Data Representation and Compression

1

Announcements

- The first lab exam is tonight, during the lab session.
 - You may use your own computer

- PA6 due tonight
- PA 7, PS 7 and Lab 8 on July 24th

Today: Data Compression

- Data Compression
 - ☐ Lossless vs lossy
- Measuring Information
 - Algorithmic Information Theory
 - Shannon's Information Theory
- Data Compression: Encoding
- Data Compression: Decoding
- Huffman Coding
- Parity Bits

Review:

Data Representation

You should be able to

- Count in unsigned binary0, 1, 10, 11, 100, ...
- Add in binary and know what overflow is
- Determine the sign and magnitude of an integer represented in two's complement binary
- Determine the two's complement binary representation of a positive or negative integer

Representing Data

External representation Internal representation External representation

Computers speak in binary

- Binary: A pair of opposites
 - On or Off
 - Yes or No
 - 0 and 1

Computers speak in binary

- Binary: A pair of opposites
 - On or Off
 - Yes or No
 - 0 and 1
- Where does binary come from?
 - Computers are powered by electricity
 - Electricity either goes through or doesn't go through a wire

On (1)

or

Off (o)

Machine storage

- Bit == the smallest piece of information the computer can store
 - O's and 1's represent the bits
- (smallest unit) 1 byte = 8 bits
- □ (biggest chunk) 1 word = 16, 32 or 64 bits (depending on your machine)
- Machine storage capacity is expressed as bytes and words

Too many jokes..

of people in the world: se who understand

Representing Non-negative (unsigned) integers

representing non-negative integers (0, 1, 2, 3, ...)

Encoding algorithm: convert quantity to a given base

- Choose a number b for the base or radix
- Choose list of digits, there must be b of them
 - □ base 10 example: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - base 2 example: 0, 1
 - □ base 16 example: 0, 1, ..., 9, A, B, C, D, E, F
- To represent a quantity n in base b
 - integer divide n by b with remainder r (a digit)
 - repeat until the quotient is zero
 - the remainders are the digits in reverse order

Encoding algorithm: convert quantity to a given base

- To represent n=6 with b=2
 - \Box 6 // 2 = 3, **r=0**
 - \square 3 // 2 = 1, r=1
 - \Box 1//2 = 0, r=1

Binary numeral: 110

What it means:

$$0 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} = \text{"six"}$$

- □ To represent n=2019 with **b=10**
 - □ 2019//10, r=9
 - □ 201//10, r=1
 - □ 20//10, r=0
 - □ 2//10, r=2

Decimal numeral: 2019

What it means:

$$9 \times 10^{0} + 1 \times 10^{1} + 0 \times 10^{2} + 2 \times 10^{3} =$$
 "two thousand and nineteen"

Decoding algorithm for **unsigned (non-negative) integers** (decode 1010)

Encoding Algorithm for unsigned (non-negative) integers (encode 6)

- Binary numeral: 1010
- What it means:

$$0 \times 2^{0} + 1 \times 2^{1} + 0 \times 2^{2} + 1 \times 2^{3}$$

= 10

To represent n=6 with **b=2**

•
$$6 // 2 = 3, r=0$$

•
$$3 // 2 = 1, r=1$$

•
$$1//2 = 0$$
, $r=1$

Binary numeral: 110

Binary Arithmetic

some familiar operations

Counting in binary

Binary numerals

- 0
- 1

Decimal equivalents

- 7

- 0

Binary Arithmetic

+	0	1
0	0	1
1	1	10

All the familiar methods work, but with only 1 and 0 for digits

$$\square$$
 1 + 1 = 10, 10 - 1 = 1, 10 + 1 = 11, ...

Example:

Notice: we need more bits for the answer than we did for the operands.

