
15110 Summer 2018 
Problem Set 5 
 
Name: ________________________________________________ 
 
Andrew ID: ____________________________________________ 
 
Instructions 

• Type or neatly write the answers to the following problems. 
• Save or scan this file as a pdf and submit to Gradescope 

Exercises	

1. [2	points]	You	are	given	the	following	recursive	function	in	Python:	

def f(n): 
    if n % 3 == 0 or n < 3: 
        return n * (n - 1) 
    else: 
        return f(n // 2) + f(n - 2) 

Trace	the	computation	of	f(11)	by	drawing	a	recursion	tree	(like	the	one	for	
Fibonacci	numbers	on	the	slides	for	Lecture	9),	showing	all	of	the	recursive	calls	
that	need	to	be	computed	to	find	the	value	for	f(11).	Then	using	your	recursion	
tree,	compute	the	value	of	f(11).	We've	started	the	tree	for	you	below:	

	
	
	
	
	
	
	
	
	
	



2. [2	points]	This	question	is	about	simple	recursions	on	lists.	We	saw	in	class	that	a	
standard	way	of	splitting	a	list	items	is	into	its	"head",	using	items[0],	and	its	"tail",	
using	items[1:]	

a. In	general,	if	a	is	a	list	of	numbers,	what	does	g(a)	return?	

def g(a): 
    if a == []: 
        return 0 
    else: 
        return a[0] + g(a[1:]) 
 
 
 
 
 
 
 

b. We	can	split	a	list	up	in	other	ways,	too.	In	Python,	you	can	use	negative	
index	values	when	accessing	list	elements.	These	count	backwards	from	the	
end	of	a	list	with	-1	being	an	index	for	the	last	element	in	an	array.	The	range	
notation	for	"slicing"	lists	can	also	use	negative	elements	or	a	mix	of	positive	
and	negative	elements.	For	example:	

>>> a = ['v', 'w', 'x', 'y', 'z'] 
>>> a[-1] 
'z' 
>>> a[-2] 
'y' 
>>> a[-3] 
'x' 
>>> a[-3:] 
['x', 'y', 'z'] 
>>> a[-3,-1] 
['x','y'] 
>>> a[:-1] 
['v','w', 'x','y'] 

Consider	the	following	Python	function.	Given	a	list	of	numbers	a,	what	
does	h(a)	return?	You	may	find	it	useful	to	trace	what	it	does	for	a	particular	
input.	

def h(a): 
    if  a == []: 
        return 0 
    else: 
        return a[-1] + h(a[:-1]) 
 
 
 
 



3. For	this	question	you	will	work	with	a	recursive	implementation	of	the	binary	
search	algorithm.	

a. [2	points]	Do	you	believe	that	the	recursive	binary	search	algorithm	we	saw	
in	class	works	in	all	cases?	What	about	"edge	cases",	such	as	a	key	that	
precedes	the	first	element	in	the	list	or	follows	the	last	element?	What	if	the	
integer	division	(lower + upper) // 2	causes	problems	when	the	list	has	an	
even	number	of	elements?	For	this	problem	you	will	investigate	this	
question.	To	help	you,	here	is	the	Python	code	from	lecture:	

# main function 
def bsearch(items, key): 
    return bs_helper(items, key, -1, len(items)) 
 
# recursive helper function 
def bs_helper(items, key, lower, upper): 
    if lower + 1 == upper: # Base case: empty 
        return None 
    mid = (lower + upper) // 2 # Recursive case 
    if key == items[mid]:     
        return mid  
    if key < items[mid]:          # Go left 
        return bs_helper(items, key, lower, mid) 
    else:                                # Go right 
        return bs_helper(items, key, mid, upper) 

One	way	to	convince	yourself	that	the	algorithm	works	is	to	show	that	every	
possible	position	in	the	ordered	list,	including	both	the	values	themselves	
(when	the	key	is	found)	and	the	positions	between	values	(when	the	key	is	
not	found	and	the	binary	search	should	return	None),	can	be	derived	by	
following	the	algorithm	for	updating	mid,	lower,	and	upper.	To	do	this,	we're	
going	to	construct	a	complete	binary	search	tree.	First	we	introduce	some	
notation	for	depicting	nodes	in	the	search	tree.	Each	node	corresponds	either	
to	a	value	in	the	list	being	searched,	or	to	a	base	case	where	the	search	would	
fail.	The	X	on	the	left	below	illustrates	the	first	case,	and	the	None	on	the	
right	below	illustrates	the	second	case:	
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The	above	nodes	are	generated	by	starting	with	the	lower	and	upper	values.	
If	lower+1	is	less	than	upper,	then	we	compute	mid,	and	compare	the	key	
against	that	element	of	the	list,	e.g.,	the	value	X	as	shown	above.	If	they	match	
we	return	mid,	otherwise	we	take	either	the	left	or	right	branch.	But	
if	lower+1	is	equal	to	instead	of	less	than	upper,	then	we	stop	and	
return	None,	as	in	the	node	on	the	right.	



