
Binary Search and 
Merge Sort



Announcements

¤ Today:
¤ Lab 6
¤ Programming Assignment5 (

¤ Tomorrow: Problem Set 5 

¤ Exam on Thursday: Units 1 – 5 (inclusive)



Today

¤ Recursion for search:
¤ Binary Search
¤ Merge Sort

¤ Logarithmic worst-case complexity



Binary Search



Thinking linearly…
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6

?



Thinking linearly…
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def contains(items, key):

for index in range(len(items)):

if items[index] == key:

return True

return False

Linear Search
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Number guessing

¤ I'm thinking of a number between 1 and 16

¤ You get to ask me yes/no & is it greater than some 
number you choose

¤ How many questions do you need to ask?

¤ Which questions will you ask to get the answer quickest?



Binary Search in an Ordered List
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Binary Search in an Ordered List
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From idea to algorithm



Specification: the Search Problem

• Input: A list of n unique elements and a 
key to search for
– The elements are sorted in increasing order.

• Result: The index of an element matching 
the key, or None if the key is not found.



Recursive Algorithm

BinarySearch(list, key):

1. Return None if the list is empty.

2. Compare the key to the middle element of the list

3. Return the index of the middle element if they match

4. If the key is less than the middle element then 
return BinarySearch(first half of list,key)

Otherwise, return BinarySearch(second half of list,key). 
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Example 1: Search for 73
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Found:  return 9 



Example 2: Search for 42
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Not found:  return None



Controlling the range of the search

• Maintain three numbers: lower, upper, mid

• Initially lower is -1, upper is length of the list

0 11

lower = -1 upper = 
12



Controlling the range of the 
search

• mid is the midpoint of the range:

mid = (lower + upper) // 2 (integer division)
Example: lower = -1, upper = 9
(range has 9 elements)
mid = 4

• What happens if the range has an even 
number of elements? 

Example: lower = -1, upper = 8
mid = 3



Example

A B C D E F G H

0 1 2 3 4 5 6 7

I

8

lower = -1 upper = 9

List sorted in ascending order.
Suppose we are searching for D.

D?



A B C D E F G H

0 1 2 3 4 5 6 7

I

8

lower = -1 upper = 4

D?

Each time we look at a smaller portion of the list
within the window and ignore all the elements outside of
the window 

Example



A B C D E F G H

0 1 2 3 4 5 6 7

I

8

lower = 1 upper = 4

Each time we look at a smaller portion of the array
within the window and ignore all the elements outside of
the window 

D?

Example



A B C D E F G H

0 1 2 3 4 5 6 7

I

8

lower = 2 upper = 4

Each time we look at a smaller portion of the array
within the window and ignore all the elements outside of
the window 

D!

Example



Designing the recursion
towards a Python program:



Base case: range empty

• How do we determine if the range is empty?   
¤ lower + 1 == upper

• What should we return then?
¤ None
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Base case: key found

• The key is compared to the element at mid:
¤ list[mid] == key

• What should we return then?
¤ mid



Recursive Case

• Non-empty range: what subproblem(s) should we solve?   
• search left half or search right half

• What should we return then?
• result of searching left or right half

• New value for lower? value for upper?
• left half: lower, mid
• right half: mid, upper



Parameters for recursion

¤ Inputs: key and list of items

¤ But we also need lower and upper bounds
¤ since they change throughout the search, they have to be 

parameters of the search function

¤ Design: main function and recursive helper function



Recursive Binary Search in 
Python

# main function
def bsearch(items, key):

return bs_helper(items, key, -1, len(items))

# recursive helper function
def bs_helper(items, key, lower, upper):

if lower + 1 == upper: # Base case: empty
return None

mid = (lower + upper) // 2 # Recursive case
if key == items[mid]:    

return mid 
if key < items[mid]: # Go left

return bs_helper(items, key, lower, mid)
else: # Go right

return bs_helper(items, key, mid, upper)

first value for lower first value for upper

same value for lowernew value for upper

new value for lower same value for upper



Caveat: specification 

• The algorithm and the code was developed on the 
assumption that the input list is sorted.