Overflow: the first difficulty

- Machine word only has k bits for some fixed k!
- \blacksquare If k is 4, then we have **overflow** in the following:

```
1 1
1010
+1010
----
10100
```

■ The machine retains only 0100 (the "least significant" bits), so (n+n) - n not always equal to n + (n-n)

Modular Arithmetic

- Dropping the overflow bit is modular arithmetic
- We can carry out any arithmetic operation modulo 2^k for the precision k. The example again for precision 4:

binary 1010 + 1010 (1)0100

decimal

$$= 10$$
 $= 10$
 $= 20 = 4 (20 \mod 16)$

overflow can be ignored or signaled as an error

Representing Negative (signed) integers

Two's complement is an approach for representing **negative integers**

- Define negative by addition: -x is value added to x to get 0
- Process:
 - 1. Write out the number in binary
 - 2. Invert the bits
 - 3. Add 1
- From and To two's complement use an identical process
- How does this work? Overflow...

Two's complement is an approach for representing **negative integers**

Decoding Algorithm for **negative integers** (decode 1010, 4 bits)

Encoding Algorithm for **negative integers** (encode -52 in 8 bits)

- Sign: look at leftmost bit
 - 1 means negative, 0 means positive e.g. with four bits 1010 represents a negative number
- Magnitude: if negative, compute the two's complement
 - flip each bit (one's complement)e.g. flip 1010 to get 0101
 - then add 1 (in base 2!!) e.g. 0101 + 0001 = 0110, or $0 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 0 \times 2^3 = 6$
 - □ voilà! 1010 represents negative six

- □ Start by encoding +52
 - \Box 52 = 00110100
- Flip each bit (one's complement):
 - ☐ flip 00110100 to get 11001011
- Add 00000001
 - **11001011** + 00000001
 - \Box = 11001100
 - \Box = -52

Range of Two's Complement Representations (for *k* bits)

Bit pattern	Decimal value
0000	0
0001	+1
•••	
0111	+2 ^{k-1} -1
1000	-2 ^{k-1}
•••	
1111	-1

Negative vs Non-negative (Signed vs Unsigned) integers

Representing non-negative (unsigned) integers

Representing negative (signed) integers (two's complement)

Representing non-negative (unsigned) integers

 \square k bits can represent 2^k things

□ For
$$k = 3$$
, $2^3 = 8$

Representing negative (signed) integers (two's complement)

 \square k bits can represent 2^k things

■ For
$$k = 3$$
, $2^3 = 8$

Representing non-negative (unsigned) integers

- \square k bits can represent 2^k things
 - □ For k = 3, $2^3 = 8$
- Represent non-negative integers

0...2^k**-1** For
$$k = 3$$
: 0.1.2.... 6.7

Representing negative (signed) integers (two's complement)

- \square k bits can represent 2^k things
 - \blacksquare For k = 3, 2^3 = 8
- Represent <u>negative</u> and <u>non-negative</u> integers

$$-2^{k-1}$$
 ... $+2^{k-1}-1$
For $k = 3$: -4 , ..., 0, 3

Representing non-negative (unsigned) integers

 \square k bits can represent 2^k things

□ For
$$k = 3$$
, $2^3 = 8$

Represent non-negative integers

$$0...2^{k}-1$$

For
$$k = 3$$
: 0,1,2..., 6, 7

Representing negative (signed) integers (two's complement)

 \square k bits can represent 2^k things

$$\blacksquare$$
For k = 3, 2^3 = 8

Represent <u>negative and non-negative integers</u>

$$-2^{k-1}$$
 ... $+2^{k-1}-1$
For $k = 3$: -4 0. 3

000	001	010	011	100	101	110	111	000
0	1	2	3	4	5	6	7	0

000	001	010	011	100	101	110	111
0	1	2	3	-4	-3	-2	-1

Representing non-negative (unsigned) integers

 \square k bits can represent 2^k things

□ For
$$k = 3$$
, $2^3 = 8$

Represent non-negative integers

$$0...2^{k}-1$$

For
$$k = 3$$
: 0,1,2..., 6, 7

Representing negative (signed) integers (two's complement)

