Data Representation and
Compression

(cMon

Announcements

The first lab exam is tonight, during the lab session.
O You may use your own computer

PA6 due tonight

PA 7, PS 7 and Lab 8 on July 24th

Today: Data Compression

Data Compression
O Lossless vs lossy

Measuring Information
a Algorithmic Information Theory
d Shannon's Information Theory

Data Compression: Encoding
Data Compression: Decoding
Huffman Coding

Parity Bits

Review:

Data Representation

You should be able to

Count in unsigned binary
0,1,10, 11,100, ...

Add in binary and know what overflow is

Determine the sign and magnitude of an infeger
represented in two's complement binary

Determine the two's complement binary representation
of a positive or negative integer

Representing Data

machine storage

“A”
ABCDEF “A”
encodé decod

Keyboard Screen

\] | } \ }
! | |

External representation Internal representation External representation

Computers speak in binary

Binary: A pair of opposites
O On or Off

O YesorNo

O Oand |

Computers speak in binary

Binary: A pair of opposites
O On or Off

O YesorNo

O Oand |

Where does binary come frome
O Computers are powered by electricity
O Elecitricity either goes through or doesn’t go through a wire

On (1) or Off (o)

@ . ——Q/.__

Machine storage

Bit == the smallest piece of information the computer can store
O O'sand 1'srepresent the bits

(smallest unit) 1 byte = 8 bits
(biggest chunk) 1 word = 16, 32 or 64 bits (depending on your machine)

Machine storage capacity is expressed as bytes and words

Bits

Nyb | Nyb [Nyb [Nyb | Nyb [Nyb | Nyb | Nyb [Nyb | Nyb [nyb | Nyb | Nyb | Nyb | Nyb [Nyb
ble | ble | bie | bie | ble | bie | bie | bie | bie | ble | bie | bie | ble | bie | ble | ble

Byte Byte Byte Byte Byte Byte Byte Byte

Word Word Word Word

Long Word Long Word

Very Long Word

Too many jokes..

There are only 10 types

of people in the world:
Those who understand 'binary
and those who, don't:

Representing

Non-negative (unsigned)
INnfegers

representing non-negative integers (0, 1, 2, 3, ...)

Encoding algorithm:

convert quantity fo a given base

Choose a number b for the base or radix

Choose list of digits, there must be b of them
O base 10 example:0,1,2,3,4,5,6,7,8,9

O base 2 example: 0, 1

O base 16 example: 0,1, ...,9,A,B,C,D,E F

To represent a quantity n in base b

O integer divide n by b with remainder r (a digit)
O repeat until the quotient is zero

O the remainders are the digits in reverse order

Encoding algorithm:
convert quantity fo a given base

To represent n=6 with b=2
O 6//2=3, r=0
a3//2=1,

O 1//2=0, r=1

Binary numeral: 110

What it means:
Ox20+ 71 x 21+] x 22="gjx"

To represent Nn=2019 with b=10
O 2019//10, r=9
a 201//10, r=l
o 20//10, r=0
a 2//10, r=2

Decimal numeral: 2019

What it means:
9x 100+ 1 x10"+0x102+2x 103=
*“two thousand and nineteen”

Decoding algorithm for Encoding Algorithm for
unsigned (non-negative) integers | unsigned (non-negative) integers
(decode 1010) (encode 6)

Binary numeral: 1010 ,
To represent n=6 with b=2

What it means: - 6//2=3, r=0

- 3//2=1,
Ox20+ 1 x21+0x%x22+ 1 x23 - 1//2=0, r=1
=10

Binary numeral: 110

Binary Arithmetic

some familiar operations

Counftfing In binary

Binary numerals

0

1

10
11
100
101
110
111
1000
1001
1010
1011

Decimal equivalents

— = 00O NO~Or MWD —O

— O

Binary Arithmetic 0

All the familiar methods work, but with only 1 and O for
digits

1+1=10,10-1=1,10+1=11, ...

Example:
1 1 Nofice: we need more bits
1010 for the answer than we
+1010 did for the operands.

10

Overtlow: the first difficulty

Machine word only has k bits for some fixed k!

