
Randomness in Computation
Random Number Generators



Announcements

¤ PS8 Due Tomorrow

¤ PA9 Due July 28. At 11:59. Note that this is SUNDAY

¤ PS 9 Due July 30 (?)

¤ Lab 9 Tonight (Graphics)



Today

¤ Random Number Generation

¤ Using Pseudo Random Numbers



Yesterday:

¤Computer Organization:
¤Boolean Logic
¤Circuits
¤Organizing and Combining Circuits

¤Levels of Abstraction



Truth Table of a Circuit
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A B C Q

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

http://www.allaboutcircuits.com/vol_4/chpt_7/6.html

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))
Describes the relationship between 
inputs and outputs of a device

A Ù B

B Ú C

C Ù B

(B Ú C) Ù (C Ù B)

AND

AND

AND
OR

OR



Logical Equivalence
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A B C Q
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Q = (A Ù B) Ú ((B Ú C) Ù (C Ù B))

Q = B Ù (A Ú C)

AND

AND

AND

OR

OR

OR
AND

This smaller circuit is logically equivalent
to the one above: they have the same truth table.
By using laws of Boolean Algebra we convert a 
circuit to another equivalent circuit.



Describing Behavior of Circuits
¤ Boolean expressions

¤ Circuit diagrams

¤ Truth tables
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Equivalent notations

A
B

A
B

A Ú B
“OR”

¬ A
“NOT”

A  Ù B
“AND”

A
B

A
B

A
B¬(A Ù B)

“NAND”
¬(A Ú B)
“NOR”

A Å B
“XOR”



The circuit

3-bit odd parity checker
P = (¬A Ù ¬BÙ C) Ú (¬A Ù B Ù ¬C) Ú (A Ù ¬BÙ ¬C) Ú (A Ù B Ù C)
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A B C P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A

B

C
P

P = (A Å B) Å C



Using Minterms to Construct a Boolean 
Function from a Truth Table 

(bonus slide) 

As presented by Alvarado et. al. in CS for All:

1.Write down the truth table for the Boolean function that you are 
considering

2.Delete all the rows from the truth table where the value of the function is 
0

3.For each remaining row create a “minterm” as follows:
a. For each variable that has a 1 in that row write the name of the variable. If 

the input variable is 0 in that row, write the variable with a negation 
symbol. 

b. Take their conjunction (AND them together)

4.Combine all of the minterms using OR (take their disjunction)



A Full Adder

A

B

SCout

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B) 

S: 1 when there is an odd 
number of  bits that are 1

C out : 1 if  both A and B are 1 or, 
one of  the bits and the carry in 
are 1.

Cin
A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



Full Adder (FA)

1-bit
Full

Adder

A B

CinCout

S

S = A Å B Å Cin
Cout = ((A Å B) Ù Cin) Ú (A Ù B) 

More abstract 
representation 
of the above circuit. 
Hides details of the 
circuit above.



8-bit Full Adder

1-bit
Full

Adder

A0 B0

Cin

S0

1-bit
Full

Adder

A1 B1

S1

1-bit
Full

Adder

A7 B7

Cout

S7

1-bit
Full

Adder

A2 B2

S2

...

8-bit
FA

A B

CinCout

S

8  ⁄ ⁄ 8

⁄ 8

More abstract 
representation 
of the above circuit. 
Hides details of the 
circuit above.



Multiplexer (MUX)
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http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

¤ A multiplexer chooses one of  its inputs.

2n input lines, n selector lines,  and 1 output line 

A B F
0 0 D1

0 1 D2

1 0 D3

1 1 D4

D3
MUX

A B

F
D1
D2

D4

hides details of the
circuit on the left



Arithmetic Logic Unit (ALU)
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OP1OP0

http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html

OP0 OP1 F
0 0 A Ù B

0 1 A Ú B

1 0 A

1 1 A + B

Carry In & OP

Depending on the OP code Mux chooses 
the result of  one of  the functions (and, or, identity, addition)



Memory Layout
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Content
50
42
85
71
99

104:
108:

100:

112:
116:

Address

We saw this picture in Unit 6. 
It hid the bit representation 
for readability. Assumes that 
memory is  byte  addressable 
and each integer occupies 4 
bytes .

Content
… 01100100
… 01010100
… 01010101
… 01000111
… 01100011

01101000:
01101100:

01100100:

01110000:
01110100:

Address

In this picture and in reality, 
addresses  and memory 
contents are sequences of bits.   



Stored Program Computer

adder, multiplier, 
multiplexor, Etc.

instruction fetch, 
decode,
execute

program counter,
instruction register, 

Etc.

Two specialized registers: the instruction register holds the current instruction to 
be  executed and the program counter contains the address of the next 
instruction to be executed.



