
Exam 2 Review

Data Organization

Hashing
• A “hash function” h(key)that maps a key to an array index in 0..k-1.
• To search the array table for that key, look in table[h(key)]

key1

key2
key3

Universe of keys
h(key1) = 0:

h(key2) = 5:

h(key3) = 4:

1:

2:

3:

A hash function h is used to map keys to hash-table (array) slots. Table is an
array bounded in size. The size of the universe for keys may be larger than the
array size. We call the table slots buckets.

Example: Hash function

• Suppose we have (key,value) pairs where the key is a string such as (name, phone
number) pairs and we want to store these key value pairs in an array.

• We could pick the array position where each string is stored based on the first
letter of the string using this hash function:

def h(str):
return (ord(str[0]) – 65) % 6

4

Note ord(‘A’) = 65

Add Element “Graham”

5

0:

1:

2:

3:

4:

5:

h(“Emma") is 4Emma

Andy

h(”Graham") is also 0
because ord(“G”) is 71.

Graham

In order to add Graham’s information to the table we had to form a
link list for bucket 0.

Some Dictionary Operations

• d[key] = value -- Set d[key] to value.
• del d[key] -- Remove d[key] from d. Raises a an error if
key is not in the map.

• key in d -- Return True if d has a key key, else False.
• items() -- Return a new view of the dictionary’s items ((key,

value) pairs).
• keys() -- Return a new view of the dictionary’s keys.
• pop(key[, default]) If key is in the dictionary, remove it and

return its value, else return default. If default is not given and
key is not in the dictionary, an error is raised.

Source: https://docs.python.org/

Data Representation

Compression: Information Content

• We measure information content in bits
• This is related to the fact that we can represent 2k different things with k bits.
• Turn the idea around and if we want to represent M different things, we need

log2 M bits

• But this is only true if the M things all have the same probability

8

Compression: Information Content

• We measure information content in bits
• This is related to the fact that we can represent 2k different things with k bits.
• Turn the idea around and if we want to represent M different things, we need

log2 M bits

• But this is only true if the M things all have the same probability

9

Compression: Huffman Coding Process

1. Assign character codes
a. Obtain character frequencies
b. Use frequencies to build a Huffman tree
c. Use tree to assign variable-length codes to characters (store them in a table)

2. Use table to encode (compress) ASCII source file to variable-length
codes

3. Use tree to decode (decompress) to ASCII

10

Building The Huffman Tree
• We use a tree structure to develop the unique binary

code for each letter.
• Start with each letter/frequency as its own single-

node tree
• Find the two lowest-frequency trees

11

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

U
0.059

L
0.044

Building The Huffman Tree
• Combine two lowest-frequency trees into a tree

with a new root with the sum of their frequencies.
• Do it again

12

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

N
0.083

O
0.106

P
0.030

U
0.059

W
0.009

L
0.044

Building The Huffman Tree
• …and again, as many times as possible

13

‘
0.068

A
0.262

E
0.072

H
0.045

I
0.084

K
0.106

M
0.032

N
0.083

O
0.106

P
0.030U

0.059

W
0.009L

0.044

0.039

0.071

100010111010100111

Bits to encode each letter?

Bits to re-encode the word
above?

Computer Organization

Boolean Logic (Algebra)
• Computer circuitry works based on Boolean Logic

(Boolean Algebra) : operations on True (1) and False
(0) values.

16

A B A Ù B
(A AND B)
(conjunction)

A Ú B
(A OR B)
(disjunction)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

A ¬A
(NOT A)
(negation)

0 1

1 0

• A and B in the table are Boolean variables, AND
and OR are operations (also called functions).

AND, OR, NOT Gates

A B A Ù B
(A AND B)
(conjunction)

A Ú B
(A OR B)
(disjunction)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

A ¬A
(NOT A)
(negation)

0 1

1 0

A
B

A Ù B
“AND”

A
B

A Ú B
“OR”

¬ A
“NOT”

Truth tables define the input - output behavior of logic gates.

Truth Table of a Circuit

18

A B C Q

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1

1 1 0

1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

AND

AND

AND

OR

OR

Describes the relationship between
inputs and outputs of a device

Describing Behavior of Circuits

• Boolean expressions
• Circuit diagrams
• Truth tables

19

Equivalent notations

Logical Equivalence

20

A B C Q

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

Q = B Ù (A Ú C)

AND

AND

AND

OR

OR

OR
AND

This smaller circuit is logically equivalent
to the one above: they have the same truth table.
By using laws of Boolean Algebra we convert a
circuit to another equivalent circuit.