If kK is 4, then we have overflow in the following:
1 1
1010
+1010

The machine retains only 0100 (the “least significant™
bits), so (h+n) —n not always equal ton + (n —n)

Modular Arithmetic

O Dropping the overflow bit is modular arithmetic

O We can carry out any arithmetic operation modulo 2%
for the precision k. The example again for precision 4.

15 U1
binary decimal
1010 = 10 13 3
+ 1010 = 10 5
(1)0100 = 20 = 4 (20 mod 16)

11
overflow can be ignored or signaled as an error

Representing

Negative (signed)
INnfegers

21

Two's complement is an approach for

representing negative integers

Define negative by addition: -x is value added to x to get O

Process:

1. Write out the number in binary
2. Invert the bits

3. Add 1
From and To two’s complement use an identical process

How does this worke Overflow...

Two's complement is an approach for

representing negative integers

Decoding Algorithm for
negative integers
(decode 1010, 4 bits)

Encoding Algorithm for
negative integers
(encode -52 in 8 bits)

Sign: look at leftmost bit

O 1 means negative, 0 means positive
e.g. with four bits 1010 represents a
negative number

Magnitude: if negative, compute the two's
complement

O flip each bit (one’s complement)
e.q. flip 1010 to get 0101

O thenadd 1 (in base 2!l)
e.g. 0101 + 0001 =0110, or
Ox20+1x21+1x22+0x28=6

O voila! 1010 represents negative six

Start by encoding +52
O 52 = 00110100

Flip each bit (one’s complement):
O flipp 00110100 to get 11001011

Add 00000001

O 11001011 + 00000001
O = 11001100

O = -52

22

Range of Two's Complement

Representations
(for k bits)
0...0
1 00...01
positive
integers
and zero 00..00 0
00..01 +1
01..11 +2k-1-1
, 10...00 —2k-1
negative
integers

11..11 -1

23

Negafive vs Non-negative

(Signed vs Unsigned)
INnfegers

k bits can represent 2« different things!

k bits can represent 2« different things!

Representing Representing
non-negative (unsigned) negative (signed) integers
integers (two's complement)

k bits can represent 2« different things!

Representing Representing
non-negative (unsigned) negative (signed) integers
integers (two's complement)

k bits can represent 2% things k bits can represent 2% things

OFork=3,23=8 OFork=3,23=8

27

k bits can represent 2« different things!

Representing Representing
non-negative (unsigned) negative (signed) integers
integers (two's complement)

k bits can represent 2% things k bits can represent 2% things

OFork=3,23=8 OFork=23,23=8

Represent non-negative integers Represent negative and non-

negative integers
0...2k-1
Fork=3: 0,1,2..,6,7 -2k-1 | 42k-1_1

Fork=3: -4, ..,0, 3

k bits can represent 2« different things!

Representing Representing
non-negative (unsigned) negative (signed) integers
integers (two's complement)

k bits can represent 2% things k bits can represent 2% things

OFork=3,23=8 OFork=3,23=8

Represent non-negative integers Represent negative and non-

negative integers
0...2k-1
Fork=3: 0,1,2..,6,7 -2k-1 | 42k-1_1

Fork=3: -4, ..,0, 3

29

k bits can represent 2« different things!

Representing Representing
non-negative (unsigned) negative (signed) integers
integers (two's complement)

k bits can represent 2% things k bits can represent 2% things

OFork=3,23=8 OFork=23,23=8

Represent non-negative integers Represent negative and non-

negative integers
0...2k-1
Fork=3: 0,1,2..,6,7 -2k-1 | 42k-1_1

Fork=3: -4, ..,0, 3

30

k bits can represent 2« different things!

Representing
non-negative (unsigned)
integers

k bits can represent 2% things
OFork=3,23=8

Represent non-negative integers

0...2k-1
Fork=3: 0,1,2...,6,7

Encoding/Decoding
O Convert fo and from base 2

Representing
negative (signed) integers
(two's complement)

k bits can represent 2% things
OFork=3,23=8

Represent negative and non-
negative integers

—2k-1 | 42k-1o]
Fork=3: -4, ..,0, 3

Encoding/decoding

O If negative, flip, add 1; if positive
convert from base 2

31

For k = 4, binary representation

non-negative
0123..15

outer circle

non-negative + negative

-8,-7,...06,7

inner circle

32

k bits can represent 2« different things!

