Algorithmic Thinking:

Computing with Lists

Announcements

Tonight (9™):
O Lab 3

O PA3

O OLl

Tomorrow (10™)
O PS3
O Lab 4

Any Confusione

Print vs Retfurn:

def ¢e<e2e2? (q, b): def 222222 (q, b):
result=a+b result=a+b
print (result) return (result)

Between data types:
“3+5"vs3+5 3" *3vs3*3 6*5vs6*5.0

Variables:
output = "hello”

print(output) vs print("hello”) vs print(hello)

Units of Memory (-ibl vs -ilo)

Byte
Kilobyte
Megabyte
Gigabyte
Terabyte

Petabyte

KB

MB

GB

B

PB

8 bits (8b)
1024 B
1024 KB
1024 MB
1024 GB

1024 'TB

= 21 Bytes = 10° Bytes
= 2?0 Bytes = 10° Bytes
= 2% Bytes = 107 Bytes
= 2% Bytes = 10!* Bytes

= 2°Y Bytes = 10!> Bytes

256GB Can Hold How Many 2KBe

GB = 2%and KB = 210 GB =10°and KB = 103

256 GB =28 * 230 = 238, 256 GB = 256,000,000,000
2 KB =21*210=211 2KB = 2,000
238 / Q11 = 927

134,217,728 128,000,000

So Far in Python

Data types: int, float, Boolean, string
Assignments, function definitions

Control structures: For loops, while loops, conditionals

Accumulating output

Otto’s Farm

Putting pieces together...

This Lecture

More algorithmic thinking
O Example: Finding the maximum in a list

Composite (structured) data type: lists
O Storing and accessing data in lists

O Modifying lists

O Operations on lists

O Iterating over lists

Reviewing while loops

example to illustrate while loops
def print yes(num):

i =1
while i < num:

print(“iteration

i +1
return None
>>> print yes (10)
iteration: 1
iteration:
iteration:
iteration:

1 =

N

L
® @ @

W

=<

D

)

=

D
<
@ @ (

<

(D (@
1 L W
B

(D

o B W
<!
D
()N)

<!
(D
< <

iteration:
iteration:
iteration:
iteration:
iteration:

<
O O

B
(D

<
D
m U W
J ¥ ._<
@ @
nm U U W

<!
@ @D (
v w
< <
L =
@ @

<
D
O @D
mw
(e

)]

=<
D

w0
&)

<
(D

w

<!

D

<
D
=
D
=<
D

w u

w wm
<

(D

<

D

<!
D
<!
D

mwunwmwwn
O

D @
&)

w w

<!
D

w w

=<

D

7

® 4

(D
) L W W

i, 1 *

=
@ © @

M v W
4 K
D
U wm

<
(D

o
<!
D
)]

llYeS 144)

Exercise:

Do the same
thing with a for
loop.

Using a for loop

example to illustrate for loops
def print yes for(num):
for i in range(num):
print(“iteration:”, 1, 1 * “Yes"”)
return None

>>> print_yes_for(10)

iteration: 0

iteration: 1 Yes

iteration: 2 YesYes

i1teration: 3 YesYesYes

iteration: 4 YesYesYesYes

1teration: 5 YesYesYesYesYes

iteration: 6 YesYesYesYesYesYes
1teration: 7 YesYesYesYesYesYesYes
i1teration: 8 YesYesYesYesYesYesYesYes
1teration: 9 YesYesYesYesYesYesYesYesYes

>>>

Example: Finding the maximum

How do we find the maximum in a sequence of intfegers shown to
us one at a timee

299

What's the maximum?

Example: Finding the maximum

Input: a non-empty /ist of intfegers.

1. Set to the first numlber in
2. For each number » in
a. If nis greater than
then set to n.

Loop

Qutput: as the maximum of the

Representing Lists in Python

We will use a list to represent a collection of
data values.

scores = [78, 93, 80, 68, 100, 94, 85]

colors [‘red’, ‘green’, ‘blue’]

mixed = [‘purple’, 100, 90.5]

A list is an ordered sequence of values and may contain values of any
data type.

In Python lists may be heferogeneous (may contain items of different
data types).