We	have	started	the	binary	search	tree	diagram	below.	You	will	complete	it	
by	filling	in	the	numbers	as	appropriate	for	each	node,	showing	that	every	
node	can	be	reached	by	the	search	function,	and	proving	that	if	a	key	is	in	the	
list,	the	algorithm	will	find	it.	

In	the	diagram	below,	we've	filled	in	the	numeric	values	for	three	of	the	
nodes	for	the	case	where	the	key	is	"Aardvark".	The	binary	search	always	
begins	with	lower	=	-1	and	upper	=	5,	giving	mid	=	2,	which	puts	us	at	
"Charlie".	So	all	searches	of	this	list	start	at	"Charlie".	If	the	key	is	less	than	
this	value,	the	algorithm	tells	us	to	set	upper	equal	to	mid,	so	we	have	upper	=	
2	and	lower	=	-1,	which	gives	mid	=	0,	taking	us	to	node	"Alpha",	as	shown.	If	
we	go	left	from	"Alpha"	(because	the	key	is	less	than	"Alpha"),	the	next	node	
has	upper	=	0	and	lower	=	-1.	Since	now	lower+1	=	upper,	the	algorithm	
returns	None,	making	this	node	a	terminal	(leaf)	node.	Complet	the	tree	by	
following	the	algorithm	to	fill	in	all	the	missing	values,	so	that	every	node	has	
either	two	or	three	numbers	written	next	to	it.	For	example,	you	might	
choose	a	key	of	"Bravo"	and	see	how	the	algorithm	gets	to	that	node.	Then	
choose	a	key	of	"Banana"	and	see	at	which	leaf	node	the	algorithm	ends.	And	
so	on.	Include	your	complete	annotated	tree	in	the	pages	you	hand	in.	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
items = ["Alpha", "Bravo", "Charlie", "Delta", "Echo"]	

	
	
	
	
	
	

b. [1	point]	Suppose	that	you	have	a	"budget"	of	5	key	comparisons	for	
searching	for	a	key	in	a	sorted	list.	That	is,	your	search	would	terminate	after	
comparing	the	key	to	at	most	5	list	elements.	With	this	budget,	what	is	the	
size	of	the	largest	sorted	list	that	you	could	search	using	binary	search?	
(Note:	"key	comparison"	refers	only	to	comparisons	involving	the	key	being	
searched	for.)	
	
	
	
	
	
	
	
	
	
	
	
	



4. [1	point]	This	question	concerns	Mergesort.	

Show	how	the	merge	step	would	behave	by	completing	the	trace	below.	Add	a	line	
to	the	trace	for	each	element	that	is	placed	in	the	output,	crossing	the	element	off	
the	input	as	shown.	

First half Second half Output list 

4, 18, 20, 55, 87, 90 1, 25, 27, 44, 88   

4, 18, 20, 55, 87, 90  1, 25, 27, 44, 88  1 
 
 
 
 
 
 
 
 
 
 
 

5. [2	points]	Quicksort	is	another	algorithm	for	sorting	data;	there	are	many	minor	
variations	of	it.	We'll	consider	a	particular	version	of	Quicksort	where	we	call	the	
first	element	of	the	list	the	pivot.	We	compare	all	of	the	other	elements	in	the	list	to	
the	pivot;	all	of	those	that	are	less	than	the	pivot	go	into	one	list	and	all	of	those	that	
are	greater	than	or	equal	to	the	pivot	go	into	a	second	list.	Then	we	sort	these	two	
sublists	(recursively).	The	final	sorted	list	is	the	first	sorted	sublist	followed	by	the	
pivot	followed	by	the	second	sorted	sublist.	

For	example,	if	we	want	to	sort	the	list	

list = [56, 42, 82, 75, 18, 58, 27, 61, 84, 41, 21, 15, 71, 90, 33] 

we	create	two	lists,	separating	the	elements	based	on	the	pivot	56:	

list1 = [42, 18, 27, 41, 21, 15, 33] 
list2 = [82, 75, 58, 61, 84, 71, 90] 

Each	sublist	is	sorted	recursively	(final	results	shown	for	each	sublist):	

list1 = [15, 18, 21, 27, 33, 41, 42] 
list2 = [58, 61, 71, 75, 82, 84, 90] 

and	the	final	result	is	

[15, 18, 21, 27, 33, 41, 42] + [56] + [58, 61, 71, 75, 82, 84, 90] 
=> [15, 18, 21, 27, 33, 41, 42, 56, 58, 61, 71, 75, 82, 84, 90] 



a. Suppose	we	apply	Quicksort	to	the	list	[47, 55, 50, 20, 18, 47, 17, 25, 
17].	Show	the	two	(unsorted)	sublists	that	result	from	splitting	based	on	the	
pivot.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b. For	the	best	performance	of	Quicksort,	would	we	rather	have	the	two	sublists	
of	equal	length,	or	would	we	rather	have	one	be	very	short	and	the	other	
very	long?	Explain	briefly.	

 