Representing

Representing negative integers
non-negative integers (two's complement)
bits minimum maximum bits minimum maximum
(0) (2+-1) (-2k1) (+2+1-1)
8 0 28-1 (255) 8 27 =-128 27— 1=+127
16 0 2161 (65,535) 16 =215 215]
=-32,768 =+32,767
32 0 2321 (4,294,967,295)
32 2% 231 -1
64 0 64 _ 1 =-2,147,483,648 = +2,147,483,647
(18,446,744,073,709,551,6
15) 64 263 263 1

-9,223,372,036,85 +9,223,372,036,85
4,775,808 4,775,807

33

34

From whole numbers to
rational numbers

>>>
>>>
0.1
>>>
>>>

0.2

>>> X + vy

y
y

= 2/10 Ack!

Rounding in binary

python prints a rounded value

= 1/10

most decimal
fractions cannot be
Whyyyy? represented exactly
as binary fractions!!

0.30000000000000004

35

36

Why is 1/10 not exactly .1¢

Let's compute 1/10 using binary long division:
.000110011...
1010) 1.000000000....
1010
1100

we get a repeating series
of digits 11001100...

same

Similar in decimal to:
1/3 =0.33333...

37

Real Numbers in the Machine?

Real numbers measure continuous quantities; can we
represent them exactly in the machine@

Not possible with a fixed number of bits

Can only approximate by rational numbers using floating
point representations

e.g. 7 =3.14159

Floating point is based on scientific
notation
Age of the Universe in years:

el]O]O\

sign mgmﬂcand exponent
or mantissa

(1 bit) (23 bits) (8 bits)

Idea: use same method, but with a binary numtber for
each part (and remember, a fixed number of bits)

38

Binary and fractions

Decimal 5.75 can be represented in binary as follows,
because .75="2+ 4 =21+ 272

5.75=5+0.75

=101 +0.11 (i.e. 271+ 22
=101.11=1.0111 x 100 \
|decimal | i
In binary floating point the mantissa is a binary fraction,

exponent is a binary integer, and the base of the exponent is
always 2

101.11 has mantissa 1.0111 and exponent 10

Float point in binary

2 (Twos) 1/2 (Halves)

2x2 (Fours) Ones /1/(2x2) =1/4

2x2x2 (EighTs)_\x l / 1/(2x2x2) = 1/8
\ /—

1101.101

; 2x BiJgg_er

—
2x Smaller

—_ 4?

1/10 (tenths)

Ones Decnmal Point 1/100 (hundredths)
Tens 1/ 1000 (thousandths)
10x Blgger'

< —

10x Smaller

—_ —

40

Float point in binary

2 (Twos) 1/2 (Halves)

2x2 (Fours) AN Ones / 1/(2x2) = 1/4

2x2x2 (EighTs)_\x l / 1/(2x2x2) = 1/8
/_

1101.101

; 2x BiJgg_er

—
2x Smaller

—_ ?

1x2° 1x2? 0x2' 1x2° 1x2" 0x27 1x2° 1x2°

171701.101 1

8 4 0 1 | 056 0 0425 0.0625
Binary point

8+44+0+1+405+0+0.125+0.0625 = 13.6875 (Base 10)

4]

Data Compression

squeezing out redundancy

Data Compression: Whye

Faster transmission
O e.g. digital video impossible without compression

Cheaper storage

O e.g. OS X Mavericks compresses data in memory until
it needs to be used

43

Compression and decompression

Reduce storage and for faster transfer of data
over networks

Input—> compress Co”:}pressed > decompress > Output
ata

Compression and decompression

Reduce storage and for faster transfer of data
over networks

Input—> compress Co”:}pressed > decompress > Output
ata

Would like two easily computable functions:
compress (m)

decompress (m)

with len (compress(m)) < len (m)

Types of data compression

Lossless -
O encodes the original information exactly.

Lossy -
O approximates the original information.

Data Compression: choices

good but
can be hard

to get

47

Data Compression: choices

sometimes
good enough

48

Some Considerations

What types of files would you use a
lossless algorithm on?

What types of files would you use a
lossy algorithm on?

Measuring information

What is information?

information(n): knowledge communicated or
received, or the act or fact of informing

O Implicitly: a message, a sender, and a receiver

How can we quantify how much information a
message contains?

Which has more information?