 \square k bits can represent 2^k things

$$\blacksquare$$
For k = 3, 2^3 = 8

Represent <u>negative and non-negative integers</u>

$$-2^{k-1}$$
 ... $+2^{k-1}-1$

For
$$k = 3: -4, ..., 0, 3$$

000	001	010	011	100	101	110	111
0	1	2	3	4	5	6	7

000	001	010	011	100	101	110	111
0	1	2	3	-4	-3	-2	-1

Representing non-negative (unsigned) integers

- \square k bits can represent 2^k things
 - □ For k = 3, $2^3 = 8$
- Represent non-negative integers

$$0...2^{k}-1$$

For k = 3: 0,1,2..., 6, 7

- Encoding/Decoding
 - Convert to and from base 2

000	001	010	011	100	101	110	111
0	1	2	3	4	5	6	7

Representing negative (signed) integers (two's complement)

- \square k bits can represent 2^k things
 - \blacksquare For k = 3, 2^3 = 8
- Represent <u>negative and non-negative integers</u>

$$-2^{k-1}$$
 ... $+2^{k-1}-1$
For $k = 3$: -4 , ..., 0, 3

- Encoding/decoding
 - ☐ If negative, flip, add 1; if positive convert from base 2

000	001	010	011	100	101	110	111
0	1	2	3	-4	-3	-2	-1

For k = 4, binary representation

Representing non-negative integers

Representing negative integers (two's complement)

bits	minimum (0)	maximum (2 ^k -1)
8	0	28 – 1 (255)
16	0	2 ¹⁶ – 1 (65,535)
32	0	2 ³² – 1 (4,294,967,295)
64	0	2 ⁶⁴ – 1 (18,446,744,073,709,551,6 15)

bits	minimum (-2 ^{k-1})	maximum (+2 ^{k-1} -1)
8	$-2^7 = -128$	$2^7 - 1 = +127$
16	-2^{15} = $-32,768$	$2^{15} - 1$ = +32,767
32	-2^{31} = -2,147,483,648	$2^{31} - 1$ = +2,147,483,647
64	-2 ⁶³ = -9,223,372,036,85 4,775,808	2 ⁶³ – 1 = +9,223,372,036,85 4,775,807

From whole numbers to rational numbers

Rounding in binary

python prints a rounded value

most decimal fractions cannot be represented exactly as binary fractions!!

Why is 1/10 not exactly .1?

Real Numbers in the Machine?

- Real numbers measure **continuous** quantities; can we represent them exactly in the machine?
- Not possible with a fixed number of bits
- Can only approximate by rational numbers using floating point representations
- □ e.g. $\pi \approx 3.14159$

Floating point is based on scientific notation

Idea: use same method, but with a binary number for each part (and remember, a fixed number of bits)

Binary and fractions

Decimal 5.75 can be represented in binary as follows, because $.75 = \frac{1}{2} + \frac{1}{4} = 2^{-1} + 2^{-2}$

$$5.75 = 5 + 0.75$$

= 101 + 0.11 (i.e. $2^{-1} + 2^{-2}$)
= 101.11 = 1.0111 × 10¹⁰

decimal

binary

In binary floating point the mantissa is a binary fraction, exponent is a binary integer, and the base of the exponent is always 2

101.11 has mantissa 1.0111 and exponent 10

Float point in binary

Float point in binary

Data Compression

squeezing out redundancy

Data Compression: Why?

- ☐ Faster transmission
 - e.g. digital video impossible without compression
- Cheaper storage
 - e.g. OS X Mavericks compresses data in memory until it needs to be used

Compression and decompression

■ Reduce storage and for faster transfer of data over networks

Compression and decompression

■ Reduce storage and for faster transfer of data over networks

■ Would like two easily computable functions:

```
compress (m)
decompress (m)
```

With len(compress(m)) < len(m)

Types of data compression

- Lossless
 - encodes the original information exactly.

- □ Lossy
 - approximates the original information.

Data Compression: choices

Data Compression: choices

Some Considerations

■ What types of files would you use a lossless algorithm on?

■ What types of files would you use a lossy algorithm on?

Measuring information

What is information?

- □ information(n): knowledge communicated or received, or the act or fact of informing
 - Implicitly: a message, a sender, and a receiver

■ How can we quantify how much information a message contains?

Which has more information?

Information

- More Digits = More Information
- □Right?

Memorizing

Volunteer to memorize 10 digits

2737761413

Volunteer to memorize 100 digits

Memorizing

10-digit volunteer: What was the 8th digit?

