
Recursion: Introduction

1

Announcements

¤  Deadlines
¤  Exam on Thursday: Units 1 – 5 (inclusive)

¤  PA 4 due tonight

¤  PS 4 due now!

¤  Monday:
¤  PA5 is due Mon night

¤  OLI Recursion over the weekend

¤  Lab 6

2

Today

¤  Review of Big-O

¤  Recursion:
¤  Introduction to recursion

¤  What it is

¤  Recursion and the stack

¤  Recursion and iteration

¤  Examples of simple recursive functions

¤  Geometric recursion: fractals

3

Big-O Review

4

Asymptotic Analysis
¤  Goal: understanding behavior of program over the long run,

with increasingly large inputs

5

Asymptotic Analysis
¤  Goal: understanding behavior of program over the long run,

with increasingly large inputs

¤  Assumptions:
¤  Input (also known as n) changes

¤  All the other factors/operations are constant

¤  As a result: We are not concerned with constants factors:
¤  How many iterations?

¤  Not operations in each iteration

6

Asymptotic Analysis
¤  Goal: understanding behavior of program over the long run,

with increasingly large inputs

¤  Assumptions:
¤  Input (also known as n) changes

¤  All the other factors/operations are constant

¤  As a result: We are not concerned with constants factors:
¤  How many iterations?

¤  Not operations in each iteration

¤  Gives a useful approximation, suppresses details

¤  Worst-case

7

Order of Complexity

¤  We express this as the (time) order of complexity

¤  Normally expressed using Big-O notation.

¤  Big-O ignores constants, focuses on highest power of n

Number of iterations Order of Complexity

¤  n O(n)

¤  3n+3 O(n)

¤  2n+8 O(n)

8

Why don’t constants matter?

n2

10000*10000 =
100000000 = 108

For n = 10000

45*n2

45*10000*10000 =
4500000000 = 45*108

n3

10000*10000*10000 =
1000000000000 = 1012

9

Why don’t constants matter?

n2

10000*10000 =
100000000 = 108

For n = 10000

45*n2

45*10000*10000 =
4500000000 = 45*108

n3

10000*10000*10000 =
1000000000000 = 1012

10

Why don’t constants matter?

n2

10000*10000 =
100000000 = 108

For n = 10000

45*n2

45*10000*10000 =
4500000000 = 45*108

n3

10000*10000*10000 =
1000000000000 = 1012

<< ≈

11

Order of Complexity
¤  Big-O is ignores constants, focuses on highest power of n

Number of iterations Order of Complexity

o  n O(n)
o  5n O(n)
o  4n+2 O(n)
o  n2 O(n2)

o  4n2 O(n2)

o  3+n2 O(n2)

o  5n2 + 3n +1 O(n2)

o  n3 + n2 + n + 1 O(n3)

12

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

13

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

n times = O(n)

14

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

n times = O(n)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 # do something

15

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

n times = O(n)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 # do something

n times * n times = O(n2)

16

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

n times = O(n)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 # do something

n times * n times = O(n2)

def complex_3(n):  
i = 0  
while i < n:  
 # do something  
 complex_2(n)

17

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

n times = O(n)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 # do something

n times * n times = O(n2)

def complex_3(n):  
i = 0  
while i < n:  
 # do something  
 complex_2(n)

n times * n2 times = O(n3)

 18

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

n times = O(n)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 # do something

n times * n times = O(n2)

def complex_3(n):  
i = 0  
while i < n:  
 # do something  
 complex_2(n)

n times * n2 times = O(n3)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 for k in range(n):  
 # do something

19

Quick Examples
def complex_1(n):  
 i = 0  
 while i < n:  
 # do something

n times = O(n)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 # do something

n times * n times = O(n2)

def complex_3(n):  
i = 0  
while i < n:  
 # do something  
 complex_2(n)

n times * n2 times = O(n3)

def complex_2(n):  
for i in range(n):  
 for j in range(n):  
 for k in range(n):  
 # do something

n times * n times * n times = O(n3)

20

Linear Search O(n)