023514 795 084664452746

(A) (B) (C)

More Digits = More Information
Right?

Memorizing

Volunteer to memorize 10 digits

2737761413

Volunteer to memorize 100 digits

A444444444444444444444444444444444
A444444444444444444444444444444444
A4444444444444444444444444444444

Memorizing

10-digit volunteer: What was the 8th digit?
100-digit volunteer: What was the 78th digit?
Which is easier to memorize?

Which contains more information?

55

Memorizing

Another volunteer to memorize 100 digits

48599377668248052998391790815047514509135243
67800673622844553973169223820421306174607612
086978543115

Is that harder to memorize than:

A444
AA4A44
444444444444

Why?
Which contains more information?

56

A key observation: redundancy

Not all messages are equal

O Some messages convey more information than
others

O Some messages are more likely to occur than
others

In data compression our goal:

O encode messages so that each bit conveys as
much information as possible

Measuring information with:
Algorithmic information theory

Idea 1: Algorithmic

information theory

The amount of information

in @ sequence of digits

is equal to

the length of the shortest program

that prints those digits.

59

Write a statement to print

AA44
AA44
444444444444

for i in range(100):

print("4", end="")

60

Write a statement to print

485993/77668248052998391/90815047/
514509135243678006/3622844553973

1692238204213061746076120869/7854
3115

orint("4859937766824805299839179081
50475145091352436780067362284455

39731692238204213061746076120869
/78543115")

Therefore,

Algorithmic Information Theory says:

ocoulh
NOOO
owuUl
A= O
NWWO
=010
NN
(@ NAQ N
WO
= OYO)
NIN00
SOON)
(@) @ AN
OO0
NOO
(@) [0
N
NOYO
ONVO
CONJCO
aYooW
OhLhO
D=
00]82 RN
@2[0x1\0
ADWO
W0
=N
= GIUT
U1I—,O

(@) AN

O\

NU1

N—

wW-h

contains more information than

A4444444444444444444444444444444444
A4444444444444444444444444444444444
A44444444444444444444444444444

62

Pi and information

How much information is stored in
the digits of pi?

In case they slipped your mind...

Pi 10000

3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306
6470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867
8316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789
2590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351
8857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184
6766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995
6112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522
3082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937
5195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296
8995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927
7016711390098488240128583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694
9129331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600
9341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499
1198818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481
6136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179049460165
3466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285
0222106611863067442786220391949450471237137869609563643719172874677646575739624138908658326459958133904780275900994657
6407895126946839835259570982582262052248940772671947826848260147699090264013639443745530506820349625245174939965143142
9809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049
9725246808459872736446958486538367362226260991246080512438843904512441365497627807977156914359977001296160894416948685
5584840635342207222582848864815845602850601684273945226746767889525213852254995466672782398645659611635488623057745649
8035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824
9385890097149096759852613655497818931297848216829989487226588048575640142704775551323796414515237462343645428584447952
6586782105114135473573952311342716610213596953623144295248493718711014576540359027993440374200731057853906219838744780
8478489683321445713868751943506430218453191048481005370614680674919278191197939952061419663428754440643745123718192179
9983910159195618146751426912397489409071864942319615679452080951465502252316038819301420937621378559566389377870830390
6979207734672218256259966150142150306803844773454920260541466592520149744285073251866600213243408819071048633173464965
1453905796268561005508106658796998163574736384052571459102897064140110971206280439039759515677157700420337869936007230
5587631763594218731251471205329281918261861258673215791984148488291644706095752706957220917567116722910981690915280173
5067127485832228718352093539657251210835791513698820914442100675103346711031412671113699086585163983150197016515116851
7143765761835155650884909989859982387345528331635507647918535893226185489632132933089857064204675259070915481416549859
4616371802709819943099244889575712828905923233260972997120844335732654893823911932597463667305836041428138830320382490
3758985243744170291327656180937734440307074692112019130203303801976211011004492932151608424448596376698389522868478312
3552658213144957685726243344189303968642624341077322697802807318915441101044682325271620105265227211166039666557309254
7110557853763466820653109896526918620564769312570586356620185581007293606598764861179104533488503461136576867532494416
6803962657978771855608455296541266540853061434443185867697514566140680070023787765913440171274947042056223053899456131
4071127000407854733269939081454664645880797270826683063432858785698305235808933065757406795457163775254202114955761581
4002501262285941302164715509792592309907965473761255176567513575178296664547791745011299614890304639947132962107340437
5189573596145890193897131117904297828564750320319869151402870808599048010941214722131794764777262241425485454033215718
5306142288137585043063321751829798662237172159160771669254748738986654949450114654062843366393790039769265672146385306
7360965712091807638327166416274888800786925602902284721040317211860820419000422966171196377921337575114959501566049631
8629472654736425230817703675159067350235072835405670403867435136222247715891504953098444893330963408780769325993978054
19341447377441842631298608099888