• If the function is called with an unsorted list it has no 
obligation to behave correctly.



measurement and analysis
reflections



Trace: Search for 73
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

key lower upper

bs_helper(items, 73,  -1,   15)

mid = 7 and 73 > items[7]

bs_helper(items, 73,   7,   15)

mid = 11 and 73 < items[11]

bs_helper(items, 73,   7,   11)

mid = 9 and 73 == items[9]

---> return 9



Trace: Search for 42
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

key lower upper

bs_helper(items, 42,  -1,   15)

mid = 7 and 42 < items[7]

bs_helper(items, 42,  -1,    7)

mid = 3 and 42 > items[3]

bs_helper(items, 42,   3,    7)

mid = 5 and 42 < items[5]

bs_helper(items, 42,   3,    5)

mid = 4 and 42 > items[4]

bs_helper(items, 73,   4,    5)

lower + 1 == upper   

--->    Return None.



Instrumenting Binary Search Code
count = 0 # count of comparisons

def bsearch(list, key):
global count
count = 0
print("Searching list of length ", len(list))
result = bs_helper(list, key, -1, len(list))
print("Number of comparisons:", count)
return result

def bs_helper(list, key, lower, upper):
global count
if lower + 1 == upper:

print("Not found")
return None

mid = (lower + upper) // 2
print("mid:", mid, "lower:", lower, "upper", upper)
count = count + 1
if key == list[mid]:    

return mid
if key < list[mid]:

return bs_helper(list, key, lower, mid)
else:

return bs_helper(list, key, mid, upper)



Instrumented Output
>>> bsearch(list(range(1,500,2)), 21)
Searching list of length  250
mid: 124 lower: -1 upper 250
mid: 61 lower: -1 upper 124
mid: 30 lower: -1 upper 61
mid: 14 lower: -1 upper 30
mid: 6 lower: -1 upper 14
mid: 10 lower: 6 upper 14
10
Number of comparisons: 6
>>> bsearch(list(range(1,500,2)), 256)
Searching list of length  250
mid: 124 lower: -1 upper 250
mid: 187 lower: 124 upper 250
mid: 155 lower: 124 upper 187
mid: 139 lower: 124 upper 155
mid: 131 lower: 124 upper 139
mid: 127 lower: 124 upper 131
mid: 129 lower: 127 upper 131
mid: 128 lower: 127 upper 129
Not found
Number of comparisons: 8

>>> bsearch(list(range(1,500000,2)), 256)

Searching list of length  250000

mid: 124999 lower: -1 upper 250000

…

mid: 127 lower: 126 upper 128

Not found

Number of comparisons: 18

>>> bsearch(list(range(1,5000000,2)), 256)

Searching list of length  2500000

mid: 1249999 lower: -1 upper 2500000

…

mid: 128 lower: 127 upper 129

Not found

Number of comparisons: 21



Analyzing Binary Search

¤ Suppose we search for a key larger than anything in the list.

¤ Example sequences of range sizes:
8, 4, 2, 1               (4 key comparisons)
16, 8, 4, 2, 1         (5 key comparisons)
17, 8, 4, 2, 1         (5 key comparisons)
18, 9, 4, 2, 1         (5 key comparisons)
...
31, 15, 7, 3, 1       (still 5 key comparisons)
32, 16, 8, 4, 2, 1   (at last, 6 key comparisons)

¤ Notice: 8 = 23, 16 = 24, 32 = 25

¤ Therefore: log 8 = 3, log 16 = 4, log 32 = 5



Generalizing the Analysis
• Some notation: ⎣x⎦ means round x down, so ⎣2.5⎦=2

• Binary search of n elements will do at most 
1 + ⎣log2 n⎦ comparisons
1 + ⎣log2 8⎦ = 1 + ⎣log2 9⎦ = ... 1 + ⎣log2 15⎦ = 4
1 + ⎣log2 16⎦ = 1 + ⎣log2 17⎦ = ... 1 + ⎣log2 31⎦ = 5

• Why? We can split search region in half 
1 + ⎣log2 n⎦ times before it becomes empty.