Laws for the Logical Operators Ù and Ú
(Similar to × and +)

• Commutative: A Ù B = B Ù A A Ú B = B Ú A
• Associative: A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)

A Ú B Ú C = (A Ú B) Ú C = A Ú (B Ú C)
• Distributive: A Ù (B Ú B) = (A Ù B) Ú (A Ù C)

A Ú (B Ù C) = (A Ú B) Ù (A Ú C)
• Identity: A Ù 1 = A A Ú 0 = A
• Dominance: A Ù 0 = 0 A Ú 1 = 1
• Idempotence: A Ù A = A A Ú A = A
• Complementation:A Ù ¬A = 0 A Ú ¬A = 1
• Double Negation: ¬ ¬ A = A

21

• Start
• Commutativity: A Ù B = B Ù A
• Distributivity A Ù (B Ú C) = (A Ù B) Ú (A Ù C)
• Associativity (& Commutativity)

(A Ù B Ù C = (A Ù B) Ù C = A Ù (B Ù C)
• Idempotence A Ù A = A
• Commutativity: A Ù B = B Ù A
• Idempotence A Ú A = A
• Commutativity: A Ù B = B Ù A
• Distributivity (A Ù B) Ú (A Ù C) = A Ù (B Ú C)

• (x Ù y) Ú ((y Ú z) Ù (z Ù y))
• (x Ù y) Ú ((z Ù y) Ù (y Ú z))
• (x Ù y) Ú (z Ù y Ù y) Ú(z Ù y Ù z)
•

(x Ù y) Ú (z Ù(y Ù y)) Ú (y Ù (z Ù z))
• (x Ù y) Ú ((z Ù y) Ú (y Ù z))
• (x Ù y) Ú ((z Ù y) Ú (z Ù y))
• (x Ù y) Ú (z Ù y)
• (y Ù x) Ú (y Ù z)
• y Ù (x Ú z)

More gates (NAND, NOR, XOR)

23

A B A nand B A nor B A xor B

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 0 0 0

• nand (“not and”): A nand B = not (A and B)

• nor (“not or”): A nor B = not (A or B)

• xor (“exclusive or”):
A xor B = (A and not B) or (B and not A)

A
B

A
B

A
B

¬(A Ù B)

¬(A Ú B)

A Å B

DeMorgan’s Law

Nand: ¬(A Ù B) = ¬A Ú ¬B

if not (x > 15 and x < 110): ...
is logically equivalent to
if (not x > 15) or (not x < 110): ...

Nor: ¬(A Ú B) = ¬A Ù ¬B

if not (x < 15 or x > 110): ...
is logically equivalent to
if (not x < 15) and (not x > 110): ...

24

Adding Binary Numbers
A: 0 0 1 1
B: 0 1 0 1

--- --- --- ---
0 1 1 1 0

25

A
B Sum

Adding two 1-bit numbers
without taking the carry into
account

How can we handle the carry?

Sum = A Å B

Adding Binary Numbers
A: 0 0 1 1
B: 0 1 0 1

--- --- --- ---
0 1 1 1 0

26

A
B Sum

Carry

Half Adder: adds
two single digits

A Full Adder

27

A

B

SCout

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B)

S: 1 when there is an odd
number of bits that are 1

C out : 1 if both A and B are 1 or,
one of the bits and the carry in
are 1.

Cin
A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder (FA)

28

1-bit
Full

Adder

A B

CinCout

S

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B)

More abstract
representation
of the above circuit.
Hides details of the
circuit above.

8-bit Full Adder

29

1-bit
Full

Adder

A0 B0

Cin

S0

1-bit
Full

Adder

A1 B1

S1

1-bit
Full

Adder

A7 B7

Cout

S7

1-bit
Full

Adder

A2 B2

S2

...

8-bit
FA

A B

CinCout

S

8 ⁄ ⁄ 8

⁄ 8

More abstract
representation
of the above circuit.
Hides details of the
circuit above.

Multiplexer (MUX)

30

http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

• A multiplexer chooses one of its inputs.
2n input lines, n selector lines, and 1 output line

A B F

0 0 D1

0 1 D2

1 0 D3

1 1 D4

D3
MUX

A B

F
D1
D2

D4

hides details of the
circuit on the left

Arithmetic Logic Unit (ALU)

31

OP1OP0

http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html

OP0 OP1 F
0 0 A Ù B

0 1 A Ú B

1 0 A

1 1 A + B

Carry In & OP

Depending on the OP code Mux chooses
the result of one of the functions (and, or, identity, addition)

Stored Program Computer

32

adder, multiplier,
multiplexor, Etc.

instruction fetch,
decode,
execute

program counter,
instruction register,

Etc.