100-digit volunteer: What was the 78th digit?

Which is easier to memorize?

Which contains more information?

Memorizing

Another volunteer to memorize 100 digits

48599377668248052998391790815047514509135243 67800673622844553973169223820421306174607612 086978543115

Is that harder to memorize than:

Why?

Which contains more information?

A key observation: redundancy

- Not all messages are equal
 - Some messages convey more information than others
 - Some messages are more likely to occur than others

- In data compression our goal:
 - encode messages so that each bit conveys as much information as possible

Measuring information with: Algorithmic information theory

Idea 1: Algorithmic information theory

The amount of information

in a sequence of digits

is equal to

the length of the shortest program that prints those digits.

Write a statement to print

```
for i in range(100):
    print("4", end="")
```

Write a statement to print

print("4859937766824805299839179081 50475145091352436780067362284455 39731692238204213061746076120869 78543115")

Therefore, Algorithmic Information Theory says:

48599377668248052998391790815047514 50913524367800673622844553973169223 820421306174607612086978543115

contains more information than

Pi and information

How much information is stored in the digits of pi?

□In case they slipped your mind...

Pi 10000

pi_tiny.c

□ This C program is just 143 characters long! long a[35014],b,c=35014,d,e,f=1e4,g,h; main() {for(;b=c-=14;h=printf("%041d",e+d/f)) for(e=d%=f;g=--b*2;d/=g) d=d*b+f*(h?a[b]:f/ 5), a[b]=d%--g;}

□ And it "decompresses" into the first 10,000 digits of Pi.

Program-size complexity

- □ There is an interesting idea here:
 - Find the shortest program that computes a certain output
 - A very important idea in theoretical computer science. Can be used to define *incompressible data* (no shorter program will produce these data).

Measuring information with: Shannon Information Theory

Idea 2: Shannon information theory

- We measure information content in bits
 - \square We can represent 2^k different symbols with k bits.
 - Turn the idea around: if we want to represent *M* different things, we need log₂ *M* bits

■ **But** this is only true if the *M* things all have the same probability

Therefore

```
M = 48599377668248052998391790815047514 50913524367800673622844553973169223 820421306174607612086978543115
```

VS

A key observation: redundancy

- Not all messages are equal
 - Some messages convey more information than others
 - Some messages are more likely to occur than others

- In data compression our goal:
 - encode messages so that each bit conveys as much information as possible

Therefore

```
M = 48599377668248052998391790815047514 50913524367800673622844553973169223 820421306174607612086978543115
```

VS

Probability and information content

- Low probability events have high information content; when you learn of them you get a lot of new information
 - Barack Obama called me today!!!
 - **56739594662393456**
- ☐ **High probability** events have **low** information content.
 - The sun rose in the east this morning. Meh
- Low probability events need more bits than high
 - Low probability events contain more information than high probability events

Entropy the definition

$$H = \sum_{i=1}^{M} p_i \log_2 \frac{1}{p_i}$$

- Suppose a source of M different symbols with probabilities $p_1, p_2, ..., p_M$
- H is the entropy of the source (average number of bits/symbol)
 - For each probability p_i we multiply p_i times log $1/p_i$, and we add up the results

Entropy the definition

$$H = \sum_{i=1}^{M} p_i \log_2 \frac{1}{p_i}$$

- Suppose a source of M different symbols with probabilities $p_1, p_2, ..., p_M$
- H is the **entropy of the source** (average number of bits/symbol)
 - For each probability p_i we multiply p_i times $\log 1/p_i$, and we add up the results

 flips of an unfair

• **Example:** two symbols, **H** with probability 0.75 and **T** with probability 0.25;

 $H = 0.75 * log (1/0.75) + 0.25 * log (1/0.25) \approx 0.75 * .415 + 0.25 * 2 = .81125$

 Roughly speaking this says each flip of our unfair coin carries less than one bit of information.

coin

Entropy the definition

$$H = \sum_{i=1}^{M} p_i \log_2 \frac{1}{p_i}$$

- Suppose a source of M different symbols with probabilities $p_1, p_2, ..., p_M$
- H is the entropy of the source (average number of bits/symbol)
 - For each probability p_i we multiply p_i times log $1/p_i$, and we add up the results
- Why do we care about entropy?
 - Tells us the minimum number of bits we need to encode each symbol in message M
 - Compression!

