Iteration

for loops, while loops




Infro to Python

Due:
O Academic Integrity Form (nowl)
O PS2 (this morning, 2:00AM)

O Lab 2 (July 39)
O OLI Module on Iteration (July 39, 11:59PM)



Reminders

OLI Decisions Module, over weekend
PA 2 due Monday night (July 8™)

Lab on Monday: Review!
O Monday, July 8th at 4:30 in GHC 5207



Reminders

Use the PS Templates!
| have OH today; any issues with OH<¢



Review from last fime



Review from last fime

Infroduction to Python
Mechanics

Some Specifics:

O Programming Languages
O Basic datatypes

O Variables

O Functions



Data Types

Integers

Floating Point Numbers

Strings

Booleans

Literal None

4 15110 =53 0

4.0 0.80333333333
7.34e+014

"hellO” "A" 1] 1) 777
'"there' rmt '151107
True False
None



Arithmetic Expressions

Mathematical Operators

+ Addition

- Subtraction // Integer division

*  Multiplication e Exponentiation
Division % Modulo (remainder)

python IS like a calculator: type an expression and it
evaluates the expression (tells you the value).

>>2+3*5
=17



Variables and Expressions

>>>a3=5
>>> 3

>>> a

| 3 >>>b=2%a

=10




Variables

>>a

=5 .

>SS b G. “WOOf”
=10

>>a="Woof

>> a o: 10

= “Woof”
>> b

Variable b does not “remember” that its
=10 value came from variable a.



Functions

Are reusable blocks of code

Are general

Can be user defined

Can be imported

Are defined with parameters

Are called with arguments

Function Syntax:

def functionname (parameterlist) :
L1100 instructions

Built-in Functions

import math
r = 5 + math.sqgrt (2)



Defining vs Calling a Function

Defining a function

def functionname (parameterlist) :
L O 0instructions

def multiply(vl,v2,v3):
return v1*v2*v3

def hello world() :
print (“Hello World”)

Calling a function

>>> functionname (argumentlist)

>>> multiply (5,2, 3)
30

>>> hello world()
Hello World



Return, None, Print

Function returns value

def multiply(vl,v2,v3):
return vl * v2 * v3

myMulti 1= multiply(3,6,7)

>>> type (myMulti 1)

<class 'int'>

Function prints value and
returns None (by default)

def multiply(vl,v2,v3):
print (vl * v2 * v3)

myMulti 2= multiply(3,6,7)

>>> type (myMulti 2)

<class 'NoneType'>



Return, None, Print

Function calculates, prints, returns value

def multiply(vl,v2,v3):
multi = vl * v2 * v3
print ('The result is: ", multi)

return multi

myMulti = multiply(3,6,7)

>>> type (myMulti)

<class 'int'>



End of Class problems

Create a function that calculates 18% tip

Input(”Enter your total: bill”) would return a user-entered variable.
Write a short python script that would advise users of an appropriate
tip based on their input.



End of Class problems

Create a function that calculates 18% tip

Input(”Enter your total: bill"") would return a user-entered variable. Write a short
python script that would advise users of an appropriate tip based on their input

1 def tip_calculator(bill):

§ :iia{ E;$121i1130+ tip Input ?s a: .<clgss 'sFr'> .
- Your final bill including tip: 118.0

4 return final_pay

5

6

7 user_bill_input = input("Enter your bill: ")

8

9  print("Input is a: ", type(user_bill_input))

10

11

12 cast_user_bill_input = int(user_bill_input)

14  print("Your final bill including tip: ",
tip_calculator(cast_user_bill_input))




End of Class problems

Create a function that takes two parameters (mass and radius)
and calculates escape velocity. Note:

O G=6.67e-011

O Our fine planet has mass of 5.9742e+024,
and a radius of 6378.1

\/QGM
Vesc =—
R



End of Class problems

1 import math
2
3 def compute_ev(M, R): I
4
5 G = 6.67e-011
6 return math.sqrt(2xGxM/R)
7
8 earth_ev = compute_ev(5.9742e+024,
6378.1)
9

10 print("Earth's escape velocity is:
", earth_ev)




Questions?e



Iteration



Why do we need iteration

Many algorithms are partially or fully a repeating set of
steps.

Can we accomplish a set of steps manually?

Let’s say you want to tip the waiter but you are not sure
how much. The tipping possibilities you consider are from
15% to 25%

How would you do this?

21



Creating a tip table

check = int (input ("Enter check:"))

print (check
print (check
print (check
print (check
print (check
print (check
print (check
print (check
print (check
print (check
print (check

b D S S R s S S I o

15)
16)
17)
18)
.19)
.20)
21)
22)
23)
24)
25)

>>> Enter check:57

8.549999999999999
9.120000000000001

9.690000000000001

10

12

14

.26
10.
11.
11.

