
15110 Summer 2018
Problem Set 4

Name: __

Andrew ID: __

Instructions

• Type or neatly write the answers to the following problems.
• Save or scan this file as a pdf and submit to Gradescope

Exercises	

1. 	

	
	

	

	

	
	

2. 	(1.5	points)	For	this	question	you	will	work	with	linear	search	algorithms.	Below	is	
a	version	of	linear	search	in	Python	using	a	while	loop.	

def linear_search(items, key):
 length = len(items)
 i = 0
 while i < length and items[i] != key:
 i = i + 1
 if i >= length:
 return None
 else:
 return i

a. Consider	the	instrumented	version	of	the	function	linear_search above,	
called	linear_search2(items, key).	(This	is	called	"instrumented"	because	
counting	the	number	of	iterations	and	printing	the	result	is	analagous	to	
inserting	measuring	instruments	into	a	machine	in	order	to	get	information	
about	its	functioning.)	

def linear_search_2(items, key):
 num_iterations = 0
 length = len(items)
 i = 0
 while i < length and items[i] != key:
 num_iterations = num_iterations + 1
 i = i + 1
 print("Number of iterations: ", num_iterations)
 if i >= length:
 return None
 else:
 return i

Given	the	same	inputs,	which	linear	search	function	will	consume	more	time?	
Does	this	change	alter	the	asymptotic	time	complexity	in	terms	of	big	O?	
Why	or	why	not?	
	
	
	
	
	
	
	
	
	
	
	
	
	

b. Suppose	that	we	know	the	additional	fact	that	the	list	is	sorted	in	ascending	
order.	For	example,	if	our	list	has	the	values:	

[1, 8, 20, 23, 39, 45, 56, 80, 90]

then	if	we	want	to	search	for	the	key	40	using	linear	search,	we	can	stop	
when	we	reach	45	and	return	None because	40	cannot	occur	after	45	in	a	
sorted	list.	

Here	is	a	revised	version	of	linear_search	that	returns	None immediately	as	
soon	as	it	can	be	determined	that	the	key	cannot	be	in	the	list,	assuming	that	
the	list	is	sorted	in	ascending	(increasing)	order.	

def sorted_linear_search(items, key):
 length = len(items)
 i = 0
 while i < length and items[i] < key:
 i = i + 1
 if i >= length or items[i] > key:
 return None
 else:
 return i

Suppose	that	you	call	the	sorted_linear_search	function	on	four	different	
lists	with	lengths	4,	10,	14,	and	18	where	the	key	is	larger	than	all	the	
elements	of	the	lists.	For	example:	

>>> sorted_linear_search([2, 7, 10, 13], 100)
>>> sorted_linear_search([2, 7, 10, 13, 14, 15, 16, 23, 32, 35],
100)
>>> sorted_linear_search([2, 7, 10, 13, 14, 15, 16, 23, 32, 35,
40, 57, 61, 65], 100)
>>> sorted_linear_search([2, 7, 10, 13, 14, 15, 16, 23, 32, 35,
40, 57, 61, 65, 70, 71, 75, 89], 100)

Plot	a	graph	so	that	the	x	axis	of	your	graph	shows	the	number	of	items	in	the	
list	and	the	y	axis	shows	the	number	of	iterations	that	your	function	makes.	
That	is,	you	need	to	have	four	points	in	your	graph	whose	x	coordinates	are	
4,	10,	14,	and	18	respectively.	Do	you	observe	a	straight	line	or	a	curve?		
	
	
	
	
	
	
	

c. In	general,	if	the	list	has	n	elements,	what	is	the	number	of	iterations	that	
would	be	made	in	the	worst	case	for	sorted_linear_search?	Express	your	
answer	using	big	O	notation	and	explain	your	reasoning.	
	
	
	
	
	
	
	
	
	
	
	
	

3. (4	points)	We	can	apply	a	powerful	design	idea	called	Divide-and-Conquer	to	the	
problem	of	searching	a	sorted	list,	using	an	algorithm	called	binary	search.	The	basic	
idea	is	to	find	the	middle	element.	Then,	if	that	is	not	the	key,	you	search	either	the	
first	half	of	the	list	or	the	second	half	of	the	list,	depending	on	the	half	that	could	
contain	the	key.	The	process	is	repeated	until	we	either	find	the	key	or	we	run	out	of	
elements	to	examine.	