Data Compression: Encoding

squeezing out redundancy

2 common compression strategies:

- Exploit character-by-character nonuniformity
 - \blacksquare e.g., in English Pr['a'] = 0.0817 but Pr['b'] = 0.0149

- Exploit patterns between multiple characters
 - e.g. 'q' is almost always followed by 'u'

Character-by-character coding

□Suppose each message m is a sequence of characters in some alphabet A = {a₁, a₂, ..., a₂}
 □e.g., A = the English alphabet,

Try 1: Character-by-character coding

- encode (m) outputs:
 - 1. An optional header containing any extra information needed for decode
 - 2. A sequence of bits encoding each character of m
 - □ i.e., codetable (m)

$$code(m_0) code(m_1) ... code(m_n)$$

■ An example code table:

\boldsymbol{x}	code(x)
a	000
b	001
\mathbf{c}	010
d	011
e	100
f	101

Try 1: Fixed length codes

```
code(x)
encode("deadbeef")
                                 000
                              a
                                 001
   011100000011001100100101
                                 010
                                 011
                b
                                 100
What is decode (
                                 101
    "001000011010100011100")?
```

- Example: ASCII, Unicode
- Easy, but no compression

Codes

- A codeword is simply a binary string
- A code is a set of codewords and their meanings
- Must each codeword in a code necessarily have the same length? I.e. is every code a fixed length code?

(E.g., Morse code - not binary)

Try 2: A non-code example

Code words don't all need to be the same length

x	code(x)
a	0
b	01
\mathbf{c}	10

Try 2: A non-code example

- Code words don't all need to be the same length
- But not all codes have a unique decoding:

x	code(x)
a	0
b	01
\mathbf{c}	10

Try 3: Better, but more annoying...

 This code is fine in principle (everything is uniquely decodable).

•	But decode	is	too	hard.	Try	to
	decode					

00001011010011

\boldsymbol{x}	code(x)
a	00
b	01
\mathbf{c}	001
d	011
e	11

Try 3: Better, but more annoying...

What is decode (
 "00001011010011")?
 a c d b a e

\boldsymbol{x}	code(x)
a	00
b	01
\mathbf{c}	001
\mathbf{d}	011
e	11

- How do you decode?
- By trial and error, looking past the current the current, back and forth, hoping everything will work out in the end.
- This look-ahead approach is too cumbersome.

What makes a code good?

- Uniquely decodable
- Easy to decode (no lookahead)
- Encoded messages are short

Prefix (a.k.a. *prefix-free*) codes

A code is a prefix code if code (x) is not a prefix of code (y) for any x≠y

e.g.,
$$\begin{array}{c|cc} x & \operatorname{code}(x) \\ \hline a & 000 \\ b & 001 \\ c & 010 \\ d & 011 \\ e & 100 \\ f & 101 \\ \end{array}$$

(in fact, any fixed-length code is a prefix code)

Bad and annoying, revisited

- Is this a Prefix code?
- □ No: code ('a') is a prefix of code ('b').

\boldsymbol{x}	code(x)
a	0
b	01
\mathbf{c}	10

Bad and annoying, revisited

- Is this a Prefix code?
- □ No: code ('a') is a prefix of code ('b').

x	code(x)
a	0
b	01
\mathbf{c}	10

■ Is this a Prefix code?

No: code ('a') is a prefix of code ('c').
Also, code ('b') is a prefix of code ('d').

\boldsymbol{x}	code(x)
a	00
b	01
\mathbf{c}	001
\mathbf{d}	011
e	11

Another Example:

- Is this a Prefix code?
- Yes!

\boldsymbol{x}	code(x)
a	0
b	11
\mathbf{c}	10

Prefix codes are uniquely decodable

Let $b_0 b_1 ... b_n$ be the bits of a coded message.