83
4
969999999999999

.540000000000001
13.
13.
.25

110000000000001
68

22



Iteration

Loops (for, while) check = int (input ("Enter check:"))

Provide power, generality for tip in range (15, 25):
print ((tip * check) /100)

Construct for iterative cycles

over a range of numbers

23



For Loop Syntax

for isareserved word and
cannot be used as a variable name

for loopvariable in range (start,end, step) :
loop_body

24



For Loop Syntax

for isareserved word and
cannot be used as a variable name

loop variable is
a new variable name

for loopvariable in range (start,end, step) :
loop_body

25



For Loop Syntax

_ gives the range
for isareserved word and

cannot be used as a variable name

loop variable is
a new variable name

for loopvariable in range (start,end, step) :
loop_body

start, start+step ...

end-1

26



For Loop Syntax

_ gives the range
for isareserved word and
end-1

- start, start+step ...
cannot be used as a variable name

loop variable is
a new variable name

for loopvariable in range (start,end, step) :
loop_body

declares the start
of an indented block

27



For Loop Syntax

_ gives the range
for isareserved word and
end-1

- start, start+step ...
cannot be used as a variable name

loop variable is
a new variable name

for loopvariable in range (start,end, step) :
|| loop_body

declares the start

Indentation is critical. of an indented block

Use spaces only, not tabs!

28



For Loop Syntax

_ gives the range
for isareserved word and
end-1

- start, start+step ...
cannot be used as a variable name

loop variable is
a new variable name

for loopvariable in range (start,end, step) :
|| loop_body

One or more instructions

that you want to repeat declares the start

Indentation is critical. of an indented block

Use spaces only, not tabs!

29



for Loop Example

gives the range

Loop variable Ordi2, 3,4
for i in range (0, 5, 1):
print ("hello world")
hello world Loop body

hello world (gets repeated 5 times)

hello world
hello world

hello world



What happens in a loop variable?

for i in range (0, 5, 1):
print ("hello world, i=", 1)

hello world, 1=0 Start = 0
hello world, 1=1

hello world, 1=2 Increment by 1

hello world, 1i=3

hello world, i=4 Ends when reaches 4
(up to end-T)

31



for Loop Example (changing start and end)

for i in range(0, 8, 1): for i in range (12, 15, 1):
print (1) print (1)
0 12
. 13
2
14
3
4
5

32



for Loop Example (changing increment)

for i in range (0,
print (1)

for i in range (0, 8, 3):

print (1)

for i in range (10, 100, 25):

print (1)

10
35
60

85

33



for Loop Example (decrement)

for i in range (10, 0, -2):
print (1)

10

34



What will happen?

Ex #1

for i in range (0, 10, -1):
print (i)

Ex #2

for i in range (10, 0, 1):
print (i)



What will happen?

Ex #1

for i in range (0, 10, -1):
print (i)

Ex #2

for i in range (10,
print (i)

Loop will be skipped!!

0,

1) :

36



Other versions of the range function

range(start, end, step) gives the
range start, start+step ... end-1

>>> for i injrange(0, 5, 1):|
print(i, end=" ")

© 12 3 4 >>>

range(start, end) gives the range(n) gives the
range start ... end-1 range 0 ... n-1

>>> for i in|range(0, 5):|M>>> for i in|range(5):
print(i1, end=" ") o print(i1, end=" ")

0123 4>>§ 123 4 >>>

37



Detour: some printing options

>>> for 1 1in range(5):

print (1,
01 2 3 4 >>>

>>>

end=" " )

\

Blank space after value printed

>>> for 1 1in range(9):

>>> print (1,
01234>>>

end="" )

¥

No space after value printed

The default is end =

“\n”.

38



Danger! Don’t grab the loop variable!

for 1 in range(5):

print (i, end=" ")

i ©

012 3 4

for 1 in range (0, 5):

o

print (i, end=" ")

10 10 10 10 10

Even if you modify the loop
variable in the loop, it will be
reset to its next expected value
In the next iteration.

NEVER modify the loop
variable inside a for loop.

O

39



Accumulating Outputs

building an answer a little at a time



Variables and Expressions

>>>a3=5
>>> g
=5

>>> a

=5 d.

}>>>b=2*a

=10

10

4]



Variables

>>a

=5 .

>SS b G. “WOOf”
=10

>>a="Woof

>> a o: 10

= “Woof”
>> b

Variable b does not “remember” that its
=10 value came from variable a.



