
The Limits of Computing

Predicting Running Time of a Program

Suppose you are working on a very important problem and
wrote a program to make lots of calculations. You expect
that it may take a while to produce a result.

¤  How long will you wait?

¤  Should you wait or stop?

¤  You waited for a few days and decided to stop, but what
if it will end/halt in the next 5 minutes?

Classifying Problems

¤  Can you say if your program will terminate and return
a result?

¤  Can you say anything about how difficult the problem
that you are trying to solve with your program is?

Complexity and Computability
Theories

¤ Computer scientists are interested in measuring
“how hard/difficult” computational problems are in
order to understand how much time, or some other
resource such as memory, is needed to solve it.

¤ What problems can or cannot be solved by
mechanical computation? Can we categorize
problems as “easy”, “hard”, or “impossible”?

4

Can we categorize problems?

?

Easy
(tractable)

Impossible

(uncomputable)

Hard
(intractable)

there exists a mechanical procedure
(i.e. program or algorithm) that can
solve it in a reasonable amount of time.

Can we categorize problems?

?

Easy
(tractable)

Impossible

(uncomputable)

Hard
(intractable)

there exists a mechanical procedure
(i.e. program or algorithm) that can
solve it in a reasonable amount of time.

solveable by a mechanical
procedure but every algorithm
we can find is so slow that it is
practically useless.

Can we categorize problems?

?

Easy
(tractable)

Impossible

(uncomputable)

Hard
(intractable)

there exists a mechanical procedure
(i.e. program or algorithm) that can
solve it in a reasonable amount of time.

solveable by a mechanical
procedure but every algorithm
we can find is so slow that it is
practically useless.

it is probably impossible to solve
no matter how much time we
are willing to use.

Easy (Tractable)

¤ An “easy (i.e. tractable)” problem is one for
which there exists a mechanical procedure
(i.e. program or algorithm) that can solve it
in a reasonable amount of time.

How do we
measure this?

Hard (Intractable)

¤ A “hard (i.e. intractable)” problem is one
that is solveable by a mechanical
procedure but every algorithm we can find
is so slow that it is practically useless.

What does this
mean?

Impossible

¤ An “impossible” problem is one such that it is
probably impossible to solve no matter how
much time we are willing to use.

How can we prove
something like that?

Why Study Impossibility?

¤ Practical: If we know that a problem is
unsolvable we know that we need to
simplify or modify the problem.

¤ Cultural: Gain perspective on
computation.

11	

Decision Problems

Decision Problems

¤  A specific set of computations are classified as
decision problems.

¤  An algorithm solves a decision problem if its
output is simply YES or NO, depending on whether
a certain property holds for its input. Such an
algorithm is called a decision procedure.

¤  Example:
Given a set of n shapes,
can these shapes be
arranged into a rectangle?

13	

Decision Problem 1:
The Monkey Puzzle

The Monkey Puzzle
¤  Given:

¤  A set of n square cards whose sides are imprinted with the
upper and lower halves of colored monkeys.

¤  n is a perfect square number, such that n = m2.

¤  Cards cannot be rotated.

¤  We don’t care about the monkeys along the outside edge

¤  Problem:

¤  Does there exist an arrangement of the n cards in an m x
m grid such that each adjacent pair of cards display the
upper and lower half of a monkey of the same color.

15	

decision problem

Example

16	

 •  Can we always

compute a YES/NO
answer to the
problem?

•  If we can, is the
problem tractable
(easy to solve) in
general?

Algorithm

Simple brute-force (exhaustive search) algorithm:

¤  Pick one card for each cell of m x m grid.

¤  Verify if each pair of touching edges make a full
monkey of the same color.

¤  If not, try another arrangement until a solution is
found or all possible arrangements are
checked.

¤  Answer "YES" if a solution is found. Otherwise,
answer "NO" if all arrangements are analyzed
and no solution is found.