21

Linear Search: Worst Case

# let n = the length of list.	
def search(list, key):	
 index = 0 1	
 while index < len(list): n+1	
 if list[index] == key: n	
 return index	
 index = index + 1 n	
 return None 1 	
 Total: 3n+3

22

Linear Search: Worst Case
Simplified

# let n = the length of list.	
def search(list, key):	
 index = 0 	
 while index < len(list): n iterations O(n)	
 if list[index] == key: 	
 return index	
 index = index + 1 	
 return None 	

23

O(n)	(“Linear”)	

n
(amount of data)

Number of
Operations

n 3n+3
2n + 8

24

O(n)

n
(amount of data)

Number of
Operations n

10 20 30

10

20

30 For a linear algorithm,
if you double the amount
of data, the amount of work
you do doubles
(approximately).

25

O(1)	(“Constant-Time”)	

n
(amount of data)

Number of
Operations

4
4 = O(1)

1
1 = O(1)

For a constant-time algorithm,
if you double the amount
of data, the amount of work
you do stays the same.

26

Insertion Sort O(n2)

27

Insertion Sort: worst case
let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): 	
 move_left(list,i)	
 i = i + 1	
 return list

28

Insertion Sort: worst case
let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): #n-1 iterations 	
 move_left(list,i)	
 i = i + 1	
 return list

29

Insertion Sort: worst case
let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): #n-1	
 move_left(list,i)	
 i = i + 1	
 return list

What is the cost of move_left?

	

30

Insertion Sort: cost of move left

# let n = the length of list.	
def move_left(a, i):	

 x = a.pop(i) 	
 j = i - 1	
 while j >= 0 and a[j] > x: 	
 j = j – 1	
 a.insert(j + 1, x)

31

Insertion Sort: worst case

32

let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): n-1 iterations 	
 x = list.pop(i) 	
 j = i – 1 	
 while j >= 0 and a[j] > x:	
 j = j – 1
 list.insert(j + 1, x) 	
 i = i + 1
 	
 return list

Insertion Sort: worst case
let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): n-1 iterations 	
 x = list.pop(i) n iterations	
 j = i – 1 	
 while j >= 0 and a[j] > x:	
 j = j – 1
 list.insert(j + 1, x) n iterations	
 i = i + 1
 	
 return list

33

Insertion Sort: worst case
let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): n-1 iterations 	
 x = list.pop(i) n iterations	
 j = i – 1 	
 while j >= 0 and a[j] > x:	
 j = j – 1
 list.insert(j + 1, x) n iterations	
 i = i + 1
 	
 return list Total cost (at most):

(n-1)*(2n)

 34

Insertion Sort: worst case
let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): n-1 iterations 	
 x = list.pop(i) n iterations	
 j = i – 1 	
 while j >= 0 and a[j] > x: 1,2,3..n-1 iter	
 j = j – 1
 list.insert(j + 1, x) n iterations	
 i = i + 1
 	
 return list Total cost (at most):

(n-1)*(2n)+

35

Insertion Sort: worst case
let n = the length of list.

def isort(list): 	
 i = 1	
 while i != len(list): n-1 iterations 	
 x = list.pop(i) n iterations	
 j = i – 1 	
 while j >= 0 and a[j] > x: 1,2,3..n-1 iter	
 j = j – 1
 list.insert(j + 1, x) n iterations	
 i = i + 1
 	
 return list Total cost (at most):

(n-1)*(2n)+(1+2+3+..+n-1)

36

Generalizing…

	

¤ How	to	find	(1+2+3+..+n-1)	?	
																																	

Total cost (at most):
(n-1)*(2n)+(1+2+3+..+n-1)

37

Test for n = 7.