Variables change over time

value of x in memory value of y in memory
x = 150 150 (not yet defined)
vy = x * 10 150 1500
Xx = x + 1 151 1500
vy = X + y 151 1651




Variables change over time

value of x in memory

value of y in memory

150 l:'_">150 (:::2>(not yet defined)
x * 10 150 1500
x + 1 151 1500
X + vy 151 1651

44



Variables change over time

value of x in memory

value of y in memory

X 150 150 (not yet defined)
y = x * 10 C—>150 1500 ¢
x = x + 1 151 1500

y =% +y 151 1651

45



Variables change over time

value of x in memory

value of y in memory

X

150

x * 10

150

(not yet defined)

46



Accumulating an answer

1
2 def sum():
3 sum = 0
4 for i in range(1, 6, 1):
5 sum = sum + 1
6 return sum
>>> sum ()

15



Accumulating an answer

# sums first 5 positive integers
def sum():
sum = @ # initialize accumulator
for i in range(1, 6, 1):
sum = sum + 1 # update accumulator
return sum # return accumulated result

OO U1 A WN -

>>> sum ()
Now let’s see

15 what’s

happening
under the hood




Accumulating an answer

1

2 def sum():

3 sum = 0

4 for i in range(1, 6, 1):

5 sum = sum + 1

6 return sum

i sum

initialize sum ? 0
iteration 1 1
iteration 2 2
iteration 3 3
iteration 4 4 10
iteration 5 5 15




Generalizing sum

# sums the first n positive integers

sum(6) returns 21
sum (100) returns 5050

sum(15110) returns 114163605

50



Generalizing sum

# sums the first n positive integers
def sum(n) :
sum = 0 # initialize
for i in range(l, n + 1):
sum = sum + 1 # update

return sum # accumulated result

sum(6) returns 21
sum (100) returns 5050

sum(15110) returns 114163605

51



An Epidemic



Accumulation by
multiplying as well as by adding

: : Each newly infected person

An epldemlc: infects 2 people the next day.

1

2 def compute_sick(d):

3 newly_sick =1

4 total_sick =1

5 for day in range(2, d + 1):

6

7 newly_sick = newly_sick x 2

8 total_sick = total_sick + newly_sick

9 return total _sick




Accumulation by
multiplying as well as by adding

: . Each newly infected person
An epldemlc. infects 2 people the next day.

def compute_sick(d):
newly_sick =1
total _sick =1
for day in range(2, d + 1):

newly_sick = newly_sick x 2
total_sick = total_sick + newly_sick
return total _sick

O 00 ~J O Ul W IN P




Accumulation by
multiplying as well as by adding

An epidemic:

def compute_sick(
newly_sick =
total _sick =

d):
1
1

Each newly infected person
infects 2 people the next day.

for day in range(2, d + 1):

0 00 0y U1 A W IN -

newly_sick
total_sick
return total_

= newly_sick x 2
= total_sick + newly_sick

sick

55



Accumulation by
multiplying as well as by adding

An epidemic:

def compute_sick(
newly_sick =
total _sick =

d):
1
1

Each newly infected person
infects 2 people the next day.

for day in range(2, d + 1):

newly_sick

= newly_sick x 2

0 0O OO0 A WIN -

total_sick
return total_

= total_sick + newly_sick

sick

56



Accumulation by
multiplying as well as by adding

An epidemic:

def compute_sick(
newly_sick =
total _sick =

d):
1
1

Each newly infected person
infects 2 people the next day.

for day in range(2, d + 1):

newly_sick
total_sick

= newly_sick x 2
= total_sick + newly_sick

0100 N OO U A WIN -

return total_

sick

57



Accumulation by
multiplying as well as by adding

An epidemic:

O 0O N O U B WN -

def compute_sick(
newly_sick =
total _sick =
for day in ra

newly_sick
total_sick
return total_

Each newly infected person
infects 2 people the next day.

d):

1

1

nge(2, d + 1):

= newly_sick x 2

= total_sick + newly_sick
sick

58



Output: how an epidemic grows

compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick
compute sick

In just three weeks, over
2 million people are

infected!

(This is what Blown To Bits
means by exponential growth.
We will see important
computational problems that
get exponentially “harder” as
the problems gets bigger.)

NN RPRRRRRRR OO0 WN -
Il

FOWW-JOUTRWN R O ————————
I
NHEUOINHFOWHORNF OINFOYWR JW

OONOYWUINOHOOO R UTNWR Ul

OB BN UT-JWWOWONN U1
JONRF OWO0 R UTJW

R O1o0 D JUTJW

OTJJWwk

P P P P e e e e




While Loops



While Loop Syntax

while isareserved word and
cannot be used as a variable name

while condition:
loop_body

61



While Loop Syntax

while isareserved word and
cannot be used as a variable name

while condition:
loop_body

The loop_body executes
while the condition holds true

62



While Loop Syntax

The loop_body executes

while isareserved word and _ o
while the condition holds true

cannot be used as a variable name

while condition:
loop_body

declares the start

Indentation is critical. One or more instructions of an indented block
Use spaces only, not tabs! that you want to repeat

63



while [OOpP

false w

true

LOOP
BODY

64



while [OOpP

false
W NOTE: If the loop condition becomes

true false during the loop body, the loop
body still runs to completion before we
exit the loop and go on with the next
LOOP step.

