
The Limits of Computing 



Predicting Running Time of a Program 

Suppose you are working on a very important problem and 
wrote a program to make lots of calculations. You expect 
that it may take a while to produce a result. 

¤  How long will you wait?  

¤  Should you wait or stop? 

¤  You waited for a few days and decided to stop, but what 
if it will end/halt in the next 5 minutes? 



Classifying Problems 

¤  Can you say if your program will terminate and return 
a result? 

¤  Can you say anything about how difficult the problem 
that you are trying to solve with your program is? 



Complexity and Computability 
Theories 

¤ Computer scientists are interested in measuring 
“how hard/difficult” computational problems are in 
order to understand how much time, or some other 
resource such as memory, is needed to solve it. 

 

¤ What problems can or cannot be solved by 
mechanical computation? Can we categorize 
problems as “easy”, “hard”, or “impossible”? 
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Can we categorize problems? 
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solve it in a reasonable amount of time. 
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Easy (Tractable) 

¤ An “easy (i.e. tractable)”  problem is one for 
which there exists a mechanical procedure 
(i.e. program or algorithm) that can solve it 
in a reasonable amount of time. 

How do we 
measure this? 



Hard (Intractable) 

¤ A “hard (i.e. intractable)” problem is one 
that is solveable by a mechanical 
procedure but every algorithm we can find 
is so slow that it is practically useless. 

What does this 
mean? 



Impossible 

¤ An “impossible” problem is one such that it is 
probably impossible to solve no matter how  
much time we are willing to use. 

How can we prove 
something like that? 



Why Study Impossibility? 

¤ Practical:  If we know that a problem is 
unsolvable we know that we need to 
simplify or modify the problem.  

 

¤ Cultural: Gain perspective on 
computation. 
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Decision Problems 



Decision Problems 

¤  A specific set of computations are classified as 
decision problems. 

¤  An algorithm solves a decision problem if its 
output is simply YES or NO, depending on whether 
a certain property holds for its input. Such an 
algorithm is called a decision procedure. 

¤  Example: 
Given a set of n shapes, 
can these shapes be 
arranged into a rectangle?  
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Decision Problem 1:  
The Monkey Puzzle 



The Monkey Puzzle 
¤  Given: 

¤  A set of n square cards whose sides are imprinted with the 
upper and lower halves of colored monkeys. 

¤  n is a perfect square number, such that n = m2.   

¤  Cards cannot be rotated. 

¤  We don’t care about the monkeys along the outside edge 

 

¤  Problem: 

¤  Does there exist an arrangement of the n cards in an m x 
m grid such that each adjacent pair of cards display the 
upper and lower half of a monkey of the same color. 
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decision problem 



Example 
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 •  Can we always 

compute a YES/NO 
answer to the 
problem? 

•  If we can, is the 
problem tractable 
(easy to solve) in     
general? 



Algorithm 

Simple brute-force (exhaustive search) algorithm: 

¤  Pick one card for each cell of m x m grid. 

¤  Verify if each pair of touching edges make a full 
monkey of the same color. 

¤  If not, try another arrangement until a solution is 
found or all possible arrangements are 
checked. 

¤  Answer "YES" if a solution is found. Otherwise, 
answer "NO" if all arrangements are analyzed 
and no solution is found.  
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Analysis 
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The total number of unique arrangements 
for n = 9 cards is: 
 
9 * 8 * 7 * .... *1  =  9!  (9 factorial) 
                           = 362880 

1 2 3 

4 5 6 

7 8 9 

Suppose there are n = 9 cards (m = 3) 

9 card choices  for cell 1 

8 card choices for cell 2 
7 card choices for cell 3 goes on like this 



Analysis (cont’d) 
          For n cards, the number of arrangements to examine is n!   

          Assume that we can analyze one arrangement in a 
microsecond (µs), that is,  
analyze 1 million arrangements in one second : 

 

n    Time to analyze all arrangements 

9    362,880 µs 

16    20,922,789,888,000 µs (app. 242 days) 

25                15,511,210,043,330,985,984,000,000 µs  

                             (app. 500 billion years) 
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Age of the universe is about  13.772 billion 
years (plus minus 59 million years) 



Summary 

¤ Monkey Puzzle 

¤ Complexity n! 