Fetch-Decode-Execute Cycle

¤Modern computers include control logic that 
implements the fetch-decode-execute cycle 
introduced by John von Neumann:
¤ Fetch next instruction from memory into the instruction 

register.
¤ Decode instruction to a control signal and get any data it 

needs (possibly from memory).
¤ Execute instruction with data in ALU and store results 

(possibly into memory).
¤ Repeat.
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Note that all of  these steps are implemented with circuits of  the kind we have seen in this unit.



Using Abstraction in Computer Design
¤ We can use layers of  abstraction to hide details of  the computer 

design.

¤ We can work in any layer, not needing to know how the lower 
layers work or how the current layer fits into the larger system.

transistors 
gates 
circuits (adders, multiplexors … )
central processing units (ALU, registers …)
computer

¤ A component at a higher abstraction  layer uses components from a 
lower abstraction  layer without having to know the details of  how it is 
built. It only needs to know what  it does.
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Low

High



Random Number Generators



Overview

¤The concept of randomness

¤Pseudorandom number generators
¤ Linear congruential generators

¤Using random number generators in Python

20



Randomness in Computing

¤Determinism: input           predictable output

¤Sometimes we want unpredictable outcomes
¤ Games, cryptography, modeling and simulation, selecting samples from 

large data sets, randomized algorithms

¤We use the word “randomness” for 
unpredictability, having no pattern

21



What is Randomness?

Tricky philosophical and mathematical question

Consider a sequence of integers. When is it 
“random”?

22



Some Randomness Properties

• A random sequence should not be biased: as length increases 
no element should be any more frequent than others

an unfair coin is biased (Long sequences will have more 
heads):

H T T H H T H H T T H T H H H T H …

Long sequences will have more heads than tails

• It’s not good enough to be unbiased: consider
010101010101010101010101010101…

Unbiased but predictable
23



Some Randomness Properties

¤ A random sequence should be unpredictable. What does that 
mean?

¤ We might try: given some part of the sequence, the next element is 
equally likely to be any possible number. 

¤ But consider the Champernowne sequence
011011100101110111100010011010…
(all binary integers concatenated in order)
¤ 0 and 1 are equally likely: half of each in long enough sequence)!
¤ but we always know the next digit!
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Some Randomness Properties

¤ A random sequence is dense in a precise sense measured 
by information entropy.

¤ Low-entropy sequences are predictable, e.g. in English 
we know the next letter is more likely to be e than z.

¤ Unpredictable sequences have high entropy.

¤ But so do some predictable ones!
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Some Randomness Properties

¤ A random sequence is incompressible: there’s no short 
rule describing what comes next

¤ E.g. digits of π 
14159265358979323846264338327950288…look 
random, but they can be generated by a rule so they are 
not a random sequence

¤ A procedure for calculating π is a compressed
representation of π

26



Random sequence should be

¤Unbiased (no “loaded dice”)

¤Information-dense (high entropy)
¤ Unpredictable sequence have high entropy

¤Incompressible (no short description 
of what comes next)
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Randomness is slippery
¤ In summary, “random” means something like this: 

No gambling strategy is possible that allows a winner in 
the long run.

¤ Non-randomness:   can be detected and proved
¤ Randomness:     hard-to-impossible to prove

¤ Often we settle for 
¤ “this sequence passes some tests for randomness”:
¤ high entropy
¤ passes chi-square test
¤ …

¤ Example: see http://www.fourmilab.ch/random/



Randomness in computing
Why do we want it? How do we get it?
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Why Randomness in 
Computing?

¤ Internet gambling and state lotteries

¤ Simulation 
¤ (weather, evolution, finance [oops!], physical and biological sciences, …)

¤ Monte Carlo methods and randomized algorithms 
¤ (evaluating integrals, …)

¤ Cryptography 
¤ (secure Internet commerce, BitCoin, secret communications, …)

¤ Games, graphics, and many more

30



True Random Sequences
¤ Precomputed random sequences. 

¤ For example, A Million Random Digits with 100,000 Normal 
Deviates (1955): A 400 page reference book by the RAND 
corporation
o 2500 random digits on each page
o Generated from random electronic pulses 

¤ True Random Number Generators (TRNG)
o Extract randomness from physical phenomena

o atmospheric noise, times for radioactive decay

¤ Drawbacks:
o Physical process might be biased

(produce some values more frequently)
o Expensive
o Slow

31



LavaRand



Pseudorandom Sequences

¤ Pseudorandom number generator (PRNG): 

Algorithm that produces a sequence that looks random 

(i.e. passes some randomness tests)

¤ The sequence cannot be really random! 

An algorithm produces known output, by 
definition.