17	

Analysis

18	

The total number of unique arrangements
for n = 9 cards is:

9 * 8 * 7 * *1 = 9! (9 factorial)
 = 362880

1 2 3

4 5 6

7 8 9

Suppose there are n = 9 cards (m = 3)

9 card choices for cell 1

8 card choices for cell 2
7 card choices for cell 3 goes on like this

Analysis (cont’d)
 For n cards, the number of arrangements to examine is n!

 Assume that we can analyze one arrangement in a
microsecond (µs), that is,
analyze 1 million arrangements in one second :

n Time to analyze all arrangements

9 362,880 µs

16 20,922,789,888,000 µs (app. 242 days)

25  15,511,210,043,330,985,984,000,000 µs

 (app. 500 billion years)

19	

Age of the universe is about 13.772 billion
years (plus minus 59 million years)

Summary

¤ Monkey Puzzle

¤ Complexity n!

¤ Solvable? Yes?

¤ Easy? No (hard, intractable)

Big O notation review +
Classifications

Reviewing	the	Big	O	Notation	(1)	

¤ We use the big O notation to indicate the
relationship between the size of the input and the
corresponding amount of work.

¤ For the Monkey Puzzle
¤  Input size: Number of tiles (n)
¤  Amount of work: Number of operations to check if any

arrangement solves the problem (n!)

¤ For very large n (size of input data), we express the
number of operations as the (time) order of
complexity.

22	

Growth	of	Some	Functions	

23	

Big	O	notation:			
												gives	an	asymptotic	upper	bound			
												ignores	constants			
	
		

Quiz on Big O
¤ What is the order of complexity in big O for the

following descriptions
¤  The amount of computation does not depend on the size

of input data

¤  If we double the input size the work is doubles, if we triple it

the work is 3 times as much

¤  If we double the input size the work is 4 times as much, if

we triple it the work is 9 times as much

¤  If we double the input size, the work has 1 additional

operation

24	

O(1)

O(n)

O(n2)

O(log n)

Classifying Problems

¤  The field of computational complexity categorizes
decision problems by how hard they are to solve.

¤  “Hard“ in this sense, is described in terms of the
computational resources needed by the most efficient
algorithm that is known to solve the problem.

25	

Classifications

¤  Algorithms that are O(nk) for some
fixed k are polynomial-time* algorithms.
¤  O(1), O(log n), O(n), O(n log n), O(n2)

¤  Reasonable, easy, tractable

¤  All other algorithms are
super-polynomial-time algorithms.
¤  O(2n), O(nn), O(n!)

¤  Unreasonable, hard, intractable

26	

*A polynomial is an expression consisting of variables and coefficients that
involves only the operations of addition, subtraction, multiplication, and
non-negative integer exponents.

Decision Problem 2:
Traveling Salesperson

Traveling Salesperson

A

B

D

C

G
E

F

12

6
4

5
9

8
10

7 11

3

7

7

Traveling Salesperson

¤  Given: a weighted graph of
¤  nodes representing cities and

¤  edges representing flight paths (weights represent cost)

¤  Is there a route that takes the salesperson through every city
and back to the starting city with cost no more than k?
¤  The salesperson can visit a city only once (except for the start

and end of the trip).

29	

An Instance of the Problem

A

B

D

C

G
E

F

12

6
4

5
9

8
10

7 11

3

7

7

 Is there a route that takes the salesperson through
every city and back to the starting city with cost
no more than 52?

Traveling Salesperson

31	

A

B

D

C

G

E

F

12

6
4

5
9

8
10

7 11

3

7
7

Is there a route with cost at most 52? YES (Route above costs 50.)

If I am given a potential solution I can verify that to say yes or no, but otherwise
I have to search for it. By a brute-force approach, I enumerate all possible routes
visiting every city once and check for the cost.

Analysis

¤  If there are n cities, what is the maximum number of routes
that we might need to compute?

¤  Worst-case: There is a flight available between every pair of
cities.

¤  Compute cost of every possible route.

¤  Pick a starting city

¤  Pick the next city (n-1 choices remaining)

¤  Pick the next city (n-2 choices remaining)

¤  ...

