
Data Organization:
Trees and Graphs

Announcements

¤ The first lab exam is Monday during the lab session.
Example for practice is on the web site. Full lab session
¤ 4 Questions
¤ Reference Sheet
¤ Practice!

¤ Review 4:30 - 6:30 Tonight, GHC4405

¤ Lab tomorrow (Thursday)

¤ PS 6 Friday morning

Reviewing Data Structures

Arrays in Memory

¤ Example: data = [50, 42, 85, 71, 99]
Assume we have a byte-addressable computer, integers are stored
using 4 bytes (32 bits) and our array starts at address 100.

¤ If we want data[3], the computer takes the
address of the start of the array (100 in our example)
and adds the index * the size of an array element
(4 bytes in our example) to find the element we
want.

Location of data[3] is 100 + 3*4 = 112

¤ Do you see why it makes sense for the first
index of an array to be 0?

Content
50
42
85
71
99

104:
108:

100:

112:
116:

Two-dimensional arrays

• Some data can be organized
efficiently in a table (also called a
matrix or 2-dimensional array)

• Each cell is denoted
with two subscripts,
a row and column
indicator

5

B 0 1 2 3 4
0 3 18 43 49 65
1 14 30 32 53 75
2 9 28 38 50 73
3 10 24 37 58 62
4 7 19 40 46 66

B[2][3] = 50

2D Lists in Python

data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]

]
>>> data[0]
[1, 2, 3, 4]
>>> data[1][2]
7
>>> data[2][5] index error

6

0 1 2 3
0 1 2 3 4
1 5 6 7 8
2 9 10 11 12

Linked List Example
• To insert a new element, we only need to change a

few pointers.

• Example: Insert 20 between
42 and 85

7

Starting
Location of
List (head)
124

Assume each
integer and pointer
requires 4 bytes.

data next

42 156

99 0 (null)

50 100

71 108

85 132

20 148

108:
116:

100:

124:
132:
140:
148:
156:

Drawing Linked Lists Abstractly
• [50, 42, 85, 71, 99]

• Inserting 20 after 42:

8

50 42 85 71 null99

head

50 42 85 71 null99

head
20

step 1step 2

We link the new node
to the list before breaking
the existing link. Why?

Recall Arrays and Linked Lists

Advantages Disadvantages

Arrays
Constant-time lookup
(search) if you know the
index

Requires a contiguous
block of memory

Linked Lists
Flexible memory usage Linear-time lookup

(search)

How can we exploit the advantages of arrays and linked
lists to improve search time in dynamic data sets?

Hashing
• A “hash function” h(key)that maps a key to an array index in 0..k-1.
• To search the array table for that key, look in table[h(key)]

key1

key2
key3

Universe of keys
h(key1) = 0:

h(key2) = 5:

h(key3) = 4:

1:

2:

3:

A hash function h is used to map keys to hash-table (array) slots.
Table is an array bounded in size. The size of the universe for keys
may be larger than the array size. We call the table slots buckets.

Example: Hash function

¤ Suppose we have (key,value) pairs where the key
is a string such as (name, phone number) pairs
and we want to store these key value pairs in an
array.

¤ We could pick the array position where each
string is stored based on the first letter of the string
using this hash function:

def h(str):

return (ord(str[0]) – 65) % 6

11

Note ord(‘A’) = 65

Unicode

Add Element “Graham”

13

0:

1:

2:

3:

4:

5:

h(“Emma") is 4Emma

Andy

h(”Graham") is also 0
because ord(“G”) is 71.

Graham

In order to add Graham’s information to the table we had to form a
link list for bucket 0.

Requirements for the
Hash Function h(x)

¤Must be fast: O(1)

¤Must distribute items roughly uniformly
throughout the array, so everything doesn’t
end up in the same bucket.

14

Summary of Search Techniques

Technique Setup Cost Search Cost
Linear search 0, since we’re

given the list
O(n)

Binary search O(n log n)
to sort the list

O(log n)

Hash table O(n) to fill the
buckets

O(1)

15

Associative Arrays

¤ Hashing is a method for implementing associative
arrays. Some languages such as Python have
associate arrays (mapping between keys and
values) as a built-in data type.

¤ Examples:
¤ Name in contacts list => Phone number
¤ User name => Password
¤ Product => Price

16

Dictionary Type in Python

>>> cars = {"Mercedes": 55000,

"Bentley": 120000,

"BMW":90000}

>>> cars["Mercedes"]

55000

17

Keys can be of any immutable data type.