33



(Pseudo) Random Number 
Generator

¤ A (software) machine to produce sequence x1, x2, x3, x4, x5,… 
from x0

¤ Initialize / seed:

¤ Get pseudorandom numbers:

34

x0

x1

x2



(Pseudo) Random Number 
Generator

¤ A (software) machine to produce sequence x1, x2, x3, x4, x5,… 
from x0

¤ Initialize / seed:

¤

35

x0

x1

x2

Idea: internal state determines the next number      

Get pseudorandom 
numbers (f is a function
that computes a number):



Simple PRNGs

¤Linear congruential generator formula:

xi+1 = (a xi + c) % m

a, c, and m are constants

¤Good enough for many purposes
…if a, c, and m are properly chosen

36

x0

x1



Example Linear Congruential
Generator (LCG)

current_x = 0 # global internal state/ seed
def prng_seed(s) :      # seed the generator

global current_x
current_x = s

def prng_fn(n):         # LCG (a = 1, c = 7, m = 12)
return (n + 7) % 12)

def prng() :            # state updater
global current_x
current_x = prng_fn(current_x)
return current_x

First 12 numbers: 1, 8, 3, 10, 5, 0, 7, 2, 9, 4, 11, 6

Does this look random to you?



Example LCG

First 20 numbers:

5, 0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 
5, 0, 7, 2, 9, 4, 11, 6, ?

Random-looking?

• What do you think the next number in the sequence is?

• Moral: just eyeballing the sequence not a good test of randomness!

• This generator has a period that is too short: 
It repeats too soon.
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Another PRNG

def prng2(n):

return (n + 8) % 12 # a=1, c=8, 
m=12

>>> prng_seed(6)

>>> for i in range(12)

[8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4, 0]

39

Random-looking?

Moral: choice of a, c, and m crucial!



PRNG Period

Let’s define the PRNG period as the number of values in the 
sequence before it repeats.

5, 0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10,
5, 0, 7, 2, 9, 4, 11, 6, …

8, 4, 0, 8, 4, 0, 8, 4, 0, 8, …

We want the longest period we can get!

40

prng1, period = 12   next number =  (last number + 7) mod 12

prng2, period = 3 next number =  (last number + 8) mod 12



Picking the constants a, c, m

• Large value for m, and appropriate values 
for a and c that work with this m               

a very long sequence before 
numbers begin to repeat.

• Maximum period is m

41



Picking the constants a, c, m
The LCG will have a period of m (the maximum) if and 
only if:

1. c and m are relatively prime 
(i.e. the only positive integer that divides both c and m is 1)

2. a-1 is divisible by all prime factors of m
3. If m is a multiple of 4 , then a-1 is also a multiple of 4

(Number theory tells us so)

If c and m are not relatively prime,
then c = pk and m = qk for some k.

-> After q/p iterations you
come back to the seed



Picking the constants a, c, m

¤Example: prng_fn (a = 1, c = 7, m = 12)
¤ Factors of 7: 1, 7    Factors of 12: 1, 2, 3, 4, 6, 12
¤ 0 is divisible by all prime factors of 12 à true
¤ if 12 is a multiple of 4 , then 0 is also a multiple of 4 à

true

¤prng_fn will have a period of 12
43



Exercise for you

xi+1 = (5xi + 3) modulo 8

x0 = 4 a = 5 c = 3 m = 8

• What is the period  of this generator? Why?

• Compute x1, x2, x3 for this LCG formula.

44



Exercise for you

xi+1 = (5xi + 3) modulo 8

x0 = 4 a = 5 c = 3 m = 8

¤ Factors of 3: 1, 3    Factors of 8: 1, 2, 4
¤ 4 is divisible by all prime factors of 8 à true
¤ If 8 is a multiple of 4 , then 0 is also a multiple of 4 à true

45



LCGs in the Real World

¤glibc (used by the compiler gcc for the C 
language):
a =1103515245, c = 12345, m = 232

¤Numerical Recipes (popular book on numerical 
methods and analysis):
a = 1664525, c= 1013904223, m = 232

¤Random class in Java:
a = 25214903917, c = 11, m = 248
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Some pitfalls of PRNGs

¤Predictable seed. Example: famous Netscape 
security flaw caused by using system time as seed.

¤Equal sequences of random numbers are possible 
when running many applications at the same time.

¤Hidden correlations between successive values in 
the  sequence of x values.

¤High quality but slow

47



Finding hidden correlations

48



Finding hidden correlations

49



Advice from an expert

• Get expert advice J

A good generator is not so easy to find if 
one sets out to design it by oneself, without 
the necessary mathematical background. 
On the other hand, with the references and 
links we supply, a good random number 
generator designed by experts is relatively 
easy to find. 
– P. Hellekalek 
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Using random number generators 
in Python
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Random integers in Python
¤ To generate random integers in Python, we can use the randint function 

from the random module.