¤ Solvable? Yes? 

¤ Easy? No (hard, intractable) 



Big O notation review + 
Classifications 



Reviewing	the	Big	O	Notation	(1)	

¤ We use the big O notation to indicate the 
relationship between the size of the input and the 
corresponding amount of work. 

¤ For the Monkey Puzzle 
¤  Input size: Number of tiles (n) 
¤  Amount of work: Number of operations to check if any 

arrangement solves the problem (n!) 

¤ For very large n (size of input data), we express the 
number of operations as the (time) order of 
complexity. 
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Growth	of	Some	Functions	
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Big	O	notation:			
												gives	an	asymptotic	upper	bound			
												ignores	constants			
	
		



Quiz on Big O 
¤ What is the order of complexity in big O for the 

following descriptions 
¤  The amount of computation does not depend on the size 

of input data 
 
¤  If we double the input size the work is doubles, if we triple it 

the work is 3 times as much 
 
¤  If we  double the input size the work is 4 times as much, if 

we triple it the work is 9 times as much 
 
¤  If we double the input size, the work has 1 additional 

operation  
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O(1) 

O(n) 

O(n2) 

O(log n) 



Classifying Problems 

¤  The field of computational complexity categorizes 
decision problems by how hard they are to solve.  

¤  “Hard“ in this sense, is described in terms of the 
computational resources needed by the most efficient 
algorithm that is known to solve the problem.  
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Classifications  

¤  Algorithms that are O(nk) for some  
fixed k are polynomial-time* algorithms. 
¤  O(1), O(log n), O(n), O(n log n), O(n2) 

¤  Reasonable, easy, tractable 

¤  All other algorithms are  
super-polynomial-time algorithms. 
¤  O(2n), O(nn), O(n!) 

¤  Unreasonable, hard, intractable 
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*A polynomial is an expression consisting of variables and coefficients that 
involves only the operations of addition, subtraction, multiplication, and 
non-negative integer exponents. 



Decision Problem 2: 
Traveling Salesperson 
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Traveling Salesperson 

¤  Given: a weighted graph of  
¤  nodes representing cities and  

¤  edges representing flight paths (weights represent cost) 

 

¤  Is there a route that takes the salesperson through every city 
and back to the starting city with cost no more than k? 
¤  The salesperson can visit a city only once (except for the start 

and end of the trip). 
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An Instance of the Problem 
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          Is there a route that takes the salesperson through 
every city and back to the starting city with cost 
no more than 52? 



Traveling Salesperson 
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Is there a route with cost at most 52? YES (Route above costs 50.) 
 

If I am given a potential solution I can verify that to say yes or no, but otherwise  
I have to search for it. By a brute-force approach, I enumerate all possible routes  
visiting every city once and check for the cost. 



Analysis 

¤  If there are n cities, what is the maximum number of routes 
that we might need to compute? 

¤  Worst-case: There is a flight available between every pair of 
cities. 

¤  Compute cost of every possible route. 

¤  Pick a starting city 

¤  Pick the next city (n-1 choices remaining) 

¤  Pick the next city (n-2 choices remaining) 

¤  ... 

¤  Maximum number of routes: __________ 
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Analysis 

¤  If there are n cities, what is the maximum number of routes 
that we might need to compute? 

¤  Worst-case: There is a flight available between every pair of 
cities. 

¤  Compute cost of every possible route. 

¤  Pick a starting city 

¤  Pick the next city (n-1 choices remaining) 

¤  Pick the next city (n-2 choices remaining) 

¤  ... 

¤  Worst-case complexity: __________	
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O(n!) 
Note: n! > 2 n 

for every n > 3. 
 

Exponential complexity (super-polynomial time) à Intractable (hard!  



Number of Paths to Consider 
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Number of all possible routes = Number of all possible permutations of n nodes =  n! 