• "Big O" notation: we ignore the “1 +” and the floor 
function. We say Binary Search has complexity 
O(log n).

22

“floor”



O(log n) (“logarithmic time”)

n
(amount of data)

Number of
Operations

log2 n

log10 n

2(log2 n) + 5



O(log n)

n
(amount of data)

Number of
Operations

16 32 64

4

5

6

1

log2 n

1

For a log2 n algorithm,
If you double the
number of data elements
the amount of work you do 
increases by just one unit



Binary Search (Worst Case)
Number of elements Number of Comparisons

15 4

31 5

63 6

127 7

255 8

511 9

1023 10

1 million 20



Binary Search Pays Off

• Finding an element in an list with a million 
elements requires only 20 comparisons!

• BUT....
– The list must be sorted.
– What if we sort the list first using insertion sort?

• Insertion sort O(n2)   (worst case)
• Binary search O(log n)   (worst case)
• Total time: O(n2) + O(log n) = O(n2)
Luckily there are faster ways to sort in the worst case...



Merge Sort



Divide and Conquer

• In computation:
– Divide the problem into “simpler” versions of itself.
– Conquer each problem using the same process 

(usually recursively).
– Combine the results of the “simpler” versions to form 

your final solution.

• Examples: Towers of Hanoi, fractals, 
Binary Search, Merge Sort, Quicksort, 
and many, many more



Divide

Now each "group" is (trivially) sorted!

Group of 8 

Groups of 4

Groups of 2

Groups of 1



Conquer (merge sorted lists)



Conquer (merge sorted lists)



Conquer (merge sorted lists)



Merge Sort
• Input: List  a of n elements.

• Output: Returns a new list containing the same 
elements in sorted order.

• Algorithm:
1. If less than two elements, return a copy of the list (base 
case!)

2. Sort the first half using merge sort. (recursive!)

3. Sort the second half using merge sort. (recursive!)

4. Merge the two sorted halves to obtain the

final sorted array.



Merge Sort in Python
def msort(list):

if len(list) == 0 or len(list) == 1: # base case
return list[:len(list)] # copy the input

# recursive case
halfway = len(list) // 2
list1 = list[0:halfway]
list2 = list[halfway:len(list)]
newlist1 = msort(list1) # recursively sort left half
newlist2 = msort(list2) # recursively sort right half
newlist = merge(newlist1, newlist2)
return newlist



Merge Outline
• Input: Two lists  a and b, already sorted

• Output: A new list containing the elements of a and b
merged together in sorted order.

• Algorithm:
1. Create an empty list c, set index_a and index_b to 0
2. While index_a < length of a and index_b < length of b

a. Add the smaller of a[index_a] and b[index_b] to the 
end of c, and increment the index of the list with the 
smaller element

3. If any elements are left over in a or b, add them to the end of c, in 
order

4. Return c



Filling in the details of Merge

"Add the smaller of a[index_a] and b[index_b] to the end of c, and 
increment the index of the list with the smaller element":
a.If a[index_a] ≤ b[index_b], then do the following:

i. append a[index_a] to the end of c
ii. add 1 to index_a

b.Otherwise, do the following:
i. append b[index_b] to the end of c
ii. add 1 to index_b



Filling in the details of Merge

"If any elements are left over in a or b, add them to the end of c, in 
order":

a.If index_a < the length of list a, then:
i. append all remaining elements of list a to the end of list c, 

in order
b.Otherwise: 

i. append all remaining elements of list b (if any) to the end 
of list c, in order



Merge in Python

def merge(a, b):
index_a = 0
index_b = 0
c = []
while index_a < len(a) and index_b < len(b):

if a[index_a] <= b[index_b]:
c.append(a[index_a])
index_a = index_a + 1

else:
c.append(b[index_b])
index_b = index_b + 1

# when we exit the loop 
# we are at the end of at least one of the lists
c.extend(a[index_a:])    c.extend(b[index_b:])
return c



Example 1: Merge

list a       list  b      list c 

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29 31

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29 31 44



Example 1: Merge (cont’d)

list a       list b       list c 

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29 31 44 58

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62 29 31 74 80  12 29 31 44 58 62

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62 29 31 74 80  12 29 31 44 58 62 74 80



Example 2: Merge

list a       list b       list c 

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19 26

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19 26 31

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44 19 26 31 44

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19 26 31 44 58 67 74 90



Analyzing Efficiency
• Constant time operations: comparing values and appending 

elements to the output.

