
15110 Summer 2018
Problem Set 3

Name: __

Andrew ID: __

Instructions

• Type or neatly write the answers to the following problems.
• Save or scan this file as a pdf and submit to Gradescope

Exercises

1. [2	points]	Program	Logic	

The	following	Python	function	prints	out	the	heart	disease	risk	for	a	person	based	
on	age	and	body	mass	index	(BMI).	

def heart_risk(age, bmi):
 if age < 45:
 if bmi < 22:
 risk = "low"
 else:
 risk = "medium"
 else:
 if bmi < 22:
 risk = "medium"
 else:
 risk = "high"
 print(risk)

a. What	would	the	function	print	for	a	45	year	old	person	with	a	bmi	of	25?		

	

b. Find	a	pair	of	age	and	bmi	values	such	that	the	function	would	print	"low"?

	
c. Draw	a	flowchart	that	shows	the	flow	of	control	through	the	various	

conditions	in	the	function.	You	can	use	lecture	slides	as	a	reference.		
	
	
	
	
	
	
	

d. Suppose	that	the	writer	of	the	code	made	an	indentation	error	and	wrote	the	
code	as	follows: 	

def heart_risk(age, bmi):
 if age < 45:
 if bmi < 22:
 risk = "low"
 else:
 risk = "medium"
 else:
 if bmi < 22:
 risk = "medium"
 else:
 risk = "high"
 print(risk)

What	would	the	function	print	for	a	45	year	old	person	with	a	bmi	of	21	in	
this	case?	
	
	

2. [2	pts]	Revisit	the	function	sum(n) from	the	Lecture	Notes	
a. Write	a	Python	function	sum2(lst) by	modifying	sum(n) so	that	it	takes	a	

list	of	integers	as	an	input,	as	opposed	to	an	integer	n, and	returns	the	sum	
of	the	numbers	in	the	input	list.	Your	for loop	should	iterate	over	list	
indices	produced	by	range.

	
b. Note	that	we	have	learned	that	a	for statement	can	be	used	to	iterate	over	

any	sequence	of	values,	not	only	those	produced	by	a	range. Write	an	
alternative	version	of	your	function	called	sum3(lst) from	part	a	that	uses	
a	for loop	but	does	not	use	range.

	
c. Now,	write	a	function	sum4(lst) that	uses	a	while	loop	to	add	the	all	the	

values	in	the	input	list.	
	
	
	

3. [2	points]	Consider	the	following	function	that	finds	the	minimum	of	integers	given	
in	a	list.	

def findmin(lst):
 min_num = lst[0]
 i = 1
 while i < len(lst):
 if lst[i] < min_num:
 min_num = lst[i]
 i = i + 1
 return min_num

a. Show	how	this	function	computes	findmin([7,4,6,-1,4,19])	by	creating	a	
table	that	shows	the	values	of	each	variable	at	the	end	of	each	iteration	of	the	
loop.	We	have	started	the	table	for	you.	The	first	line	shows	the	initial	values	
of	the	variables	before	the	first	iteration	of	the	loop.	The	second	line	shows	
the	values	of	the	variables	after	the	first	iteration	of	the	loop.	

=====================================
 list min_num i
=====================================
 [7,4,6,-1,4,19] 7 1
 [7,4,6,-1,4,19] 4 2

=====================================

b. What	happens	if	we	call	this	function	with	the	empty	list	as	its	argument?	
Why?	
	
	
	
	
	
	

c. What	happens	if	we	remove	the	assignment	statement	i = i + 1?	Why?	
	
	
	
	
	
	
	

d. Suppose	that	we	want	the	function	to	return	the	position(index)	of	the	
minimum	element	in	the	list.	For	example,	the	position	of	the	minimum	
element	in	the	list	[7,4,6,-1,4,19]	is	3.	What	simple	change	in	the	code	would	
make	the	function	return	what	we	want?	
	
	
	
	
	
	
	
	

4. [2	points]		
a. Suppose	that	you	are	given	the	following	Python	code.	Describe	what	the	

function	below	computes	and	displays	on	screen?		

def table1(n):
 for i in range(1, n + 1):
 row = []
 for j in range(1, n + 1):
 row.append(i*j)
 print(row)
 return None

b. Consider	the	following	variant	of	the	above	function.	What	does	it	compute	
and	display	on	screen?	Suppose	that	it	is	called	by	using	100	for	m. For	what	
input	value	n would	the	statement	row.append(i*j) end	up	being	executed	
100	thousand	times?		

def table2(m, n):
 for i in range(1, m + 1):
 row = []
 for j in range(1, n + 1):
 row.append(i*j)
 print(row)
 return None

5. [2	points]	Recall	the	implementation	of	the	Sieve	of	Eratosthenes	that	we	discussed	
in	class		

a. How	would	you	modify	the	function	sieve(n) to	return	the	number	of	
primes	less	than	or	equal	to	n?	That	is,	the	function	must	now	return	how	
many	primes	there	are	that	are	less	than	or	equal	to	n.	
	
	
	
	
	
	
	
	
	

b. How	would	you	modify	the	function	sieve(n) to	return	the	largest	prime	
less	than	or	equal	to	n?	
	
	
	
	
	
	
	
	
	

Hint:	If	you	understand	how	sieve(n) works	and	what	it	returns,	it	should	be	easy	to	answer	
the	questions	above.	The	answers	require	only	minor	modifications	to	the	existing	function.		

c. The	function	below	is	an	incorrect	implementation	for	the	sift	operation.	
Explain	why	it	does	not	really	do	what	is	stated	in	the	comment	right	after	
the	function	name.	Hint:	Think	about	the	effect	of	the	remove method	on	a	list.	

def sift_wrong(lst,k):
 # eliminates multiples of k
 for i in range(0,len(lst)):
 if lst[i] % k == 0:
 lst.remove(lst[i])

return lst

