
Data Organization:
Trees and Graphs



Announcements

¤ The first lab exam is Monday during the lab session.  
Example for practice is on the web site. Full lab session
¤ 4 Questions
¤ Reference Sheet
¤ Practice!

¤ Review 4:30 - 6:30 Tonight, GHC4405

¤ Lab tomorrow (Thursday)

¤ PS 6 Friday morning



Reviewing Data Structures



Arrays in Memory

¤ Example: data = [50, 42, 85, 71, 99]                     
Assume we have a byte-addressable computer,  integers are stored 
using 4 bytes (32 bits) and  our array starts at address 100.

¤ If we want data[3], the computer takes the 
address of the start of the array (100 in our example)
and adds the index * the size of an array element 
(4 bytes in our example) to find the element we 
want.

Location of data[3] is 100 + 3*4 = 112

¤ Do you see why it makes sense for the first
index of an array to be 0?

Content
50
42
85
71
99

104:
108:

100:

112:
116:



Two-dimensional arrays

• Some data can be organized 
efficiently in a table (also called a 
matrix or 2-dimensional array)

• Each cell is denoted 
with two subscripts, 
a row and column 
indicator
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B 0 1 2 3 4
0 3 18 43 49 65
1 14 30 32 53 75
2 9 28 38 50 73
3 10 24 37 58 62
4 7 19 40 46 66

B[2][3] = 50



2D Lists in Python

data = [ [1, 2, 3, 4], 
[5, 6, 7, 8], 
[9, 10, 11, 12] 

]
>>> data[0]
[1, 2, 3, 4]
>>> data[1][2]  
7
>>> data[2][5] index error

6

0 1 2 3
0 1 2 3 4
1 5 6 7 8
2 9 10 11 12



Linked List Example
• To insert a new element, we only need to change a 

few pointers.

• Example: Insert 20 between
42 and 85

7

Starting 
Location of 
List (head)
124

Assume each
integer and pointer
requires 4 bytes.

data next

42 156

99 0 (null)

50 100

71 108

85 132

20 148

108:
116:

100:

124:
132:
140:
148:
156:



Drawing Linked Lists Abstractly
• [50, 42, 85, 71, 99]

• Inserting 20 after 42:

8

50 42 85 71 null99

head

50 42 85 71 null99

head
20

step 1step 2

We link the new node
to the list before breaking
the existing link. Why?



Recall Arrays and Linked Lists

Advantages Disadvantages

Arrays
Constant-time lookup 
(search) if you know the 
index

Requires a contiguous 
block of memory

Linked Lists
Flexible memory usage Linear-time lookup 

(search)

How can we exploit the advantages of arrays and linked 
lists to improve search time in dynamic data sets? 



Hashing
• A “hash function” h(key)that maps a key to an array index in 0..k-1.
• To search the array table for that key, look in table[h(key)]

key1

key2
key3

Universe of keys
h(key1) = 0:

h(key2) = 5:

h(key3) = 4:

1:

2:

3:

A hash function h is used to map keys to hash-table (array) slots.  
Table is an array bounded in size. The size of the universe for keys 
may be larger than the array size. We call the table slots buckets.



Example: Hash function

¤ Suppose we have (key,value) pairs where the key 
is a string such as (name, phone number) pairs 
and we want to store these key value pairs in an 
array.

¤ We could pick the array position where each 
string is stored based on the first letter of the string 
using this hash function:

def h(str):

return (ord(str[0]) – 65) % 6
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Note ord(‘A’) = 65



Unicode



Add Element “Graham”
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0:

1:

2:

3:

4:

5:

h(“Emma") is 4Emma

Andy

h(”Graham") is also 0
because ord(“G”) is 71.

Graham

In order to add Graham’s information to the table we had to form a 
link list for bucket 0.



Requirements for the
Hash Function h(x)

¤Must be fast: O(1)

¤Must distribute items roughly uniformly 
throughout the array, so everything doesn’t 
end up in the same bucket.
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Summary of Search Techniques

Technique Setup Cost Search Cost
Linear search 0, since we’re 

given the list
O(n)

Binary search O(n log n)
to sort the list

O(log n)

Hash table O(n) to fill the 
buckets

O(1)
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Associative Arrays

¤ Hashing is a method for implementing associative 
arrays. Some languages such as Python have 
associate arrays (mapping between keys and 
values) as a built-in data type. 

¤ Examples:
¤ Name in contacts list => Phone number
¤ User name => Password
¤ Product => Price

16



Dictionary Type in Python

>>> cars = {"Mercedes": 55000, 

"Bentley": 120000,

"BMW":90000}

>>> cars["Mercedes"] 

55000

17

Keys can be of any immutable data type.