1+2+3+4+5+6
1+2+3…n-1

38

Our equation …

(n-1)*n/2
1+2+3…n-1

(6) * (7) / 2 blue circles

(n-1) * (n) / 2 blue circles

39

Generalizing…

	

¤ (1+2+3+..+n-1)	à	n*(n-1)/2	

Total cost (at most):
(n-1)*(2n)+(1+2+3+..+n-1)

40

Generalizing…

	

¤ (1+2+3+..+n-1)	à	n*(n-1)/2	

¤ (n-1)*(2n)+(1+2+3+..+n-1)
¤ =2n2	-	2n	+	(n2	-	n)	/	2	

¤ =	(5n2	-	5n)	/	2		

¤ =	(5/2)n2	-	(5/2)n																																	

Total cost (at most):
(n-1)*(2n)+(1+2+3+..+n-1)

41

Generalizing…

	

¤ (1+2+3+..+n-1)	à	n*(n-1)/2	

¤ (n-1)*(2n)+(1+2+3+..+n-1)
¤ =2n2	-	2n	+	(n2	-	n)	/	2	

¤ =	(5n2	-	5n)	/	2		

¤ =	(5/2)n2	-	(5/2)n																																	

Total cost (at most):
(n-1)*(2n)+(1+2+3+..+n-1)

n2

42

O(n2)	(“Quadratic”)	

n
(amount of data)

Number of
Operations

n2/2 + 3n/2 – 1 2n2 + 7
n2

43

O(n2)

N
(amount of data)

Number of
Operations

10 20 30

100

400

900

N2

For a quadratic algorithm,
if you double the amount
of data, the amount of work
you do quadruples
(approximately).

44

Big O

¤  O(1) constant

¤  O(log n) logarithmic

¤  O(n) linear

¤  O(n log n) log linear

¤  O(n2) quadratic

¤  O(n3) cubic

¤  O(2n) exponential

45

How work increases
Input	Size	 O(n)	 O(n2)	 O(n3)	 O(2n)		

2	 2	 4	 8	 4	
4	 4	 16	 64	 16	
8	 8	 64	 512	 256	
16	 16	 256	 4096	 65536	
32	 32	 1024	 32768	 4294967296	

1000	 1000	 1000000	 1000000000	

10715086071862673209484
25049060001810561404811
70553360744375038837035
10511249361224931983788
15695858127594672917553
14682518714528569231404
35984577574698574803934
56777482423098542107460
50623711418779541821530
46474983581941267398767
55916554394607706291457
11964776865421676604298
31652624386837205668069

376	

Recursion

The Loopless Loop

47

48

49

Recursion
¤  Algorithmically:

¤  Take a problem and solve it by reducing it to a simpler/smaller
version of the same problem

¤  In programming:
¤  A technique where a function calls itself

¤  A recursive	function is one that calls itself.

50

Recursion
¤  Algorithmically:

¤  Take a problem and reduce it to a simpler/smaller version of the same
problem

¤  In programming:
¤  A technique where a function calls itself

¤  A recursive	function is one that calls itself.

¤  def i_am_recursive(x):  
 maybe do some work  
 if there is more work to do:  
 i_am_recursive(next(x))  
 return the desired result  

¤  Infinite loop? Not necessarily, not if next(x) needs less work than x.
51

Make 4 layer cake

52

Make 4 layer cake

Make 3 layer cake

53

Make 4 layer cake

Make 3 layer cake

Make 2 layer cake

54

Make 4 layer cake

Make 3 layer cake

Make 2 layer cake

Make 1 layer cake

55

Make 4 layer cake

Make 3 layer cake

Make 2 layer cake

Make 1 layer cake

56

Make 4 layer cake

Make 3 layer cake

Make 2 layer cake

Make 1 layer cake

57

Make 4 layer cake

Make 3 layer cake

Make 2 layer cake

58

Make 4 layer cake

Make 3 layer cake

59

Make 4 layer cake

60

Recursive Definitions

¤  Every recursive function definition includes two parts:

¤  Base case(s) (non-recursive)

One or more simple cases that can be done directly or
immediately

¤  Recursive case(s)
One or more cases that require solving “simpler” version(s) of
the original problem.

¤  By “simpler”, we mean “smaller” or “shorter” or “closer to
the base case”.