¤ randint(a,b)   returns an integer n such that 

a ≤ n ≤ b (note that it’s inclusive)

>>> from random import randint

>>> randint(0,15110)

12838

>>> randint(0,15110)

5920

>>> randint(0,15110)

12723
55



List Comprehensions

• One output from a random number generator not so 
interesting when we are trying to see how it behaves
>>> randint(0, 99)

42
So what?

• To easily get a list of outputs
>>> [ randint(0,99) for i in range(10) ]

[5, 94, 28, 99, 34, 49, 27, 28, 65, 65]

>>> [ randint(0,99) for i in range(5) ]

[69, 51, 8, 57, 12]

>>> [ randint(101, 200) for i in range(5) ]

[127, 167, 173, 106, 115]

57



Some functions from the random module

>>> [ random() for i in range(5) ]

[0.05325137538696989, 0.9139978582604943, 
0.614299510564187, 0.32231562902200417, 
0.8198417602039083]

>>> [ uniform(1,10) for i in range(5) ]

[4.777545709914872, 1.8966139666534423, 
8.334224863883207, 3.006025360903046, 
8.968660414003441]

>>> [ randrange(10) for i in range(5) ]

[8, 7, 9, 4, 0]

>>> [randrange(10, 101, 2) for i in range(5)]

[76, 14, 44, 24, 54]
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>>> colors = ['red', 'blue','green', 
'gray', 'black']

>>> [ choice(colors) for i in range(5) ]
['gray', 'green', 'blue', 'red', 'black']

>>> [ choice(colors) for i in range(5) ]
['red', 'blue', 'green', 'blue', 'green']

>>> sample(colors, 2)
['gray', 'red']

>>> [ sample(colors, 2) for i in range(3) ]
[['gray', 'red'], ['blue', 'green'], 
['blue', 'black']]

>>> shuffle(colors)
>>> colors
['red', 'gray', 'black', 'blue', 'green']



In practice…



Adjusting Range
• Suppose we want to use our LCG with period n (n is very large)

• … but we want to play a game involving dice.

(each side of a die has a number of spots from 1 to 6)

• How do we take an integer between 0 and n, and obtain an 
integer between 1 and 6?
• Forget about our LCG and use randint(?,?)

Great, but how did they do that?
61



Adjusting Range

¤ Specifically: our LCG is the Linear Congruential Generator of glib 
(period = 231 = 2147483648)

¤ We call prng() and get numbers like
1533190675, 605224016, 450231881, 1443738446, …

¤ We define:

¤ What’s the smallest possible value for prng() % 6 ?

¤ The largest possible?

62

def roll_die():
roll = prng() % 6 + 1
assert 1 <= roll and roll <= 6 
return roll



Random range

¤ Instead of rolling dice, we want to pick a random (US) presidential election 
year between 1788 and 2012

¤ election years always divisible by 4

¤ We still have the same LCG with period 2147483648. 

What do we do?
¤ Forget about our LCG and use randrange(1788, 2013, 

4)

Great, but how did they do that?

63



• Remember, prng() gives numbers like
1533190675, 605224016, 450231881, 1443738446, …

64

Random range

def election_year() :
year = ?
assert 1788 <= year and year <= 2012 and year % 4 == 0
return year



• First: Let’s generate a random number 0, 1, 2,… One for every election year.

• Think, how many numbers are there in the range we want?  That is, how many 
elections from 1788 to 2012?
o 2012 – 1788? No! 
o (2012 – 1788) / 4? Not quite! (there’s one extra)
o (2012 – 1788) / 4 + 1 = 57 elections

65

Random range

def election_year() :

year = ?
assert 1788 <= year and year <= 2012 and year % 4 == 0
return year

election_number = prng() % ( (2012 - 1788) // 4  + 1)
assert 0 <= election_number and election_number <= 56



• Okay, but now we have random integers from 0 through 56
o good, since there have been 57 elections
o bad, since we want years, not election numbers 0 … 56

66

Random range

def election_year() :
election_number = prng() % ( (2012 - 1788) // 4  + 1)
assert 0 <= election_number and election_number <= 56
year = 
assert 1788 <= year and year <= 2012 and year % 4 == 0
return year

election_number * 4 + 1788



Sample output:

The same reasoning will work for a random sampling of any 
arithmetic series. Just think of the series and let the random number 
generator take care of the randomness!

• How many different numbers in the series?
If there are k, randomly generate a number from 0 to k.

• Are the numbers separated by a constant (like the 4 years between 
elections)? 

If so, multiply by that constant.
• What’s the smallest number in the series? 

Add it to the number you just generated.
67

Random range

>>> [ election_year() for i in range(10) ]
[1976, 1912, 1796, 1800, 1984, 1852, 1976, 1804, 1992, 1972]