Read off the bits from left to right until $b_0b_1...b_k = code(x)$ for some x.

Note that k and x are both uniquely determined; otherwise we'd have found a prefix.

Repeat from b_{k+1} until done.

■ Note: Prefix codes require no lookahead.

Data Compression: Decoding

Decoding prefix coded messages

Use a binary "prefix" tree

- Start at root, walk left for each "0", walk right for each "1" until you reach a leaf
- Return to root after you decode a character

\boldsymbol{x}	code(x)
a	000
b	001
\mathbf{c}	010
d	011
e	100
f	101

Use a binary "prefix" tree

- Start at root, walk left for each "0", walk right for each "1" until you reach a leaf
- Return to root after you decode a character

An optimal prefix tree is Full

- □ *Full*: every node
 - Is a leaf, or
 - Has exactly 2 children.

$$a=1$$
, $b=001$, $c=000$, $d=01$

Why a full binary tree?

□ A node with no sibling can be moved up 1 level, improving the code.

 An optimal prefix code for a string can always be represented by a full binary tree.

Huffman Codes

The Hawaiian Alphabet

- ☐ The Hawaiian alphabet consists of 13 characters.
 - ' is the okina which sometimes occurs between vowels (e.g. **KAMA'AINA**)

•

A

E

H

I

K

L

M

N

O

P

U

W

Specialized fixed-width encodings

- Suppose our text file is entirely in Hawaiian
- How many bits do we need for our 13 characters?
 - Are 3 bits enough? 000, 001, ..., 111?
 - Are 4 bits enough? 0000, 0001, ..., 1111?
- In general, for k equally probable characters we need $\lceil \log_2 k \rceil$ bits
- □ So for Hawaiian we need $\lceil \log_2 13 \rceil = 4$ bits

The Hawaiian Alphabet: fixed-width encodings

☐ The Hawaiian alphabet consists of 13 characters.

,	\rightarrow	0000
A	\rightarrow	0001
E	\rightarrow	0010
H	\rightarrow	0011
I	\rightarrow	0100
K	\rightarrow	0101
L	\rightarrow	0110
M	\rightarrow	0111
N	\rightarrow	1000
0	\rightarrow	1001
P	\rightarrow	1010
U	\rightarrow	1011

1100

Cost of Fixed-Width Encoding

- With a fixed-width encoding scheme of *n* bits and a file with *m* characters, need *mn* bits to store the entire file.
 - Example: to store 1000 characters of Hawaiian we would need 4000 bits
- Can we do better? Idea: some characters are used much more often than others.
 - If we assign fewer bits to more frequent characters, and more bits to less frequent characters, then the overall length of the message might be shorter.

Use a method known as Huffman encoding named after David Huffman

Huffman Codes

- A type of optimal prefix code
- Commonly used for lossless data compression
- Developed by David A. Huffman
 - 1952, MIT
 - "A Method for the Construction of Minimum-Redundancy Codes"

Frequency counts as probabilities

Example: counting the relative frequency of letters in a large corpus of English text

image: Wikipedia

Hawaiian Alphabet Frequencies

- The table to the right shows each character along with its relative frequency in Hawaiian words.
- Smaller numbers mean less common characters
- ☐ Frequencies add up to 1.00 and can be viewed as *probabilities*

•	0.068
A	0.262
E	0.072
Н	0.045
I	0.084
K	0.106
L	0.044
M	0.032
N	0.083
0	0.106
P	0.030
U	0.059
W	0.009

Entropy of the Hawaiian alphabet

Using the probabilities we get

```
>>> a = [0.068, 0.262, 0.072, 0.045, 0.084, 0.106, 0.044, 0.032, 0.083, 0.106, 0.03, 0.059, 0.009]
>>> entropy(a)
3.3402829489193353
```

- □ Using Huffman's method we can get close to an average of 3.34 bits per character!
 - **example:** *ALOHA* can be encoded in 15 bits, only 3 bits per character

Huffman Coding: the process

- 1. Assign character codes
 - a. Obtain character frequencies
 - b. Use frequencies to build a *Huffman tree*
 - c. Use tree to assign variable-length codes to characters (store them in a table)
- 2. Use table to encode (compress) ASCII source file to variable-length codes
- 3. Use tree to decode (decompress) to ASCII

Key Idea

■ Intuitively, place frequent characters near root (i.e., give them short codes)

- Build the prefix tree bottom up:
 - Consider leaves at maximum depth first

Building The Huffman Tree

- We use a tree structure to develop the unique binary code for each letter.
- Start with each letter/frequency as its own single-node tree
- Find the two lowest-frequency trees

 Combine two lowest-frequency trees into a tree with a new root with the sum of their frequencies.