Number of all possible unique route =  

Observe ABCGFDE is equivalent to BCGFDEA (starting from a point and  
returning to  it going through the same nodes) 

n!	/	n	=	n	–	1!	

Observe also that ABCGFDE has the same cost as EDFGCBA 

Number of all possible paths to consider =  (n	–	1)!	/	2	 Still	O(n!)		



Polynomial vs. Exponential Growth 

Running  
Time 

n 

n2 

n3 

n5  

n!  

Assumption: Computer can perform one billion operations for second 

0.00000004  sec. 

0.00000160 sec. 

0.00006400  sec. 

0.10240000  sec. 

Size n = 10 

0.00000001 

Size n = 20 Size n = 30 Size n = 40 

0.00000002 0.00000003 

0.00000010 0.00000040 0.00000090 

0.00000100 0.00000800 0.00002700 

0.00010000 

0.0036 

0.00320000 0.02430000 

77.1 years 8400 
trillion 
years 

2.5 * 1031  
Years  

Source:  http://www.cs.hmc.edu/csforall 



Polynomial vs. Exponential Growth 

n!  0.0036 77.1 years 8400 
trillion 
years 

2.5 * 1031  
Years  

Source:  http://www.cs.hmc.edu/csforall 



The Big Picture 

¤  Intractable (hard) problems are solvable if the 
amount of data (n) that we are processing is small. 

¤ But if n is not small, then the amount of computation 
grows exponentially and the solutions quickly 
become out of our reach. 

¤ Computers can solve these problems if n is not 
small, but it will take far too long for the result to be 
generated. 
¤  We would be long gone 

before the result is computed.	
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Summary 

¤ For many interesting problems naïve 
algorithms rely on exhaustive search  
¤ Check all possible answers 
¤ Exponential running time (intractable) 

¤ We need smarter algorithms for them to 
be practical (avoid exhaustive search) 
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Dealing with Intractability 

¤ Restrict the problem, exploiting 
properties of specific instances of the 
problem. 

¤ Trade correctness with tractability.  
¤  Go for approximate solutions. 

¤  Get correct result with some 
probability. 
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Decision Problem 3: 
Satisfiability 



Satisfiability 

¤  Given a Boolean formula with n variables 
using the operators AND, OR and NOT: 
¤  Is there an assignment of Boolean values for the 

variables so that the formula is true (satisfied)?  
         Example: (X AND Y) OR (NOT Z AND (X OR Y)) 
¤  Truth assignment: X = True, Y = True, Z = False. 

¤  How many assignments do we need to check  
for n variables?  
¤  Each symbol has 2 possibilities  ___ assignments 
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2n 



Verifiability 

¤ No known tractable algorithm to 
decide, however it is easy to verify a 
solution. 
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Decision Problems 

¤ We have seen 3 examples of decision 
problems with simple brute-force algorithms 
that are intractable. 
 
¤  The Monkey Puzzle    O(n!) 

¤  Traveling Salesperson                 O(n!) 

¤  Satisfiability     O(2n) 
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We can avoid brute-force in many problems and obtain polynomial 
time solutions, but not always.   
 
For example, satisfiability of Boolean expressions of certain forms have 
polynomial time solutions.  



Are These Problems Tractable? 

¤ For any one of the intractable problems we saw, is 
there a single tractable (polynomial) algorithm to 
solve any instance of the problem? 

      Haven’t been found so far. 

¤ Possible reasons: 
¤  These problems have undiscovered polynomial-time 

solutions. 

¤  These problems are intrinsically difficult – we cannot hope 
to find polynomial solutions. 

¤  Important discovery: Complexities of some of these problems 
are linked. If we can solve one, we can solve the other 
problems in that class.  
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P? NP? 