Two specialized registers: the instruction register holds the current instruction to be
executed and the program counter contains the address of the next instruction
to be executed.

Fetch-Decode-Execute Cycle
• Modern computers include control logic that

implements the fetch-decode-execute cycle
introduced by John von Neumann:

• Fetch next instruction from memory into the instruction
register.

• Decode instruction to a control signal and get any data it
needs (possibly from memory).

• Execute instruction with data in ALU and store results
(possibly into memory).

• Repeat.

33

Note that all of these steps are implemented with circuits of the kind we have seen in this unit.

Randomness in Computation

(Pseudo) Random Number Generator
• A (software) machine to produce sequence x1, x2, x3, x4, x5,…

from x0
• Initialize / seed:

• Get pseudorandom
numbers (f is a function
that computes a number):

• Idea: internal state determines the next number

35

x0

x0

f(x0)=
x1

x1

f(x1)=
x2

x2

Simple PRNGs

• Linear congruential generator formula:
xi+1 = (a xi + c) % m

• a, c, and m are constants
• Good enough for many purposes
• …if a, c, and m are properly chosen

36

Picking the constants a, c, m

• Example: prng1 (a = 1, c = 7, m = 12)
• Factors of 7: 1, 7 Factors of 12: 1, 2, 3, 4, 6, 12
• 0 is divisible by all prime factors of 12 à true
• if 12 is a multiple of 4 , then 0 is also a multiple of 4 à true

• prng1 will have a period of 12

37

(3) if m a multiple
of 4, so is a-1

(2) a-1 divisible by
all prime factors
of m(1) c and m

relatively prime

Random integers in Python

• To generate random integers in Python, we can use the randint
function from the random module.

• randint(a,b) returns an integer n such that
a ≤ n ≤ b (note that it’s inclusive)

>>> from random import randint
>>> randint(0,15110)
12838

>>> randint(0,15110)
5920
>>> randint(0,15110)
12723

38

Some functions from the random module
>>> [random() for i in range(5)]

[0.05325137538696989, 0.9139978582604943, 0.614299510564187, 0.32231562902200417,
0.8198417602039083]

>>> [uniform(1,10) for i in range(5)]

[4.777545709914872, 1.8966139666534423, 8.334224863883207, 3.006025360903046, 8.968660414003441]

>>> [randrange(10) for i in range(5)]

[8, 7, 9, 4, 0]

>>> [randrange(0, 101, 2) for i in range(5)]

[76, 14, 44, 24, 54]

>>> colors = ['red', 'blue','green', 'gray', 'black']

>>> [choice(colors) for i in range(5)]

['gray', 'green', 'blue', 'red', 'black']

>>> [choice(colors) for i in range(5)]

['red', 'blue', 'green', 'blue', 'green’] 39

Monte Carlo methods

Idea: run many experiments with random inputs to approximate an
answer to a question.

We might be unable to answer the question any other way, or an
analytical (logical, mathematical, exact) solution might be too
expensive.

40

Monte Carlo method for the hungry dice player

def average_winnings(runs) :

runs is the number of experiments to run

total = 0

for n in range(runs) :

total = total + dice_game()

return total/runs

>>> [round(average_winnings(10),2) for i in range(5)]

[85.8, 94.8, 120.7, 123.3, 90.0]

>>> [round(average_winnings(100),2) for i in range(5)]

[105.97, 102.95, 107.74, 134.4, 114.54]

>>> [round(average_winnings(1000),2) for i in range(5)]

[106.84, 107.11, 105.59, 104.28, 106.41]

>>> [round(average_winnings(10000),2) for i in range(5)]

[104.94, 105.71, 105.81, 105.74, 104.62]

15110 Principles of Computing , Carnegie
Mellon University 41

The Clueless Student

A clueless student faced a pop quiz: a list of the 24 Presidents of the
19th century and another list of their terms in office, but scrambled. The
object was to match the President with the term. If the student guesses
a random one-to-one matching, how many matches will be right out of
the 24, on average?

15110 Principles of Computing , Carnegie Mellon University 42

The Umbrella Quandary

• Mr. X walks between home and work every day
• He likes to keep an umbrella at each location
• But he always forgets to carry one if it’s not raining
• If the probability of rain is p, how many trips can he expect to make

before he gets caught in the rain? (Assuming that if it’s not raining
when he starts a trip, it doesn’t rain during the trip.)

15110 Principles of Computing , Carnegie Mellon University 43