Some List Operations

Indexing (think of subscripts in a sequence)

Length (number of items contained in the list)
Slicing
Membership check

Concatenation

Some List Operations

>>> names = ["Al", "Jane", "Jill","Mark"]

>>> len(names)
4

>>> Al in names
error .. Al is not defined

>>> "Al" in names
True

>>> names + names
["Al", "Jane", "Jill", "Mark",
"Mark"]

IIAl n ,

"Jane" ,

"Jill",

Accessing List Elements

list elements
0] 2 3 indices
>>> names|[0] >>> names|[3]

'Al’ '"Mark'

>> names|[len(names)-1]
>>> names([4] 'Mark'
Traceback (most recent call last):
File "<pyshell#8>", line 1, in
<module> names|[4]
IndexError: list index out of range

Slicing Lists

list elements
0] 2 3 indices
["Jane’', 'J1ill']
>>> names[0:4:2] < incremental slice

[‘Al', 'Jill']

>>> names|[:4]

['Al', 'Jane', 'Jill', 'Mark']
>>> names|[:2]

['Al', 'Jane']

>>> names[2:]

[“TJill’', 'Mark’]

Operation
X in s
X not in s
s + t
s *n, n % s
s[1]
s[i:73]
s[i:7:k]
len(s)
min (s)
max(s)
s.index (1)

s.count (1)

Result
True If an item of s is equal to x, else rFalse
False If an item of sis equal to x, else True
the concatenation of s and ¢
n shallow copies of s concatenated
ith item of s, origin O
slice of sfromito
slice of s from / to j with step k
length of s
smallest item of s
largest item of s
iIndex of the first occurence of jin s

total number of occurences ofiin s

source: docs.python.org

Modifying Lists

>>> names = ['Al', 'Jane', 'Jill’', 'Mark']

>>> names[l] = "Kate"

>>> names

['Al', 'Kate', 'Jill', 'Mark']
>>> names[1:3] = ["Me",”You"]

>>> names

['Al', 'Me', 'You', 'Mark']

>>> nameS[1:3] — [HMeH,HMell,HMell,HMell]

['Al', 'Me', 'Me', 'Me', 'Me', 'Mark']

The list grew in length, we could make it shrink as well.

Operation
s[1i] = x

s[i:7] = t

del s[i:7]

s[i:7:k] = t

del s[i:]j:k]

s .append (x)
s.extend (x)
s.count (x)

s.index(x[, i1[, J11)

s.insert (i, x)

s.pop([i])

s.remove (x)

s.reverse ()

s.sort ([key[, reverse]])

Result
item / of s is replaced by x

slice of s from /1o j is replaced by the
contents of the iterable t

same as s[i:j] = []

the elements of s[i:5:k] are replaced by
those of t

removes the elements of s[i:5:k] from
the list

Same as s[len(=s) :1len(s)] [x]

Same as s[len(=s) :1len(s)] = x
return number of i's for which s[1] == x
return smallest k such that s[kx] == x and

i<=k < j
sameas s[i:i] = [x]

sameas x = s[1]; del s[i]; return
X

same as del s[s.index(x)]
reverses the items of s in place

sort the items of s in place

source: docs.python.org

20

>>>
>>>
>>>
>>>

NleNgle

west east

WeSt — [IICAH, IIOR"] \ /
eaSt — ["NY", IIMAH] O” \ /

all = [west, east]

all

[["CA", IIORII],[IINY", "MA"]]

There are two paths to the list containing state names in the
West Coast.

« One through the variable west.
« The other through the variable all (namely, all[0]).
This is called aliasing.

Mutabillity Requires Caution

west eqst

N

al |

>>> west = ["CA", "OR"]

>>> east = ["NY", "MA"] All variables that are bound to the

>>> all = [west, east] modified object change in value.
>>> west.append("WA")
>>> all

[['CA', 'OR', 'WA'], ['NY', 'MA']]

Creating Coples

west eqst

N/

all

||CA|| ||OR|| IINYH HMAII

>>> west = ["CA", "OR"]
>>> east = ["NY", "MA"]
>>> all2 = [west[:], east[:]]
>>> gll2 \ Creates a shallow copy.

>SS [[n CA" , n ORH] , [IINY n , llMAll] If ||ST i.l.ems were mUTOble Objec'l's'

as opposed to strings as we have here,

. we would have needed somethin
No matter how | modify west, more. J

all2 will not see it. Don't worry about it now.

lterating over Lists

def print colors(colors):
for i in range(0, len(colors)):
print(colors[i])

>>> print colors([“red”, *“blue”, "“green”])
red
blue

green

24

Alternative Version

def print colors(colors):
for ¢ in colors:
print(c)

Python binds ¢ to the first item in colors,
then execute the statement in the loop body,
binds ¢ o the next item in the list colors efc.