61

Make 4 layer cake

Make 3 layer cake

Make 2 layer cake

Make 1 layer cake

Recursive case Base case

62

Example: Factorial

•  n! = n × (n-1) × (n-2) × … × 1
2! = 2 × 1
3! = 3 × 2 × 1
4! = 4 × 3 × 2 × 1

¤ alternatively:	
0! = 1 (Base	case)	
n! = n × (n-1)! 	

So 4! = 4 × 3! è 3! = 3 × 2! è 2! = 2 × 1! è
 1! = 1 × 0! è 0! = 1

(Recursive	case)

 9! = 362,880
10! = ? 10! = 3,628,800
10! = 10 × 9!

63

Recursion conceptually

6

4!	=	4(3!)	 																																																							
												3!	=	3(2!) 																																			
																								2!	=	2(1!) 															
																																				1!	=	1	(0!)	

Base case
make smaller instances
of the same problem

64

Recursion conceptually

7

4!	=	4(3!)	 																																																	
												3!	=	3(2!) 																																				
																								2!	=	2(1!) 			
																																				1!	=	1	(0!)	=	1(1)	=	1	

Compute the base case

make smaller instances
of the same problem

65

Recursion conceptually

8

4!	=	4(3!)	 																																																										
												3!	=	3(2!) 																																										
																								2!	=	2(1!) 																							=	2		
																																				1!	=	1	(0!)	=	1(1)	=	1	

Compute the base case

make smaller instances
of the same problem

build up
the result

66

Recursion conceptually

9

4!	=	4(3!)	 																																																												
												3!	=	3(2!) 																																									=	6	
																								2!	=	2(1!) 																							=	2		
																																				1!	=	1	(0!)	=	1(1)	=	1	

Compute the base case

make smaller instances
of the same problem

build up
the result

67

Recursion conceptually

10

4!	=	4(3!)	 																																																											=	24	
												3!	=	3(2!) 																																									=	6	
																								2!	=	2(1!) 																							=	2		
																																				1!	=	1	(0!)	=	1(1)	=	1	

Compute the base case

make smaller instances
of the same problem

build up
the result

68

Recipe for Writing Recursive Functions
(by Dave Feinberg)

1.  Write if. (Why?)
 There must be at least 2 cases: base and recursive

2.  Handle simplest case(s).
 No recursive call needed (base case).

3.  Write recursive calls(s).
 Input is slightly simpler to get closer to base case.

4.  Assume the recursive call works!
 Ask yourself: What does it do?

 Ask yourself: How does it help?

14

69

Recursion in Python

70

Recursive Factorial in Python
¤ For	what	n	do	we	know	the	factorial?	
n = 0 à if n == 0:

 return 1

11

71

Recursive Factorial in Python
¤ For	what	n	do	we	know	the	factorial?	
n = 0 à if n == 0:

 return 1

¤ How	do	we	reduce	the	problem?	Rewrite	in	terms	of	something	
simpler	each	time	

 n*(n-1)! à else:

 return n * factorial(n-1)  

11

72

Recursive Factorial in Python
¤ For	what	n	do	we	know	the	factorial?	
n = 0 à if n == 0: # base case

 return 1

¤ How	do	we	reduce	the	problem?	Rewrite	in	terms	of	something	
simpler	each	time	

 n*(n-1)! à else: # recursive case

 return n * factorial(n-1)  

11

73

Recursive Factorial in Python

Assumes n >= 0
def factorial(n):
 if n == 0: # base case
 return 1
 else: # recursive case
 return n * factorial(n-1)  

11

0!	=	1 	(Base	case)	
n!	=	n	×	(n-1)! 	(Recursive	case)	

74

factorial(4)?S
T
A
C
K

n=4

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

factorial(4)? = 4 * factorial(3)S
T
A
C
K

n=4

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)?

n=4

n=3

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

n=4

n=3

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

78

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)?

n=4

n=3

n=2

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

79

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

n=4

n=3

n=2

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

80

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)?