...and again, as many times as possible

Using the Tree to Assign Codes

☐ The path from the root to each character determines the code

Fixed Width vs. Huffman Coding

•	0000	,	0111	
A	0001	A	10	
E	0010	E	1101	<u>ALOHA</u>
H	0011	Н	0001	
I	0100	I	1111	Fixed Width:
K	0101	K	001	0001 0110 1001 0011 0001
L	0110	L	0000	20 bits
M	0111	M	11000	
N	1000	N	1110	Huffman Code:
0	1001	0	010	10 0000 010 0001 10
P	1010	P	110011	15 bits
U	1011	U	0110	13 DICS
W	1100	W	110010	

How about...

- □ humuhumunukunukuapua 'a (the reef triggerfish)
 - Huffman code:
 4454445444344434264242 = 84 bits
 - ■vs Fixed width encoding 22*4 = 88bits

How close did we get to minimum bits?

- We calculated the entropy as about 3.34 bits per character
- ☐ The average Huffman code length, weighted by the probabilities:

```
>>> ps = [.068, .262, .072, .045, .084, .106, .044, .032, .083, .106, .030, .059, .009]
>>> code_lengths = [4, 2, 4, 4, 4, 3, 4, 5, 4, 3, 6, 4, 6]
>>> weighted_avg(ps, code_lengths)
3.374
```

pretty close!

Decoding

To find the character use the bits to determine path from root

Parity Bits

error correction

Noisy Communication Channels

- □ Suppose we're sending ASCII characters over the network
- Network communications may erroneously alter bits of a message
- ☐ Simple error detection method: the parity bit

Reminder: ASCII table

Code	Char	Code	Char	Code	Char	Code	Char	Code	Char	Code	Char
32	[space]	48	0	64	@	80	Р	96	,	112	р
33	ļ ļ	49	1	65	Α	81	Q	97	а	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	s
36	\$	52	4	68	D	84	T	100	d	116	t
37	%	53	5	69	E	85	U	101	e	117	u
38	&	54	6	70	F	86	V	102	f	118	V
39	'	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	Н	88	X	104	h	120	×
41)	57	9	73	ı	89	Υ	105	i	121	У
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	K	91] [107	k	123	{
44	,	60	<	76	L	92	Ň	108	1	124	l i l
45	-	61	=	77	M	93]	109	m	125	}
46		62	>	78	N	94	Ā	110	n	126	~
47	/	63	?	79	0	95		111	0	127	[backspace]

- □ 2⁷ (128) characters
- 7 bits needed for binary representation
- □ (Not shown: control characters like tab and newline, values 0...31)

Parity

□ Idea: for each character (sequence of 7 bits), count the number of bits that are 1

- □ Sender and receiver agree to use *even parity* (or *odd parity*); sender sends **extra** leftmost bit
 - Even parity: Set the leftmost bit so that the number of 1's in the byte is even.

Parity Example

- "M" is transmitted using **even parity**.
- \square "M" in ASCII is 77₁₀, or 100 1101 in binary
 - four of these bits are 1
- □ Transmit 0 100 1101 to make the number of 1-bits even.
- Receiver counts the number of 1-bits in character received
 - if odd, something went wrong, request retransmission
 - if even, proceed normally
 - Two bits could have been flipped, giving the illusion of correctness. **But** the probability of 2 or more bits in error is low.

Parity Example

Parity and redundancy

An ASCII character with a correct parity bit contains redundant information

...because the parity bit is *predictable* from the other bits

This idea leads into the basics of information theory