64

This C program is just 143 characters long!
long a[35014] ,b,c=35014,d,e,f=1e4,g,h;
main () {for (;b=c-=14;h=printf ("%041d" ,e+d/f))

for (e=d%=f;g=--b*2;d/=g) d=d*b+£f* (h?a[b]:£f/
5), a[b]l=d%--g;}

And it “decompresses” into the first 10,000 digits of
Pi.

65

Program-size complexity

There is an interesting idea here:

O Find the shortest program that computes a
certain output

O A very important idea in theoretical computer
science. Can be used to define incompressible
data (no shorter program will produce these
data).

66

Measuring information with:
Shannon Information Theory

Idea 2: Shannon
information theory

We measure information content in
bits
O We can represent 2* different symbols with k bits.

O Turn the idea around: if we want to represent M
different things, we need log, M bits

But this is only true if the M things all
have the same probability

68

47514
69223

couth=Z
NOOO
owuUl ||
A= O
NWWO
=010
NN
(@ NAQ N
WO
= OYO)
NIN00
SOON)
(@) @ AN
OO0
NOO
(@) [0
N
NOYO
ONVO
CONJCO
aYooW
OhLhO
D=
00]82 RN
@2[0x1\0
ADWO
W0
=N
= GIUT
U1I—,O

VS

M=
A4444444404444444404444444444444444
A4444444444444444444444444444444444

A44444444444444444444444444444

69

A key observation: redundancy

Not all messages are equal

O Some messages convey more information than
others

O Some messages are more likely to occur than
others

In data compression our goal:

O encode messages so that each bit conveys as
much information as possible

47514
69223

couth=Z
NOOO
owuUl ||
A= O
NWWO
=010
NN
(@ NAQ N
WO
= OYO)
NIN00
SOON)
(@) @ AN
OO0
NOO
(@) [0
N
NOYO
ONVO
CONJCO
aYooW
OhLhO
D=
00]82 RN
@2[0x1\0
ADWO
W0
=N
= GIUT
U1I—,O

VS

M=
A4444444404444444404444444444444444
A4444444444444444444444444444444444

A44444444444444444444444444444

Probability and information content

Low probability events have high information content;
when you learn of them you get a lot of new information
O Barack Obama called me today!!!

O 56739594662393456

High probability events have low information content.

O The sun rose in the east this morning. Meh

O 4444444444444444

Low probability events need more bits than high

O Low probability events contain more information than high probability events

72

Entropy the definition

H=3 pilogy ~

1
i=1 P

« Suppose a source of M different symbols with probabilities p;, p,, ...
Pmr
« His the entropy of the source (average number of bits/symbol)
« For each probability p; we multiply p; times log 1/p;, and we add
up the results

73

Entropy the definition

H=3 pilogy ~

1
i=1 P

Suppose a source of M different symbols with probabilities p;, p,, ...
Pmr
H is the entropy of the source (average number of bits/symbol)
« For each probability p; we multiply p; times log 1/p;, and we add
up the results

flips of an unfair
coin

Example: two symbols, H with probability 0.75 and T with probability
0.25;

H=0.75*log (1/0.75) + 0.25 * log (1/0.25) = 0.75 * 415+ 0.25* 2 = .
81125

Roughly speaking this says each flip of our unfair coin carries less than
one bit of information.

74

Entropy the definition

M

' 1
H = ZP:’ log, —
i=1 P
« Suppose a source of M different symbols with probabilities p;, p,, ...

Pmr
« His the entropy of the source (average number of bits/symbol)
« For each probability p; we multiply p; times log 1/p;, and we add
up the results

« Why do we care about entropy?

« Tells us the minimum number of bits we need 1o encode each
symbol in message M
« Compression!