Dictionaries are implemented using hashing.

This example maps car brands (keys) to prices (values).



Dictionary Type in Python

>>> cars = {"Mercedes": 55000, 

"Bentley": 120000,

"BMW":90000}

>>> cars["Mercedes"] 

55000
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Keys can be of any immutable data type.

Dictionaries are implemented using hashing.

This example maps car brands (keys) to prices (values).



Iteration over a Dictionary
>>> for i in cars:

print(i)

BMW
Mercedes             
Bentley

>>> for i in cars.items():
print(i)

("BMW", 90000)
("Mercedes", 55000)

("Bentley", 120000)

>>> for k,v in cars.items():
print(k, ":", v )

BMW : 90000
Mercedes 55000
Bentley : 120000

Think what the loop variables are 
bound to in each case. 

Note also that there is no notion of 
ordering in dictionaries. There is no such 
thing as the first element, second element
of a dictionary.



Data relationship:

¤ Arrays

¤ Linked lists

¤ Hash tables

20

No hierarchy or relationship 
between  data items, 
other than their  order in the 
sequence in the case of 
arrays and linked lists 



Today

¤ Data structures for hierarchical data

21



Hierarchical
Data

22



Trees

¤ A tree is a hierarchical data structure.
¤ Every tree has a node called the root.
¤ Each node can have 1 or more nodes as children.
¤ A node that has no children is called a leaf.

¤ A common tree in computing is a binary tree.
¤ A binary tree consists of nodes that have at most 2 

children.

¤ Applications: data compression, file storage, 
game trees

23



Binary Tree

24

84

41 96

24

37

50

13

98

Which one is the root?
Which ones are the leaves (external nodes)?
Which ones are internal nodes?
What is the height of this tree?

In order to illustrate 
main ideas we label 
the tree nodes with 
the keys only.
In fact, every node 
would also store the 
rest of the data 
associated with that 
key.  Assume that 
our tree  contains 
integers keys.



Binary Tree

25

84

41 96

24

37

50

13

98

The root contains the data value 84.
There are 4 leaves in this binary tree: nodes containing 13, 37, 50, 98.
There are 3 internal nodes in this binary tree: nodes containing 41, 96, 24
This binary tree has height 3 – considering root is at level 0, 

the maximum level among all nodes is 3



Binary Tree
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84

41 96

24

37

50

13

98

Note the recursive structure:
The yellow node with the key 41 
can  be viewed  as the root of the 
left subtree , which in turn has a left 
subtree consisting of blue nodes, 
and a right subtree consisting 
of orange nodes.

root



Binary Trees: Implementation
¤ One common implementation of binary trees 

uses nodes like a linked list does.
¤ Instead of having a “next” pointer, each node has 

a “left” pointer and a “right” pointer. 
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45

31 70

19 38 86

Level 1

Level 2

Level 3



Using Nested Lists
¤ Languages like Python do not let programmers manipulate 

pointers explicitly. 

¤ We could use Python lists to implement binary trees. For example:

[] stands for an empty tree
Arrows point to subtrees
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45

31 70

19 38 86

Level 1

Level 2

Level 3

[45, left, right]

[45,[31,left,right],[70,left,right]]

[45, [31, [19,[],[]], [38,[],[]]],
[70,[], [86, [], []]]

]



Using One Dimensional Lists

¤ We could also use a flat (one-dimensional list).
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45 31 70 19 38 86

Level 1 Level 2 Level 3

45

31 70

19 38 86

Level 1

Level 2

Level 3



Dynamic Data Set Operations

¤ Insert

¤ Delete

¤ Search

¤ Find min/max

¤ ...

30

Choosing a specific data structure has consequences on which 
operations can be performed faster.



Binary Search Tree (BST)

¤ A binary search tree (BST) is a binary tree that satisfies 
the binary search tree ordering invariant stated on the 
next slide
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Example: Binary Search Tree

7

84

1 6 9

BST ordering invariant: At any node with key k, all  keys of elements in the 
left subtree are  strictly less than k and all keys of elements in the right subtree 
are strictly greater than k (assume that there are no duplicates in the tree)

Binary tree

Satisfies the 
ordering invariant



Test: Is this a BST?
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7

84

1 6 9

4

71

6

9

8

4

71

6

9

8

3

yes

yes
no



Inserting into a BST

¤ For each data value that you wish to insert into the 
binary search tree:
¤ Start at the root and compare the new data value with 

the root. 
¤ If it is less, move down left. If it is greater, move down 

right. 
¤ Repeat on the child of the root until you end up in a 

position that has no node. 
¤ Insert a new node at this empty position.