¤  Maximum number of routes: __________

32	

Analysis

¤  If there are n cities, what is the maximum number of routes
that we might need to compute?

¤  Worst-case: There is a flight available between every pair of
cities.

¤  Compute cost of every possible route.

¤  Pick a starting city

¤  Pick the next city (n-1 choices remaining)

¤  Pick the next city (n-2 choices remaining)

¤  ...

¤  Worst-case complexity: __________	

33	

O(n!)
Note: n! > 2 n

for every n > 3.

Exponential complexity (super-polynomial time) à Intractable (hard!

Number of Paths to Consider

34	

A

B

D

C

G
E

F

12

6
4

5
9

8
10

7 11

3

7
7

Number of all possible routes = Number of all possible permutations of n nodes = n!

Number of all possible unique route =

Observe ABCGFDE is equivalent to BCGFDEA (starting from a point and
returning to it going through the same nodes)

n!	/	n	=	n	–	1!	

Observe also that ABCGFDE has the same cost as EDFGCBA

Number of all possible paths to consider = (n	–	1)!	/	2	 Still	O(n!)		

Polynomial vs. Exponential Growth

Running
Time

n

n2

n3

n5

n!

Assumption: Computer can perform one billion operations for second

0.00000004 sec.

0.00000160 sec.

0.00006400 sec.

0.10240000 sec.

Size n = 10

0.00000001

Size n = 20 Size n = 30 Size n = 40

0.00000002 0.00000003

0.00000010 0.00000040 0.00000090

0.00000100 0.00000800 0.00002700

0.00010000

0.0036

0.00320000 0.02430000

77.1 years 8400
trillion
years

2.5 * 1031
Years

Source: http://www.cs.hmc.edu/csforall

Polynomial vs. Exponential Growth

n! 0.0036 77.1 years 8400
trillion
years

2.5 * 1031
Years

Source: http://www.cs.hmc.edu/csforall

The Big Picture

¤  Intractable (hard) problems are solvable if the
amount of data (n) that we are processing is small.

¤ But if n is not small, then the amount of computation
grows exponentially and the solutions quickly
become out of our reach.

¤ Computers can solve these problems if n is not
small, but it will take far too long for the result to be
generated.
¤  We would be long gone

before the result is computed.	

37	

Summary

¤ For many interesting problems naïve
algorithms rely on exhaustive search
¤ Check all possible answers
¤ Exponential running time (intractable)

¤ We need smarter algorithms for them to
be practical (avoid exhaustive search)
	

38	

Dealing with Intractability

¤ Restrict the problem, exploiting
properties of specific instances of the
problem.

¤ Trade correctness with tractability.
¤  Go for approximate solutions.

¤  Get correct result with some
probability.

39	

Decision Problem 3:
Satisfiability

Satisfiability

¤  Given a Boolean formula with n variables
using the operators AND, OR and NOT:
¤  Is there an assignment of Boolean values for the

variables so that the formula is true (satisfied)?
 Example: (X AND Y) OR (NOT Z AND (X OR Y))
¤  Truth assignment: X = True, Y = True, Z = False.

¤  How many assignments do we need to check
for n variables?
¤  Each symbol has 2 possibilities ___ assignments

41	

2n

Verifiability

¤ No known tractable algorithm to
decide, however it is easy to verify a
solution.

42	

Decision Problems

¤ We have seen 3 examples of decision
problems with simple brute-force algorithms
that are intractable.

¤  The Monkey Puzzle O(n!)

¤  Traveling Salesperson O(n!)

¤  Satisfiability O(2n)

43	

We can avoid brute-force in many problems and obtain polynomial
time solutions, but not always.

For example, satisfiability of Boolean expressions of certain forms have
polynomial time solutions.

Are These Problems Tractable?

¤ For any one of the intractable problems we saw, is
there a single tractable (polynomial) algorithm to
solve any instance of the problem?

 Haven’t been found so far.