Here	is	an	implementation	of	binary	search	in	Python	using	iteration	(later	in	the	
class	you'll	work	with	another	version	using	recursion):	

def bsearch(items, key):
 min = 0
 max = len(items) - 1
 while min <= max:
 mid = (min + max) // 2
 if items[mid] == key:
 return mid
 if key > items[mid]:
 min = mid + 1
 else:
 max = mid - 1
 return None

Let	items = ["Anna", "Dan", "Ella", "Finn", "Gina", "Ivan", "Karen",
"Luke", "Mary", "Nadia", "Oliver", "Perry", "Russell", "Tom", "Ziv"].	

a. Trace	the	function	above	for	each	of	the	function	calls	shown	below,	showing	
the	values	of	min	and	max	after	each	iteration	of	the	while	loop	is	completed.	
Also	write	down	the	value	returned	by	the	function.	We	have	started	the	
trace	with	the	initial	values	of	min	and	max:	

bsearch(items, "Nadia")			

min max

 0 14

	
	
	
	
	
	
	
	
	

bsearch(items, "Dan")	

min max

 0 14

	
	
	
	
	
	
	
	
	

bsearch(items, "Indira")	

min max

 0 14

	
	
	
	
	
	

b. Suppose	that	you	call	the	bsearch	function	on	four	different	sorted	lists	with	
lengths	4,	10,	14,	and	18	where	the	key	you	are	looking	for	is	larger	than	any	
element	in	the	lists.	(Example:	bsearch(["Aung", "Ben", "Drew",
"Eileen", "Felicia", "Niki"], "Norbert"))	

Plot	a	graph	so	that	the	x	axis	of	your	graph	shows	the	number	of	items	in	the	
list	and	the	y	axis	shows	the	number	of	iterations	that	your	function	makes.	
That	is,	you	need	to	have	four	points	in	your	graph	whose	x	coordinates	are	
4,	10,	14,	and	18	respectively.	Do	you	observe	a	straight	line	or	a	curve?	Is	
the	growth	rate	you	see	here	faster	or	slower	than	the	one	you	saw	in	
question	2(b)?	
	
	
	
	

c. Using	linear_search_2	(above)	as	a	model,	instrument	
the	sorted_linear_search	and	bsearch	functions	we	gave	you	above	and	
run	them	on	lists	of	length	10,000	and	100,000	items,	searching	for	keys	that	
are	larger	than	any	key	in	the	lists.	You	can	easily	generate	a	list	of	100,000	
numbers	using	the	following:	

>>> nums = list(range(100000))

How	many	iterations	did	each	function	perform	for	each	search?	
	
	
	
	

d. Which	of	the	two	search	algorithms,	linear	or	binary	search,	do	you	think	
should	be	used	to	search	a	very	large	sorted	list,	for	instance,	a	list	of	the	
names	of	all	citizens	of	the	US.	Explain	your	choice.	We	don't	expect	you	to	
analyze	the	binary	search	algorithm's	big	O	complexity	measure,	but	
compare	the	experiments	you	made	and	extrapolate	from	what	you	see.	
	
	
	
	
	
	
	
	
	
	

4. (2	points)	Suppose	the	National	Security	Agency	has	obtained	an	unsorted	list	of	
phone	calls	made	in	the	U.S.	in	the	past	year	(so	there	are	a	lot	of	them.)	Jane	Analyst	
has	the	task	of	working	with	this	data,	but	she	is	unethical,	and	would	like	to	
expunge	the	record	of	a	particular	phone	call	she	made	before	doing	the	analysis	
and	writing	her	reports.	Let's	call	the	list	call_records.		

a. Which	one	of	the	search	functions	discussed	in	this	homework	should	Jane	
use	to	look	for	her	call	in	the	list	call_records?	Why?	
	
	
	
	
	
	
	
	

b. Suppose	that	Jane	has	another	unsorted	list,	called	ATT_call_records,	of	
calls	originated	by	customers	of	ATT..	There	are	about	two	million	calls	on	
this	list,	and	about	eight	million	on	the	list	call_records.	If	she	sorts	each	list	
using	insertion	sort,	and	it	takes	30	seconds	to	sort	ATT_call_records,	about	
how	long	would	you	expect	it	to	take	to	sort	call_records?	Use	whole	
numbers,	we	just	want	an	approximation.	Explain	your	answer.	
	
	
	
	
	
	
	
	
	
	
	

c. Would	it	make	sense	for	Jane	to	sort	these	lists	using	insertion	sort	before	
searching	them	for	her	call?	Why	or	why	not?		
	
	
	
	
	
	
	
	
	
	
	

d. What	if	Jane	is	really,	really	unethical,	and	wants	to	offer	a	service	where	she	
will	expunge	anyone's	call	for	a	fee?	Should	she	sort	the	lists	using	insertion	
sort	before	searching	them?	Why	or	why	not?	