• If you merge two lists of size i/2 into one new list of size i, what is the 
maximum number of appends that you must do? maximum number 
of comparisons?

• Example: say we are merging two pairs of 2-element lists:

with                  and                with

8 appends for 8 elements

• If you have a group of lists to be merged pairwise, and the total 
number of elements in the whole group is n, the total number of 
appends will be n.

• Worse case number comparisons? n/2 or less, but still O(n)



How many merges?
• We saw that each group of merges of n elements takes O(n) 

operations.

• How many times do we have to merge n elements to go from 
n groups of size 1 to 1 group of size n?

• Example: Merge sort on 32 elements.
– Break down to groups of size 1 (base case).
– Merge 32 lists of size 1 into 16 lists of size 2.
– Merge 16 lists of size 2 into 8 lists of size 4.
– Merge 8 lists of size 4 into 4 lists of size 8.
– Merge 4 lists of size 8 into 2 lists of size 16.
– Merge 2 lists of size 16 into 1 list of size 32.

• In general: log2n merges of n elements.

5 = log232



Putting it all together
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It takes n appends to merge all pairs to the next higher level.
Multiply the number of levels by the number of appends per level.

It 
ta

ke
s l

og
2 
n

m
er

ge
s t

o
go

 fr
om

 n
 g

ro
up

s o
f s

ize
 1

 to
a 

sin
gl

e 
gr

ou
p 

of
 si

ze
 n

.

Total number 
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per level is
always n.  



Big O

• In the worst case, merge sort requires
O(n log2n) time to sort an array with n elements.

Number of operations Order of Complexity
n log2n O(n log n)
(n + n/2) log2n                      O(n log n)
4n log10n O(n log n)
n log2n + 2n O(n log n)



O(N log N)

n
(amount of data)

Number of
Operations

16 32 64

64
160

384

96

224

n log2n = O(n log n)

(not drawn to 
scale)

For an n log2 n algorithm,
the performance is better
than a quadratic algorithm
but just a little worse than
a linear algorithm.



Merge vs. Insertion Sort

n isort (n(n+1)/2) msort (n log2n) Ratio

8 36 24 0.67

16 136 64 0.47

32 528 160 0.3

210 524, 800 10,240 0.02

220 549, 756, 338, 176 20,971,520 0.00004



Sorting and Searching

• Recall that if we wanted to use binary search, the list 
must be sorted.

¤ What if we sort the list first using merge sort?
¤ Merge sort O(n log n)   (worst case)
¤ Binary search O(log n)   (worst case)
¤ Total time: O(n log n) + O(log n) = O(n log n)

(worst case)



Comparing Big O Functions 

n
(amount of data)

Number of
Operations

O(2n)

O(1)

O(n log n)

O(log n)

O(n2)

O(n)



Merge Sort: Iteratively
(optional)

• If you are interested, Explorations of Computing discusses an iterative 
version of merge sort which you can read on your own.

• This version uses an alternate version of the merge function that is not 
shown in the textbook but is given in PythonLabs.



Built-in Sort in Python

• Why we study sorting algorithms 
– Practice in algorithmic thinking
– Practice in complexity analysis

• You will rarely need to implement your own sort 
function
– Python method list.sort takes a lists and modifies it 

while it sorts
– Python function sorted takes a list and returns a new 

sorted list
– Python uses timsort by Tim Peters (fancy!)



Quicksort

• Conceptually similar to merge sort

• Uses the  technique of divide-and-conquer
1. Pick a pivot
2. Divide the array into two subarrays, those that are smaller and 

those that are greater 
3. Put the pivot in the middle, between the two sorted arrays  

• Worst case O(n 2) 

• "Expected" O(n log n)