¤ Possible reasons:
¤  These problems have undiscovered polynomial-time

solutions.

¤  These problems are intrinsically difficult – we cannot hope
to find polynomial solutions.

¤  Important discovery: Complexities of some of these problems
are linked. If we can solve one, we can solve the other
problems in that class.

44	

P? NP?

P and NP

The class P consists of all those decision problems
that can be solved in an amount of time that is
polynomial in the size of the input: O(1), O(log n), O(n),
O(n2), O(n3)

The class NP consists of all those decision problems
whose solutions can be verified in polynomial time
given the right information

46	

N in NP comes from nondeterministic

Decidability vs. Verifiability

P = the class of problems that can be
decided (solved) quickly

NP = the class of problems for which
solutions can be verified quickly

47	

Example

¤  If a problem is in P, it must also be in NP.

¤  If a problem is in NP, is it also in P?

Verifiable in
Polynomial
Time

Solvable in
Polynomial
Time

Given an integer list, is 10 in the list?

Monkey Puzzle

Traveling Salesperson

YES YES

YES ?

YES ?

P NP

Principles of Computing, Carnegie Mellon
University

Two Possibilities

If P ≠ NP, then
some decision problems can’t be
solved in polynomial time.

The Clay Mathematics Institute is offering a $1M prize for
the first person to prove P = NP or P ≠ NP.

(http://www.claymath.org/millennium/P_vs_NP/)

If P = NP, then
all polynomially verifiable problems
(NP) can be solved in polynomial
time.

Principles of Computing, Carnegie Mellon
University

NP-Complete Problems

¤  An important advance in the P vs. NP question was the
discovery of a class of problems in NP whose complexity
is related to the whole class [Cook and Levin, ‘70]

¤  if one of these problems is in P then NP = P.

50	

Some Remarks on NP-Completeness

¤  The class NP-Complete consists of all those problems in
NP that are least likely to be in P.
¤  Monkey puzzle, Traveling salesperson, and Satisfiability

are all in NP-Complete.

¤  Every problem in NP-Complete can be transformed to
another problem in NP-Complete (using reduction).
¤  If there were some way to solve one of these problems

in polynomial time, we should be able to solve all of
these problems in polynomial time.

51	

Informally, NP-complete problems are the
hardest problems in NP.

NP-
complete

Why is NP-completeness of
Interest?

52	

Theorem: If any NP-complete problem is in P then all are and P = NP.

Most believe P ≠ NP. So, in practice NP-completeness of a problem
prevents wasting time from trying to find a polynomial time solution for it.

NP-
complete

Examples of NP-complete Problems

¤  Bin packing problem. You have n items and m bins. Item i weighs w[i]
pounds. Each bin can hold at most W pounds. Can you pack all n items
into the m bins without violating the given weight limit?

¤  Machine Scheduling. Your goal is to process n jobs on m machines. For
simplicity, assume each machine can process any one job in 1 time
unit. Also, there can be precedence constraints: perhaps job j must
finish before job k can start. Can you schedule all of the jobs to finish in L
time units?

¤  Crossword puzzle. Given an integer N, and a list of valid words, is it
possible to assign letters to the cells of an N-by-N grid so that all
horizontal and vertical words are valid?

Halting
Impossible, uncomputable

What’s Next?

¤  Are all computational problems solvable by computer?
¤  NO!

There are some that we can’t solve no matter how much
time we give the computer, no matter how powerful the
computer is.

55	

Computability

¤  A problem is computable (i.e. decidable, solveable) if
there is a mechanical procedure that
1.  Always terminates.

2.  Always gives the correct answer.

56	

Program Termination

¤  Can we determine if a program will
terminate given a valid input?

¤  Example:

 def mystery1(x):

 while (x != 1):

 x = x - 2

¤  Does this algorithm terminate when x = 15?
¤  Does this algorithm terminate when x = 110?

 57	

Another Example
 def mystery2(x):

 while (x != 1):

 if x % 2 == 0:

 x = x // 2

 else:

 x = (3 * x) + 1

¤  Does this algorithm terminate when x = 15?