n=4

n=3

n=2

n=1

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

81

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

n=4

n=3

n=2

n=1

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

82

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1)? = 1 * factorial(0)

factorial(0) = 1

n=4

n=3

n=2

n=1

n=0

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

83

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2)? = 2 * factorial(1)

factorial(1) = 1 * 1 = 1

n=4

n=3

n=2

n=1

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

84

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3)? = 3 * factorial(2)

factorial(2) = 2 * 1 = 2

n=4

n=3

n=2

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

85

factorial(4)? = 4 * factorial(3)S
T
A
C
K

factorial(3) = 3 * 2 = 6

n=4

n=3

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

86

factorial(4) = 4 * 6 = 24S
T
A
C
K

n=4

def factorial(n):

 if n == 0: # base case

 return 1

 else: # recursive case

 return n * factorial(n-1)  

87

Recursion vs Iteration

88

Recursive vs. Iterative Solutions

¤  For every recursive function,

 there is an equivalent iterative solution.

¤  For every iterative function,

 there is an equivalent recursive solution.

¤  But some problems are easier to solve one way than the other way.

¤  And be aware that most	recursive programs need space for the
stack, behind the scenes

calls itself

for loop,
while loop

Factorial Function two ways

Iterative version of factorial
def factorial(n):  
 result = 1 # initialize accumulator var  
 for i in range(1, n+1):  
 result = result * i  
 return result

Recursive version of factorial
def factorial(n):  
 if n == 0: # base case  
 return 1  
 else: # recursive case  
 return n * factorial(n-1)  

A Strategy for Recursive Problem Solving
(hat tip to Dave Evans)

¤ Think of the smallest size of the problem and write
down the solution (base case)

¤ Be	optimistic.	Assume you magically have a
working function to solve any size. How could you
use it on a smaller size and use the answer to
solve a bigger size? (recursive case)

¤ Combine the base case and the recursive case

91

Recursion on Lists

92

Recursion on Lists

Do we know how to use iteration to sum the elements in a
list?

93

Recursion on Lists

¤  First we need a way of getting a smaller input from a
larger one:
¤  Forming a sub-list of a list:

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

the "tail" of list a

94

Recursion on Lists

¤  First we need a way of getting a smaller input from a
larger one:
¤  Forming a sub-list of a list:

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

the "tail" of list a

95

Recursion on Lists

¤  First we need a way of getting a smaller input from a
larger one:
¤  Forming a sub-list of a list:

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

>>> a[3:]
[1111, 11111, 111111]

the "tail" of list a

96

Recursion on Lists

¤  First we need a way of getting a smaller input from a
larger one:
¤  Forming a sub-list of a list:

>>> a = [1, 11, 111, 1111, 11111, 111111]

>>> a[1:]
[11, 111, 1111, 11111, 111111]

>>> a[2:]
[111, 1111, 11111, 111111]

>>> a[3:]
[1111, 11111, 111111]

>>> a[3:5]
[1111, 11111]

the "tail" of list a

97

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

 5 + sumlist([7])

 7 + sumlist([])

 0

16

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

 5 + sumlist([7])

 7 + sumlist([])

 0

16

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

 5 + sumlist([7])

 7 + sumlist([])

 0

16

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

 5 + sumlist([7])

 7 + sumlist([])

 0

16

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

 5 + sumlist([7])

 7 + sumlist([])

 0

16

Tracing sumlist

>>> sumlist([2,5,7])

sumlist([2,5,7]) = 2 + sumlist([5,7])

 5 + sumlist([7])

 7 + sumlist([])

 0

16

After	reaching	the	base	case,	the	final	result	is		
built	up	by	the	computer	by	adding	0+7+5+2.	

Recursive sum of a list
def sumlist(items):

 if :

15

What is the smallest size
list?

104

Recursive sum of a list
def sumlist(items):

 if items == []:

 What is the sum of an empty list?

The smallest size list is the
empty list.

105

Recursive sum of a list

def sumlist(items):

 if items == []:

 return 0

Base case:
The sum of an empty list is 0.

106

Recursive sum of a list

def sumlist(items):

 if items == []:

 return 0

 else:

Recursive case:
the list is not empty

107

Recursive sum of a list
def sumlist(items):

 if items == []:

 return 0

 else:

 ... sumlist() ...