Dictionaries are implemented using hashing.

This example maps car brands (keys) to prices (values).

Dictionary Type in Python

>>> cars = {"Mercedes": 55000,

"Bentley": 120000,

"BMW":90000}

>>> cars["Mercedes"]

55000

18

Keys can be of any immutable data type.

Dictionaries are implemented using hashing.

This example maps car brands (keys) to prices (values).

Iteration over a Dictionary
>>> for i in cars:

print(i)

BMW
Mercedes
Bentley

>>> for i in cars.items():
print(i)

("BMW", 90000)
("Mercedes", 55000)

("Bentley", 120000)

>>> for k,v in cars.items():
print(k, ":", v)

BMW : 90000
Mercedes 55000
Bentley : 120000

Think what the loop variables are
bound to in each case.

Note also that there is no notion of
ordering in dictionaries. There is no such
thing as the first element, second element
of a dictionary.

Data relationship:

¤ Arrays

¤ Linked lists

¤ Hash tables

20

No hierarchy or relationship
between data items,
other than their order in the
sequence in the case of
arrays and linked lists

Today

¤ Data structures for hierarchical data

21

Hierarchical
Data

22

Trees

¤ A tree is a hierarchical data structure.
¤ Every tree has a node called the root.
¤ Each node can have 1 or more nodes as children.
¤ A node that has no children is called a leaf.

¤ A common tree in computing is a binary tree.
¤ A binary tree consists of nodes that have at most 2

children.

¤ Applications: data compression, file storage,
game trees

23

Binary Tree

24

84

41 96

24

37

50

13

98

Which one is the root?
Which ones are the leaves (external nodes)?
Which ones are internal nodes?
What is the height of this tree?

In order to illustrate
main ideas we label
the tree nodes with
the keys only.
In fact, every node
would also store the
rest of the data
associated with that
key. Assume that
our tree contains
integers keys.

Binary Tree

25

84

41 96

24

37

50

13

98

The root contains the data value 84.
There are 4 leaves in this binary tree: nodes containing 13, 37, 50, 98.
There are 3 internal nodes in this binary tree: nodes containing 41, 96, 24
This binary tree has height 3 – considering root is at level 0,

the maximum level among all nodes is 3

Binary Tree

26

84

41 96

24

37

50

13

98

Note the recursive structure:
The yellow node with the key 41
can be viewed as the root of the
left subtree , which in turn has a left
subtree consisting of blue nodes,
and a right subtree consisting
of orange nodes.

root

Binary Trees: Implementation
¤ One common implementation of binary trees

uses nodes like a linked list does.
¤ Instead of having a “next” pointer, each node has

a “left” pointer and a “right” pointer.

27

45

31 70

19 38 86

Level 1

Level 2

Level 3

Using Nested Lists
¤ Languages like Python do not let programmers manipulate

pointers explicitly.

¤ We could use Python lists to implement binary trees. For example:

[] stands for an empty tree
Arrows point to subtrees

28

45

31 70

19 38 86

Level 1

Level 2

Level 3

[45, left, right]

[45,[31,left,right],[70,left,right]]

[45, [31, [19,[],[]], [38,[],[]]],
[70,[], [86, [], []]]

]

Using One Dimensional Lists

¤ We could also use a flat (one-dimensional list).

29

45 31 70 19 38 86

Level 1 Level 2 Level 3

45

31 70

19 38 86

Level 1

Level 2

Level 3

Dynamic Data Set Operations

¤ Insert

¤ Delete

¤ Search

¤ Find min/max

¤ ...

30

Choosing a specific data structure has consequences on which
operations can be performed faster.

Binary Search Tree (BST)

¤ A binary search tree (BST) is a binary tree that satisfies
the binary search tree ordering invariant stated on the
next slide

31

Example: Binary Search Tree

7

84

1 6 9

BST ordering invariant: At any node with key k, all keys of elements in the
left subtree are strictly less than k and all keys of elements in the right subtree
are strictly greater than k (assume that there are no duplicates in the tree)

Binary tree

Satisfies the
ordering invariant

Test: Is this a BST?

33

7

84

1 6 9

4

71

6

9

8

4

71

6

9

8

3

yes

yes
no

Inserting into a BST

¤ For each data value that you wish to insert into the
binary search tree:
¤ Start at the root and compare the new data value with

the root.
¤ If it is less, move down left. If it is greater, move down

right.
¤ Repeat on the child of the root until you end up in a

position that has no node.
¤ Insert a new node at this empty position.