75

Data Compression: Encoding

squeezing out redundancy

2 common compression
strategies:

Exploit character-by-character non-

uniformity

Oe.g., in English Pr['a’] = 0.0817 but Pr['b’] =
0.0149

Exploit patterns between multiple
characters
Oe.g. ‘q’ is almost always followed by ‘u’

Character-by-character coding

Suppose each message m is a
sequence of characters in some
alphabet A = {a,, a,, .., a,}
Oe.g., A = the English alphabet,

Try 1: Character-by-character coding

encode (m) outputs:

1. An optional header containing any extra
information needed for decode

2. A sequence of bits encoding each character of m

O i.e., codetable (m)

code (m,) code (m,) ..code (m_)

An example code table:

code(x)

a

=~ O o0 T

000
001
010
011
100
101

Try 1: Fixed length codes

r code(x)

encode (“deadbeef”) = 000
011100000011001100100101 "
d e a d b e e £ oo

What is decode (f 101
“001000011010100011100”) ?

b a d ¢ e d e

« Example: ASCII, Unicode
« Easy, but no compression

A codeword is simply a binary string

A code is a set of codewords and their
meanings

Must each codeword in a code necessarily

have the same length? I.e. is every code a
fixed length code?

(E.g., Morse code - not binary)

81

Try 2: A non-code example

Code words don’t all need to be the same
length

r code(x)

b 01
C 10

Try 2: A non-code example

Code words don’t all need to be the same
length

But not all codes have a unique decoding:
encode (“ba”) = 010 v code(x)
encode (“ac”) = 010 2 0
decode (“010") = 2 b 01

C 10

Try 3: Better, but more annoying...

« This code is fine in principle r code(x)
(everything is uniquely a 00
decodable). b 01

C 001

« But decode is too hard. Try to d 011

decode ¢ 11

00001011010011

Try 3: Better, but more annoying...

x code(x)

« What is decode (00
“00001011010011") ? b Ul

/gl /e i C 001
d 011

e 11

a c¢ d b a e
— How do you decode?

— By trial and error, looking past
the current the current, back and
forth, hoping everything will work
out in the end.

— This look-ahead approach is too
cumbersome.

What makes a code good?

Uniquely decodable
Easy to decode (nho lookahead)

Encoded messages are short

Prefix (a.k.a. prefix-free) codes

A code is a prefix code if code (x) is not a prefix of
code (y) for any x#y

O egq, r code(x)
a 000
b 001
C 010
d 011
o 100
t 101

(in fact, any fixed-length code is a prefix code)

Bad and annoying, revisited

Is this a Prefix code?

No: code (‘a’) is a prefix of code (‘b’) .

r code(x)

a 0
b 01
C 10

88

Bad and annoying, revisited

r code(x)

Is this a Prefix code? a 0
. . b 01
No: code (‘a’) is a prefix of code (‘b’) . . 10

r code(r)
Is this a Prefix code? a 00
No: code (‘a’) is a prefix of code (‘c’). b 01
Also, code (‘b’) is a prefix of code (‘d"). C 001
d 011

e 11

89

Another Example:

r code(r)
Is this a Prefix code? a 0

b 11

C 10

Yes!

20

Prefix codes are uniquely decodable

Let b,b,..b_ be the bits of a coded message.

Read off the bits from left to right until
b,b,.b, = code (x) for some x.

Note that k and x are both uniquely determined;
otherwise we’'d have found a prefix.

Repeat from b, ., until done.

Note: Prefix codes require no lookahead.

Data Compression: Decoding

Decoding prefix coded messages

Use a binary “prefix” tree

Start at root, walk left for each “0”, walk right for
each “1” until you reach a leaf

Return to root after you decode a character

&

000

/ \ r code(x)
O

S g
Jhdbdy

Use a binary “prefix” tree

Start at root, walk left for each “0”, walk right for
each “1” until you reach a leaf

Return to root after you decode a character

/ \ .:; r.'mltl[')

/ b 0

An optimal prefix tree is Full

Full: every node

O Is a leaf, or
O Has exactly 2 children.

a=1, b=001, c=000, d=01

Why a full binary tree?

A node with no sibling
can be moved up 1

level, improving the
code.

An optimal prefix code
for a string can always

be represented by a full
binary tree.