BODY

65



While Loop Examples

How about the following?

i=1 i=20

while 1 < 11: while i < 10:
print(1i) i=1i+1
i=1+1 print (i)

What is the value of i when
we exit the loop?

66



Be careful of infinite loops!!

# Infinite loop:
Condition always true
because loop variable is
never changed in the
body of the loop!

i=1
while i < 11:
print (i)

# Infinite loop:
Condition always truel

i =10

while True:
i=1+1
print (i)

i =10

while 1 < 5:
i=1i4+1
print (i)

67



Back 1o our epidemic

Each newly infected person infects 2 people the next day.
The function returns the number of sick people after n days.

def compute_sick(d):
newly_sick = 1
total_sick =1
for day in range(2, d + 1):

newly_sick = newly_sick x 2
total_sick = total_sick + newly_sick
return total _sick

O© 00O NNO U1 B WIN K-

68



Variation on the Epidemic Example

Let us write a function that
O Inputs the size of the population
O Outputs the number of days left before all the population

dies out
How can we do that using iteration (loops)<¢
Keep track of the number of sick people.

But do we know how many times we should loop?

69



Recall the Epidemic Example

def days_left(population):

days =

newly_sick =

total_sick =

while total_sick < population:

newly_sick = newly_sick x

total_sick = total_sick + newly_sick

days = days +
print(days, "days for the population to die off""")
return days

70



Recall the Epidemic Example

1

2 def days_left(population):

3 days = 1

4 newly_sick =1

5 total_sick =1

6 while total_sick < population:

7

8 newly_sick = newly_sick x 2

9 total_sick = total_sick + newly_sick
10 days = days + 1

11 print(days, '"days for the population to die off""")
12 return days

(Y
W

71



Recall the Epidemic Example

1

2 def days_left(population):

3 days = 1

4 newly_sick =1

5 total_sick =1

6 while total_sick < population:

7

8 newly_sick = newly_sick x 2

9 total_sick = total_sick + newly_sick
10 days = days + 1

11 print(days, '"days for the population to die off""")
12 return days

[
W

72



Recall the Epidemic Example

1

2 def days_left(population):

3 days = 1

4 newly_sick =1

5 total_sick =1

6 while total_sick < population:

7

8 newly_sick = newly_sick x 2

9 total_sick = total_sick + newly_sick
10 days = days + 1

11 print(days, "days for the population to die off""")
12 return days

=
W

73



© 00 NN O UL &~ WN -

[
S

Recall the Epidemic Example

def days_left(population):
days = 1
newly_sick =1
total_sick =1
while total_sick < population:

newly_sick = newly_sick x 2
total sick = total sick + newly_sick
days = days + 1

=
w N R

print(days, '"days for the population to die off""")
return days

74



Recall the Epidemic Example

1

2 def days_left(population):

3 days = 1

4 newly_sick =1

5 total_sick =1

6 while total_sick < population:

7

8 newly_sick = newly_sick x 2

9 total_sick = total_sick + newly_sick
10 days = days + 1

11 print(days, '"days for the population to die off""")
12 return days

[
w



For vs While Loop



While vs. For Loops

i=1 for i in range(1l,11):
while 1 < 11: print (i)
print(1i)

i=1+1

77



While vs. For Loops

i= 2 for i in range(2,11,2):
while i < 11: print (i)
print (i)

i =14+ 2

78



When 1o use for orwhile |00OPS

If you know in advance how many times you want to run
a loop use a for l00OP.

When you don’t know the number of repetition needed,
use adwhile looOp.

79



Try: Create flow charts tor

Calculating interest on a savings account at 6% interest
for 3 years with a starting balance of $1000.

Generalize the above - let the user indicate the interest
rate and length of fime.

Parable: grains of rice on a chessboard, (1 grain on
square one, 2 grains on square 2, 4 grains on square 3 ....
through square 64)

80



Try: Create flow charts tor

Saving money to buy a new car — how long will it tfake to
save for a new Tesla Model X @ $80,000. (5000.00 in a
savings account)

Saving for retirement — for different retfirement targets,
and calculate how long it will take to reach that target.
ldentify your variables and pre-assign values.

Can you generalize the above to accommodate
different user inpute

81