25

Algorithm: Finding the maximum

Input: a non-empty /ist of intfegers.

1. Set to the first numlber in
2. For each number » in
a. If nis greater than
then set to n.

Loop

Qutput: as the maximum of the

26

FInding the max using Python

def findmax(list):

max_so_far = 1list[O0] # set max_so_far to the first item

for 1 in range(l,len(list)): #check all the following items

if list[i] > max_so_far: yifyou find a bigger value
update max_so_far
max so far = list[i]

return max so_ far

27

Alternative Version

def findmax(list):
“For each item

max_so_far = list[0]/ in the list...”

for item in list:
1f item > max so far:
max so far = item

return max so far

28

The list data type (ordered and dynamic collections of
datq)

O Creating lists
O Accessing elements
O Modifying lists

Iterating over lists

Algorithmic Thinking:
Sieve of Erathosthenes

' OF
fRATOSTHINES

A 2000 year old algorithm
(procedure) for generating a table
of prime numbers.

2,3,5 7,11,13,17,23,29, 31, ...

An integer is “prime” if it is not divisible by any smaller integers
except 1.

10 is not prime because 10=2 x 5

11 is prime

12 is not prime because 12=2x6=2x2x 3
13 is prime

15 is not prime because 15=3 x5

32

Testing Divisibility in Python

x is “divisible by” y if the remainder is 0 when we divide x by y

15 is divisible by 3 and 5, but not by 2:

>>> 15 § 3

0

>>> 15 & 5
0

>> 15 % 2

1

33

What Is a “Sieve” or “Sifter”e

Separates stuff you want from stuff you don’t:

N S

_—

We want to separate prime numbers.

34

The Sieve of Eratosthenes

@)

Start with a table of
integers from 2 to N.

Cross out all the
entries that are
divisible by the primes
known so far.

The first value
remaining is the next

prime. Y,

35

Finding Primes Between 2 and 50

2 3495 67 8 210
11213141516 171819 20
1222324252627 28 29 30
1 323334 3536 37 38 39 40
1 42 43 44 45 46 47 48 49 50

AOWON—

2 is the first prime

FiInding Primes Between 2 and 50

2 3 S / v
13 415 16171219
23 0425 0627 2029
33 435 5637 20 39
43 1445 16 47 A0 49

N =

Filter out everything divisible by 2.
Now we see that 3 is the next prime.

Finding Primes Between 2 and 50

2 3 5 /

11 13 17 1219
23 2425 29

31 35 637

41 4 43 47 25 49

Filter out everything divisible by 3.
Now we see that 5 is the next prime.

FiInding Primes Between 2 and 50

2 3 5 7

11 13 17 1219
23 29

31 37

41 4 43 47 25 49

Filter out everything divisible by 5.
Now we see that 7 is the next prime.

Finding Primes Between 2 and 50

2 3 5 7

11 13 17 1219
23 29

31 37

41 4 43 47

Filter out everything divisible by 7.
Now we see thatl 1 is the next prime.

FiInding Primes Between 2 and 50

2 3 5 7

11 13 17 1219
23 29

31 37

41 4 43 47

Since 11 x 11 > 50, all remaining numbers must
be primes. Why?¢

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If elementis not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal 1o »n

42

Automating the Sieve

numlist primes
2 3 4 5
6 /7 8 9
1011 12 13

Use two lists: candidates, and confirmed primes.

Steps 1 and 2

numlist primes

2 3 4 5
6 /7 8 9
1011 12 13

12 1

Step 3a

numlist primes

3 4
/ 8
1 12

2

2 S
6 9
101 3

12 1

Append the current number in numlist to the end of primes.

Step 3b

numlist primes

3 4 5
/7 8 9
11 A2 13

LSRN

Cross out all the multiples of the last number in primes.

lTerations

numlist primes

2 s 2) 3
& 7 8 9
11 A2 13

Append the current number in numlist to the end of primes.

numlist primes
238 4 5 2 3
& 7 8 7
JO11 A2 13

Cross out all the multiples of the last number in primes.

lTerations

numlist primes
23 A4 15 2m3) 5
& 7 8 7

JO11 A2 13

Append the current number in numlist to the end of primes.