¤  Does this algorithm terminate when x = 110?

¤  Does this algorithm terminate for any positive x?

58	

If you test this program, it seems to
terminate even though it sometimes
reaches unpredictable values for x. In
the absence of a proof of why
 it works this way, we cannot be sure
whether there is any x for which it
 won’t terminate.

Halting Problem
•  Alan Turing proved that noncomputable functions exist by

finding an noncomputable function, known as the Halting
Problem.

•  Halting Problem:
•  Does a universal program H exist (hint: Can never exist!)

•  that can take any program P

•  and any input I for program P

•  and determine if P terminates/halts when run with input I?

59	

Halting Problem Cast in Python

•  Input:
•  A string representing a Python program
•  an input to that program

•  Output:
–  True, if evaluating the input program

would ever finish
–  False, otherwise

60	

Example
¤  Suppose we had a function halts that solves the Halting

Problem

¤  Given the functions below

halts(`add(10,15)’) halts(`loop()’)

 returns True returns False

61	

def add(x, y):
 return x + y

def loop():
 while True:
 pass

 halts on
 all inputs

loops
indefinitely

Proof by Contradiction (first step)

Assume a program H exists that requires a program P and an input I.
–  H determines if program P will halt when

P is executed using input I.

62	

H outputs YES
if P halts when run
with input I

H outputs NO
if P does not halt
when run with
input I

H
Halt checking

Program

YES

NO

Program P

Program’s	
input	I	

Implement a Halt Checker?

¤ Turing showed (by contradiction)
¤  halts is noncomputable
¤  halts function cannot exist.

63	

Why Is Halting Problem Special?

•  One of the first problems to be shown to be
noncomputable. (i.e. undecidable, unsolveable)

•  A problem can be shown to be noncomputable by
reducing the halting problem into that problem.

•  Examples of other nonsolveable problems: Software
verification, Hilbert’s tenth problem, tiling problem

64	

Living with Noncomputable Functions

•  Noncomputable (undecidable, unsolveable)
means there is no procedure (algorithm) that
1.  Always terminates

2.  Always give the correct answer

•  We should give up either one of these
conditions
–  We usually prefer to give up 2 (correctness in all cases)

–  For example, a virus detection software cannot detect if a
program is a virus for all possible programs. To be
computable, they need to give up correctness for some
cases.

65	

Summary: What Should You Know?

•  The fact that there are limits to what we can compute and
what we can compute efficiently all using a mechanical
procedure (algorithm) .
–  What do we mean when we call a problem tractable/

intractable?
–  What do we mean when we call a problem solveable (i.e.

computable, decidable) vs. unsolveable (noncomputable,
undecidable)?

•  What the question P vs. NP is about.

•  Names of Some NP-complete problems and amount of work
needed to solve them using brute-force algorithms.

•  The fact that Halting Problem is unsolveable and that there
are many others that are unsolveable.

66	

CONCLUDING REMARKS

67	

Course Objectives

Programming
skills

Exposure to selected
topics of current
interest and classic big
ideas

Computational
thinking

68	

Course Coverage

Programming in
Python

Debugging small
programs

Limits of computing
Artificial intelligence

Concurrency
Security

Computational
complexity

Algorithms and
data structures

69	

Where to Go From Here
¤ Done with computer science. You will be involved

in computing only as needed in your own
discipline?
¤  We believe you are leaving this course with useful skills.

¤ Grew an interest in computing. You want to explore
more?
¤  15-112 is taken by many who feel this way. It primarily

focuses on software construction.

¤ Considering adding computer science as a minor or
major?
¤  Great! We are happy to have been instrumental in this

decision.

70	

Thursday

¤  Review Session

¤  Optional, but come with questions!

¤  I will post a list of topics on Piazza/Canvas

¤  For exam: Pin down Friday 12-3PM
¤  Place TBD

¤  Those of you with conflicts we will accommodate somehow,
please stay tuned!