Huffman Codes

The Hawaiian Alphabet

The Hawaiian alphabet consists of 13
characters.

O ' isthe okina which
sometimes occurs between

vowels (e.. KAMA'ATINA)

-

sSS v 0 Z2 R HR H T H P

98

Specialized fixed-width encodings

Suppose our text file is entirely in Hawaiian

How many bits do we need for our 13 characters?
O Are 3 bits enoughe 000, 001, ..., 111%2
O Are 4 bits enoughe 0000, 0001, ..., 111172

In general, for k equally probable characters we need
[log, k] bits

So for Hawaiian we need [log, 13] = 4 bits

99

The Hawaiian Alphabet:

fixed-width encodings

-

The Hawaiian alphabet consists of 13
characters.

E:

S Qv o0 Z2R PP RHITD H P
N/ BN VB 2 N R 2N 2 20 20 0 2\ 2
o
=
=
o

100

Cost of Fixed-Width Encoding

With a fixed-width encoding scheme of n bits and a file
with m characters, need mn bits to store the entire file.

O Example: to store 1000 characters of Hawaiian we would need
4000 bits

Can we do better? Idea: some characters are used much
more often than others.

O If we assign fewer bits to more frequent characters, and more
bits to less frequent characters, then the overall length of the
message might be shorter.

Use a method known as Huffman
encoding named after David
Huffman

Huffman Codes

A type of optimal prefix code
Commonly used for lossless data compression

Developed by David A. Huffman
O 1952, MIT

O “A Method for the Construction of Minimum-Redundancy
Codes”

102

Frequency counts as probabilities

Example: counting the relative frequency of letters in a large corpus

of English text

0.14 —
0.12 —

0.1

0.08

0.06

0.04

0.02

0

e is most frequent,
has highest
probability

abcdefghijkImnopqgqrstuvwxXxyz

image: Wikipedia

103

Hawaiian Alphabet Frequencies

The table to the right shows each character ' 0.068
along with its relative frequency in Hawaiian A 0.262
words. g 0 072
Smaller numbers mean less common H 0.045
characters I 0.084
Frequencies add up to 1.00 and can be a 0.106
viev(?/zzl acs?osrzbabl;ﬁﬁ:s o L 0.044
M 0.032

N 0.083

(O LY 0 0.106

.Q" P 0.030

‘ U 0.059

W 0.009

104

Entropy of the Hawaiian alphabet

Using the probabilities we get

>>> a = [0.068, 0.262, 0.072, 0.045, 0.084, 0.106, 0.044,
0.032, 0.083, 0.106, 0.03, 0.059, 0.009]
>>> entropy(a)

3.3402829489193353

Using Huffman’s method we can get close to an

average of 3.34 bits per character!
O example: ALOHA can be encoded in 15 bits, only 3 bits per character

105

Huffman Coding: the process

Assign character codes
Obtain character frequencies
b. Use frequencies to build a Huffman tree

c. Use tree to assign variable-length codes to characters (store
them in a table)

Use table to encode (compress) ASCII source file to
variable-length codes

Use tree to decode (decompress) to ASCII

106

Key Idea

Intuitively, place frequent characters near root (i.e.,
give them short codes)

Build the prefix tree bottom up:

Consider leaves at maximum depth
first

Building The Huffman Tree

We use a tree structure to develop the unique binary code
for each letter.

Start with each letter/frequency as its own single-node
tree

Find the two lowest-frequency trees

‘ | L
0.068 0.084 0.044
N 0 P W
0.083/ \0.106/ \0.030 0.009

Building The Huffman Tree

« Combine two lowest-frequency trees into a tree
with a new root with the sum of their frequencies.

* Do itagain

‘ |
0.068 0.084
N 0 L
0.083 0.106 0.044

Building The Huffman Tree

e ...and again, as many times as possible

‘ |
0.068 0.084
N 0]

0.083/ \0.106/ \0.044

Building The Huffman Tree

Building The Huffman Tree

0. 084 ‘
o 083 o 106

Building The Huffman Tree

0. 084 ‘
o 083 o 106

Building The Huffman Tree

N I
0.083 0.084

O
0.106 ‘
0.068

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

Building The Huffman Tree

W P
0.009 0.030

©
o))) () (o
L ‘ N |
0.044 0.068 0.083 0.084
* Repeat until you & @

have one tree with

. : W P
all nodes linked in.