What is a simpler/smaller
case?

108

Recursive sum of a list
def sumlist(items):

 if items == []:

 return 0

 else:

 ... sumlist(items[1:]) ...

What if we already know
the sum of the list's tail?

“tail” of list

109

Recursive sum of a list

def sumlist(items):

 if items == []:

 return 0

 else:

 return items[0] + sumlist(items[1:])

15

What if we already know
the sum of the list's tail?

We can just add in the list's
first element!

110

List Recursion: exercise

¤  Let's create a recursive function rev(items)

¤  Input: a list of items

¤  Output: another list, with all the same items, but in reverse
order

¤  Remember: it's usually sensible to break the list down into
its head	(first element) and its tail (all the rest). The tail is a
smaller list, and so "closer" to the base case.

¤  Soooo… (picture on next slide)

111

Reversing a list: recursive case

112

Fibonacci Numbers

11
3

Multiple Recursive Calls

¤ So far we've used just one recursive call to build
up our answer

¤ The real conceptual power of recursion
happens when we need more than one!

¤ Example: Fibonacci numbers

114

Fibonacci Numbers

¤ A	sequence	of	numbers:	
0		
1		
1		
2	
3	
5	
8	
13	
...	
	

+	
+	

+	

+	
+	

+	

115

Fibonacci Numbers in Nature

¤  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
etc.

¤  Number of branches on a tree, petals on
a flower, spirals on a pineapple.

¤  Vi Hart's video on Fibonacci numbers
(http://www.youtube.com/watch?
v=ahXIMUkSXX0)

116

Recursive Fibonacci
¤ Let fib(n) = the nth Fibonacci number, n ≥ 0

 – fib(0) = 0 (base case)

 – fib(1) = 1 (base case)

 – fib(n) = fib(n-1) + fib(n-2), n > 1

Recursive Fibonacci
¤ Let fib(n) = the nth Fibonacci number, n ≥ 0

 – fib(0) = 0 (base case)

 – fib(1) = 1 (base case)

 – fib(n) = fib(n-1) + fib(n-2), n > 1

	
def fib(n):  
 if n == 0 or n == 1:  
 return n

 else:  
 return fib(n-1) + fib(n-2)

Two recursive calls!

Recursive Call Tree

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

fib(1)

fib(1) fib(0)

fib(2)

fib(3)

fib(5)

fib(0)

fib(1) fib(0) fib(1)

fib(4)

fib(1)

fib(2)

fib(3) fib(2)

5

3

1

2

1 0

1 1

2

1 0

1

1 0

1

Recursive Call Tree

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Iterative Fibonacci

def fib(n):  
 x = 0  
 next_x = 1  
 for i in range(1,n+1):

 old_x = x

 x = next_x

 next_x = old_x + x  
 return x

sequence:
 0
 1
 1
 2
 3
 5
 8
 13
...

+	
+	

+	

+	
+	

+	

121

Simultaneous Assignment

Assign values to multiple variables in a single statement:

sum, diff = x + y, x – y

x, y = y, x

122

Iterative Fibonacci

def fib(n):  
 x = 0  
 next_x = 1  
 for i in range(1,n+1):  
 x, next_x = next_x, x + next_x  
 return x

Faster than the
recursive
version. Why?

simultaneous
assignment

123

Fractals: More on Recursion

12
4

Geometric Recursion (Fractals)

¤  A recursive operation performed on successively smaller
regions.

Sierpinski's
Triangle

http://fusionanomaly.net/recursion.jpg

125

Sierpinskiʼs Triangle

126

Sierpinskiʼs Carpet

127

(the next slide shows an
animation that could give
some people headaches)

Mandelbrot set

Source: Clint Sprott, http://sprott.physics.wisc.edu/fractals/animated/

129

Fancier fractals

130

Next Lecture
recursion for

search

image: Matt Roberts, http://people.bath.ac.uk/mir20/blogposts/bst_close_up.php
131

