	have	a	word	size	of	8,	16,	24,	32	or	64	bits;	most	current	general	
purpose	computers	use	32	or	64	bits.	The	word	size	of	a	modern	computer	
typically	also	describes	the	size	of	the	address	space	on	that	computer.	For	
example,	a	computer	that	is	said	to	be	"32-bit"	usually	allows	32-bit	memory	
addresses.		

What	is	the	largest	amount	of	memory	in	gigabytes	that	can	be	directly	
addressable	in	a	32-bit	architecture?	Assume	that	the	architecture	supports	
byte-addressable	memory	where	each	addressable	location	corresponds	to	
one	byte	of	memory.		
	
	
	
	
	
	
	
	
	
	

b. What	does	it	mean	for	a	programming	language	to	be	high-level?	In	
answering	this	question	you	may	use	external	resources.	However,	your	
answer	should	be	given	in	your	own	words	and	any	references	you	use	
should	be	cited.	

 