Using the Tree to Assign Codes

The path from the root to each character
determines the code

, (=)
®

0 1 0 1
(og) (aog) (027) (o) (osen
0 0.106 0 1 0 1 0
L ‘ N |
)) (o) o) G
0 1
e Label all left & @
branches with O 0 1
and all right
branches with 1 Y W

BOW
S
0 1 0 1
(o) o) () () (o)
0 — 0 1 0 1 0
L ‘ N |
0.044 0.068 0.083 0.084
’ 1
e The binary code for & @
each character is 0 1
obtained by following
the path from the root

to the character.

, (=)
®

0 1 0 1
0 @ 1 0 1 @ 0 1
0
o) o) ()) (e
0.106

0 0 1 0 1 0

L ‘ N |

0.044 0.068 0.083 0.084
’ 1

Examples: & @

H=>0001 0 1

A=>10 W P

P=>110011 0.009 0.030

-

= G v 02 TP R H o A P

Fixed Width vs. Huffman Coding

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

-

5SS @ " 0 2 R B "R H & B Y

0111
10
1101
0001
1111
001
0000
11000
1110
010
110011
0110
110010

ALOHA

Fixed Width:
0001 01101001 0011 0001
20 bits

Huffman Code:

10 0000 010 000110
15 bits

125

humuhumunukunukuapua'a
(the reef triggerfish)

OHuffman code:
4454445444344434264242 = 84 bits

Ovs Fixed width encoding
22*4 = 88bits

126

How close did we get to minimum bits?

We calculated the entropy as about 3.34 bits per
character

The average Huffman code length, weighted by
the probabilities:

>>> ps = [.068, .262, .072, .045, .084, .106, .044, .032, .
083, .106, .030, .059, .009]

>>> code lengths = [4, 2, 4, 4, 4, 3, 4, 5, 4, 3, 6, 4, 6]
>>> weighted avg(ps, code lengths)

3.374

pretty closel

127

100000010000110 Decoding

, (o)
&
0 1 N
0009) (koo (og) (12) (oa) (oaer)
0 010/ 0 1 0
o)) (om) 0o) (o) (ol
0.044 0.068 0.083 0.084
)
®
w P
ALOHA

* To find the character use the bits to determine path from root

128

Parity Bits

error correction

Noisy Communication Channels

Suppose we're sending ASCII characters over the
network

Network communications may erroneously alter
bits of a message

Simple error detection method: the parity bit

130

Reminder: ASCII table

Code | Char [Code | Char | Code | Char | Code | Char | Code | Char | Code Char
32 |[space]| 48 0 64 @ 80 P 96 ' 112 p
33 I 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ' 55 7 71 G 87 w 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 i 121 y
42 ' 58 X 74 J 90 Z 106 j 122 z
43 + 59 : 75 K 91 [107 k 123 {
44 . 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 A 110 n 126 ~
47 / 63 ? 79 0 95 111 0 127 | [backspace]

27 (128) characters
7 bits needed for binary representation

(Not shown: control characters like tab and newline,
values 0...31)

131

Parity

Idea: for each character (sequence of 7 bits), count the number
of bits that are 1

Sender and receiver agree to use even parity (or odd parity);
sender sends extra leftmost bit

O Even parity: Set the leftmost bit so that the number of 1’s in the byte is
even.

132

Parity Example

“M" is transmitted using even parity.

“M" in ASCll is 77, or 100 1101 in binary
O four of these bits are 1

Transmit 0 100 1101 to make the number of 1-bits even.

Receiver counts the number of 1-bits in character received
O if odd, something went wrong, request retransmission
O if even, proceed normally

O Two bits could have been flipped, giving the illusion of correctness.
But the probability of 2 or more bits in error is low.

133

Parity Example

H I

/ bit code 1101000 1T01001

Transmit 1 1101000 O1101001 Even parity

v v

é Noisy network 3

S e —
. v vV but receiver
Receive 117101000 01100001 can't tell

where the
I error is

Odd number of ones. There
must be an error in
transmission

134

Parity and redundancy

An ASCII character with a correct parity bit contains redundant
information

...because the parity bit is predictable from the other bits

This idea leads into the basics of information theory

135