34

Example

¤ Insert: 84, 41, 96, 24, 37, 50, 13, 98

35

84

41 96

24

37

50

13

98

Using a BST

¤ How would you search for an element in a BST?

36

84

41 96

24

37

50

13

98

Searching a BST

¤ For the key that you wish to search
¤ Start at the root and compare the key with the root. If

equal, key found.
¤ Otherwise

¤ If it is less, move down left. If it is greater, move
down right. Repeat search on the child of the root.

¤ If there is no non-empty subtree to move to, then
key not found.

37

38

Searching the tree

Example: searching for 6
4

71

6

9

8

4 < 6

6 < 7

Can we form a conjecture about worst case complexity?

39

Time complexity of search

6

84

91 5

1

4

7

6

8

9

Number of nodes: n

Worst case: O(height)

Worst height: n

Tree 1 Tree 2

O(n)

Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential

41

Time complexity of search

6

84

91 5

1

4

7

6

8

9

Number of nodes: n

What if we could always have
balanced trees?

Tree 1 Tree 2

O(log n)

Big O

¤ O(1) constant

¤ O(log n) logarithmic

¤ O(n) linear

¤ O(n log n) log linear

¤ O(n2) quadratic

¤ O(n3) cubic

¤ O(2n) exponential

Exercises

¤ How you would find the minimum and maximum
elements in a BST?

¤ What would be output if we walked the tree in left-node-
right order?

43

Graphs

44

Graphs
¤ A graph is a data structure that consists of a set of

vertices and a set of edges connecting pairs of
the vertices.
¤ A graph doesn’t have a root, per se.
¤ A vertex can be connected to any number of other

vertices using edges.
¤ An edge may be bidirectional or directed (one-way).
¤ An edge may have a weight on it that indicates a cost

for traveling over that edge in the graph.

¤ Applications: computer networks, transportation
systems, social relationships

45

Undirected and Directed Graphs

46

B

A

D

C

B

A

D

C

Undirected and Directed Graphs

47

B

A

D

C
6

4

5
3

7

A B C D
A 0 6 7 5
B 6 0 4 ∞
C 7 4 0 3
D 5 ∞ 3 0

A B C D
A 0 6 7 5
B ∞ 0 4 ∞
C 2 ∞ 0 3
D ∞ ∞ 9 0

B

A

D

C
6

4

5
3

7
2

9

from
to

from
to

weight

Graphs in Python

48

B

A

D

C
6

4

5
3

7

A B C D
A 0 6 7 5
B 6 0 4 ∞
C 7 4 0 3
D 5 ∞ 3 0

graph =
[[0, 6, 7, 5],

[6, 0, 4, float(‘inf’)],
[7, 4, 0, 3],
[5, float(‘inf’), 3, 0]]

from
to

An Undirected Weighted Graph

49

0 1 2 3 4 5 6
0 0 10 ∞ 8 7 ∞ ∞
1 10 0 12 7 ∞ ∞ ∞
2 ∞ 12 0 6 ∞ 7 5
3 8 7 6 0 9 4 ∞
4 7 ∞ ∞ 9 0 ∞ 11
5 ∞ ∞ 7 4 ∞ 0 3
6 ∞ ∞ 5 ∞ 11 3 0

0

1

3

2

6

4

5

12

6

4
5

98

10

7 11

3

7

7

0 1 2 3 4 5 6
Pitt. Erie Will. S.C. Harr. Scr. Phil.

vertices edges

from
to

Original Graph

50

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7
7

A Minimal Spanning Tree

51

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.
4

58

7

3

7

The minimum total cost to connect all vertices using edges from
the original graph without using cycles. (minimum total cost = 34)

Original Graph

52

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7
7

Shortest Paths from Pittsburgh

53

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.6
4

8
10

7

3

10
14

8

12

157

The total costs of the shortest path from Pittsburgh to every other
location using only edges from the original graph.

Graph Algorithms

¤ There are algorithms to compute the minimal
spanning tree of a graph and the shortest paths
for a graph.

¤ There are algorithms for other graph operations:
¤ If a graph represents a set of pipes and the number

represent the maximum flow through each pipe, then
we can determine the maximum amount of water
that can flow through the pipes assuming one vertex is
a “source” (water coming into the system) and one
vertex is a “sink” (water leaving the system)

¤ Many more graph algorithms... very useful to solve real
life problems.

54

We did not focus on graph algorithms in this unit. We only
covered how to represent them with lists.