P and NP 
 
The class P consists of all those decision problems 
that can be solved in an amount of time that is 
polynomial in the size of the input: O(1), O(log n), O(n), 
O(n2), O(n3) 

                                   

 
The class NP consists of all those decision problems 
whose solutions can be verified in polynomial time 
given the right information    
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N in NP comes from nondeterministic 



Decidability vs. Verifiability 
  

P = the class of problems that can be 
decided (solved) quickly 

 

NP = the class of problems for which 
solutions can be verified quickly 
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Example 

¤  If a problem is in P, it must also be in NP. 

¤  If a problem is in NP, is it also in P? 

Verifiable in 
Polynomial 
Time 

Solvable in 
Polynomial 
Time 

Given an integer list, is 10 in the list? 

Monkey Puzzle 

Traveling Salesperson 

YES  YES  

YES ? 

YES ? 

P NP 

Principles of Computing, Carnegie Mellon 
University 



Two Possibilities 

If P ≠ NP, then  
some decision problems can’t be 
solved in polynomial time. 

The Clay Mathematics Institute is offering a $1M prize for 
the first person to prove P = NP or P ≠ NP.  

(http://www.claymath.org/millennium/P_vs_NP/) 

If P = NP, then  
all polynomially verifiable problems 
(NP) can be solved in polynomial 
time. 

Principles of Computing, Carnegie Mellon 
University 



NP-Complete Problems 

¤  An important advance in the P vs. NP question was the 
discovery of a class of problems in NP whose complexity 
is related to the whole class [Cook and Levin, ‘70] 

¤  if one of these problems is in P then NP = P. 
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Some Remarks on NP-Completeness 

¤  The class NP-Complete consists of all those problems in 
NP that are least likely to be in P. 
¤  Monkey puzzle, Traveling salesperson, and Satisfiability 

are all in NP-Complete. 

¤  Every problem in NP-Complete can be transformed to 
another problem in NP-Complete (using reduction). 
¤  If there were some way to solve one of these problems 

in polynomial time, we should be able to solve all of 
these problems in polynomial time. 
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Informally, NP-complete problems are the 
hardest problems in NP. 

NP- 
complete 



Why is NP-completeness of 
Interest? 
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Theorem: If any NP-complete problem is in P then all are and P = NP. 

Most believe P ≠ NP.  So, in practice NP-completeness of a problem  
prevents wasting time from trying to find a polynomial time solution for it. 

NP- 
complete 



Examples of NP-complete Problems 

¤  Bin packing problem. You have n items and m bins. Item i weighs w[i] 
pounds. Each bin can hold at most W pounds. Can you pack all n items 
into the m bins without violating the given weight limit? 
 

¤  Machine Scheduling. Your goal is to process n jobs on m machines. For 
simplicity, assume each machine can process any one job in 1 time 
unit. Also, there can be precedence constraints: perhaps job j must 
finish before job k can start. Can you schedule all of the jobs to finish in L 
time units? 
 

¤  Crossword puzzle. Given an integer N, and a list of valid words, is it 
possible to assign letters to the cells of an N-by-N grid so that all 
horizontal and vertical words are valid?  



Halting 
Impossible, uncomputable 



What’s Next? 

¤  Are all computational problems solvable by computer? 
¤  NO!  

 
There are some that we can’t solve no matter how much 
time we give the computer, no matter how powerful the 
computer is. 
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Computability 

¤  A problem is computable (i.e. decidable, solveable) if 
there is a mechanical procedure that 
1.  Always terminates. 

2.  Always gives the correct answer. 
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Program Termination 

¤  Can we determine if a program will 
terminate given a valid input? 

¤  Example: 

 def mystery1(x):

    while (x != 1):

        x = x - 2

¤  Does this algorithm terminate when x = 15? 
¤  Does this algorithm terminate when x = 110? 
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Another Example 
 def mystery2(x):

    while (x != 1):

        if x % 2 == 0: 

            x = x // 2

        else:

            x = (3 * x) + 1  

¤  Does this algorithm terminate when x = 15? 

¤  Does this algorithm terminate when x = 110? 

¤  Does this algorithm terminate for any positive x? 
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If you test this program, it  seems to 
terminate even though it sometimes  
reaches unpredictable values for x. In 
the absence of a proof of why 
 it works this way, we cannot be sure  
whether there is any x for which it 
 won’t terminate. 