34



Example

¤ Insert: 84, 41, 96, 24, 37, 50, 13, 98

35

84

41 96

24

37

50

13

98



Using a BST

¤ How would you search for an element in a BST?

36

84

41 96

24

37

50

13

98



Searching a BST

¤ For the key that you wish to search
¤ Start at the root and compare the key with the root. If 

equal, key found. 
¤ Otherwise

¤ If it is less, move down left. If it is greater, move 
down right. Repeat search on the child of the root.

¤ If there is no non-empty subtree to move to, then 
key not found.

37
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Searching the tree

Example: searching for  6
4

71

6

9

8

4 < 6

6 < 7

Can we form a conjecture about worst case complexity?
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Time complexity of search

6

84

91 5

1

4

7

6

8

9

Number of nodes: n

Worst case: O(height)

Worst height: n

Tree 1 Tree 2

O(n)



Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential
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Time complexity of search

6

84

91 5

1

4

7

6

8

9

Number of nodes: n

What if we could always have 
balanced trees?  

Tree 1 Tree 2

O(log n)



Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential



Exercises

¤ How you would find the minimum and maximum 
elements in a BST?

¤ What would be output if we walked the tree in left-node-
right order?

43



Graphs

44



Graphs
¤ A graph is a data structure that consists of a set of 

vertices and a set of edges connecting pairs of 
the vertices.
¤ A graph doesn’t have a root, per se.
¤ A vertex can be connected to any number of other 

vertices using edges.
¤ An edge may be bidirectional or directed (one-way).
¤ An edge may have a weight on it that indicates a cost 

for traveling over that edge in the graph.

¤ Applications: computer networks, transportation 
systems, social relationships
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Undirected and Directed Graphs
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B

A

D

C

B

A

D

C



Undirected and Directed Graphs
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B

A

D

C
6

4

5
3

7

A B C D
A 0 6 7 5
B 6 0 4 ∞
C 7 4 0 3
D 5 ∞ 3 0

A B C D
A 0 6 7 5
B ∞ 0 4 ∞
C 2 ∞ 0 3
D ∞ ∞ 9 0

B

A

D

C
6

4

5
3

7
2

9

from
to

from
to

weight



Graphs in Python
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B

A

D

C
6

4

5
3

7

A B C D
A 0 6 7 5
B 6 0 4 ∞
C 7 4 0 3
D 5 ∞ 3 0

graph = 
[ [ 0, 6, 7, 5 ], 

[ 6, 0, 4, float(‘inf’) ],
[ 7, 4, 0, 3],
[ 5, float(‘inf’), 3, 0] ]

from
to



An Undirected Weighted Graph
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0 1 2 3 4 5 6
0 0 10 ∞ 8 7 ∞ ∞
1 10 0 12 7 ∞ ∞ ∞
2 ∞ 12 0 6 ∞ 7 5
3 8 7 6 0 9 4 ∞
4 7 ∞ ∞ 9 0 ∞ 11
5 ∞ ∞ 7 4 ∞ 0 3
6 ∞ ∞ 5 ∞ 11 3 0

0

1

3

2

6

4

5

12

6

4
5

98

10

7 11

3

7

7

0 1 2 3 4 5 6
Pitt. Erie Will. S.C. Harr. Scr. Phil.

vertices edges

from
to



Original Graph

50

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7
7



A Minimal Spanning Tree
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Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.
4

58

7

3

7

The minimum total cost to connect all vertices using edges from 
the original graph without using cycles. (minimum total cost = 34)



Original Graph
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Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7
7



Shortest Paths from Pittsburgh
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Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.6
4

8
10

7

3

10
14

8

12

157

The total costs of the shortest path from Pittsburgh to every other 
location using only edges from the original graph.



Graph Algorithms

¤ There are algorithms to compute the minimal 
spanning tree of a graph and the shortest paths 
for a graph.

¤ There are algorithms for other graph operations:
¤ If a graph represents a set of pipes and the number 

represent the maximum flow through each pipe, then 
we can determine the maximum amount of water 
that can flow through the pipes assuming one vertex is 
a “source” (water coming into the system) and one 
vertex is a “sink” (water leaving the system)

¤ Many more graph algorithms... very useful to solve real 
life problems.
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We did not focus on graph algorithms in this unit. We only 
covered how to represent them with lists.