ITerations

numlist primes
238 &5 2 35
g 7 8 7

JO11 A2 13

Cross out all the multiples of the last number in primes.

An Algorithm for Sieve of Eratosthenes

Input: A number n:

1. Create a list numlist with every integer from 2 to n, in order.
(Assume n > 1.)

2. Create an empty list primes.

3. For each element in numlist

a. If elementis not marked, copy it to the end of primes.

b. Mark every number that is a multiple of the most recently
discovered prime number.

Output: The list of all prime numbers less than or equal 1o »n

51

Implementation Decisions

How to implement numlist and primes?

O For numlist we will use a list in which crossed out
elements are marked with the special value None.

For example,
[None, 3, None, 5, None, 7, None]

Use a helper function to mark the multiples,
step 3.b. We will call it sift.

Relational Operators

If we want to compare two integers to determine their relationship,
we can use these relational operators:

< less than <= less than or equal to
> greater than >= greater than or equal to
== equalto I= not equal to

We can also write compound expressions using the Boolean
operators and and or.

Xx>=1and x <=1

53

Sitting: Removing Multiples of a

Number

def sift(lst,k):
marks multiples of k with None

1 =0
while 1 < len(lst):
if 1lst[i1] != None and 1lst[i] % k == 0:
lst[1] = None
i=1+1

return 1lst

Filters out the multiples of the number k from list by marking
them with the special value None (greyed out ones).

Sitting: Removing Multiples of a

Alternative version

def sift2(1lst,k):
1 =0
while 1 < len(lst):
if 1st[1i] % k ==
lst.remove(lst[1])
else:
i=1+1
return lst

Filters out the mulfiples of the number k from list
by modifying the list. Be careful in handling indices.

A Working Sieve

Use the first version of siff
in this function, which does

def sieve (n): the filtering using Nones.
numlist = list(range(2, n+l))
primes = []
for 1 in range(0, len(numlist)):
1if numlist[i] != None:
primes.append(numlist[1])
sift(numlist, numlist[i])

return primes We could hohed\

primes[len(primes)-1] instead.

Helper function that we defined before

Observation for a Better Sieve

We stopped at 11 because all the
remaining entries must be prime since

11 x 11> 50.
2 3 5 7
11 1213 17 =19
23 29
31 37

41 ' 43 47

A Better Sieve

def sieve(n):

numlist = list(range(2, n + 1))

primes = []

1 = 0 # index 0 contains number 2

while (i+2) <= math.sqrt(n):

if numlist[i] != None:

primes.append(numlist[i])
sift2(numlist, numlist[i])
i=1+1

return primes + numlist

Algorithm-Inspired Sculpture

The Sieve of Eratosthenes,
1999 sculpture by Mark di
Suvero. Displayed at
Stanford University.

Otto’s Farm

Otto’s new farm

Otto has found a new passion: growing heritage variety,
organic cabbage. He saves his money and is finally able to
purchase a small, narrow 37 x 1 frack of land just outside the
city—now he can devote himself full fime to farming! So he
packs up his skinniest overalls, mounts his trusty fixie and
leaves his native homeland of Lawrenceville-- off to begin a
new career as a farmer.

Otto quickly discovers that farming’s tough work — especially
iIn fight overalls. So he decides to program a simple robot to
plant his cabbage for him...

def plant_cabbage():
print("@")

Why a function planting
individual cabbage?

What does the rest of the
problem require?

Keeping counte

A little more space.

Otto’s first crop is successful, although a little stunted. He
reminds himself fo leave some space between his cabbage
next time. After carefully grooming his beard, he heads to
the farmer’'s market and sells his cabbage; he's able to buy
a little more land, expanding his track to 37 x 20.

Success!

Otto’s cabbages grow well
and become the hit of the
farm to table circuit, and his
labor-saving robot allows him
to devote more of his time o
listening to bands you've
probably never heard of.

With the extra income, he's
managed to increase his
patch of land again. Time to
add more functionality o the
robot to accommodate the
new field

length

width

width/2

length/2

New varieties of cabbage

Otto buys some new heritage varieties of green, purple,
rainbow and yellow cabbage from the Picture and Thief
Seed Co of Wiliamsburg. He plants an early row of the
seeds to better understand how they grow: ['G", "G", "G",
‘G '"GY Gt Gt Gt G P, 'RY, 'RY, RY, TRY, TR, TR, Y, Y,

YR, TY, Y
$
P X

@mw%?/