Halting Problem 
•  Alan Turing proved that noncomputable functions exist by 

finding an noncomputable function, known as the Halting 
Problem. 

 

•  Halting Problem:  
•  Does a universal program H exist (hint: Can never exist!) 

•  that can take any program P  

•  and any input I for program P  

•  and determine if P terminates/halts when run with input I? 
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Halting Problem Cast in Python 

•  Input:  
•  A string representing a Python program 
•  an input to that program 

•  Output:  
–  True, if evaluating the input program 

would ever finish  
–  False, otherwise 
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Example 
¤  Suppose  we had a function halts that solves the Halting 

Problem 

¤  Given the functions below 

 

   

 

halts(`add(10,15)’)      halts(`loop()’)

       returns True                               returns False
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def add(x, y):
    return x + y

def loop(): 
   while True:
       pass

   

     halts on 
     all inputs 

loops  
indefinitely 



Proof by Contradiction (first step) 
 

Assume a program H exists that requires a program P and an input I. 
–  H determines if program P will halt when  

P is executed using input I. 
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H outputs YES 
if P halts when run 
with input I 

H outputs NO 
if P does not halt 
when run with 
input I 

H 
Halt checking 

Program 

YES 

NO 

Program P 

Program’s	
input	I	



Implement a Halt Checker?  
 

¤ Turing showed (by contradiction) 
¤  halts  is noncomputable  
¤  halts  function cannot exist. 
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Why Is Halting Problem Special? 

•  One of the first problems to be shown to be 
noncomputable. (i.e. undecidable, unsolveable) 

 

•  A problem can be shown to be noncomputable by 
reducing the halting problem into that problem. 

•  Examples of other nonsolveable problems: Software 
verification, Hilbert’s tenth problem, tiling problem 
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Living with Noncomputable Functions 

•  Noncomputable (undecidable, unsolveable) 
means there is no procedure (algorithm) that 
1.  Always terminates 

2.  Always give the correct answer 
 

•  We should give up either one of these 
conditions 
–  We usually prefer to give up 2 (correctness in all cases) 

–  For example, a virus detection software cannot detect if a 
program is a virus for all possible programs. To be 
computable, they need to give up correctness for some 
cases.  
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Summary: What Should You Know? 

•  The fact that there are limits to what we can compute and 
what we can compute efficiently all using a mechanical 
procedure (algorithm) . 
–  What do we mean when we call a problem tractable/

intractable?  
–  What do we mean when we call a problem solveable (i.e. 

computable, decidable) vs. unsolveable (noncomputable, 
undecidable)? 

•  What the question P vs. NP is about. 

•  Names of Some NP-complete problems and amount of work  
needed to solve them using brute-force algorithms. 

•  The fact that Halting Problem is unsolveable and that there 
are many others that are unsolveable. 
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CONCLUDING REMARKS 
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Course Objectives 

Programming 
skills 

Exposure to selected 
topics of current 
interest and classic big 
ideas 

Computational 
thinking 
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Course Coverage 

Programming in 
Python 

 
Debugging  small 
programs 

Limits of computing 
Artificial intelligence 

Concurrency 
Security 

 
Computational 
complexity 
 

Algorithms and 
data structures 
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Where to Go From Here 
¤ Done with computer science.  You will be involved 

in computing only as needed in your own 
discipline?  
¤  We believe you are leaving this course with useful skills. 

¤ Grew an interest in computing. You want to explore 
more?  
¤  15-112 is taken by many who feel this way. It primarily 

focuses on software construction. 

¤ Considering adding computer science as a minor or 
major?  
¤  Great!  We are happy to have been instrumental in this 

decision.    

70	



Thursday 

¤  Review Session 

¤  Optional, but come with questions! 

¤  I will post a list of topics on Piazza/Canvas 

¤  For exam: Pin down Friday 12-3PM 
¤  Place TBD 

¤  Those of you with conflicts we will accommodate somehow, 
please stay tuned! 


