
15-110: COURSE OVERVIEW

Introductions

¤ Instructors:
¤ Norman Bier
¤ Franceska Xhakaj

¤ TA Team
¤ Jonan Seeley
¤ Tara Prakash
¤ Maimoon Siddiqui
¤ Janet Peng

2

Introductions

¤Who are you?

¤What are you studying?

¤What do you hope to get from this
course?

3

Students From Different Disciplines

¤ Basic Sciences

¤ Engineering

¤ Psychology

¤ Business

¤ Modern Languages

¤ Architecture

¤ Others ...

4

Why Are You Here?

¤ Curiosity: find out about computing technology
and its many effects on society.

¤ Professional development: computing skills can
make you more successful at work.

¤ Academic requirement: a computing course is
required for your major. Why?

¤ Intellectual growth: computing changes how we
think about problems. You can learn to think like a
computer scientist.

5

Computation

¤ Computer science is the study of what can be
computed and how to compute it:
¤ Computation: Performance of a sequence of

simple, well-defined steps that lead to the
solution of a problem

¤ A computer: Performs steps and remembers the
results of those steps

6

What Kind of a Discipline is
Computer Science?

¤Science: focuses on abstract, artificial things
in a virtual world.

¤Engineering: Building complex things by
using techniques to manage complexity

¤Liberal arts: Strong connections to traditional
liberal arts of grammar, rhetoric, logic,
arithmetic, geometry, music

7

High-level Goals of the Course
¤When you think like a computer scientist you will

be able to
¤ Identify problems that are amenable to

computation and express computations to find a
solution

¤ Understand the power and limitations of
computational tools and techniques

¤ Ask new questions that were not thought of or
dared to ask because of scale, easily addressed
computationally

8

Skills to Be Gained

¤Systematic problem solving, applying
abstractions as needed

¤Reading, writing, and debugging small to
medium-sized programs using the language
Python

¤Familiarity with computational concepts
underlying pervasive technologies

¤Familiarity with computational vocabulary

9

10

In their capacity as a tool, computers will
be but a ripple on the surface of our
culture. In their capacity as intellectual
challenge, they are without precedent in
the history of mankind.

Edsger Dijkstra,
1972 Turing Award Lecture

Course Information

Course Organization

¤ Instructor:
¤ Norman Bier & Franceska Xhakaj
¤ Email is welcome. Please use [15-110] in the subject

line

¤ Lectures: MTWThF
¤ 9:00-10:20

¤ Lab/Recitation sections (3 rooms)

¤ 4 Teaching Assistants (TAs) to help you!

12

Lab Information

Lab (Section U - undergraduates)
MTWRF 4:30-
5:20PM*

GHC
5208 TA:

Lab (Section E1 - APEA students)
MTWRF 4:30-
5:20PM*

GHC
5210 TA:

Lab (Section E2 - APEA students)
MTWRF 4:30-
5:20PM*

GHC
5207 TA:

Via Canvas(cmu.edu/canvas):

¤Course web site

¤Open Learning Initiative course

¤Gradescope

¤Piazza: course message board

Resources

14

http://cmu.edu/canvas
http://www.andrew.cmu.edu/user/nbier/15110/

Office Hours

¤By instructor after class & by appointment

¤By Teaching Assistants after class and in
evenings

¤Schedule is near-final; minor adjustments
can still occur. See course web page for
schedules.

15

Textbooks

¤There is no designated textbook.

¤See the course web page for
recommended books.

16

Assignments
¤OLI materials
¤Labs: do in recitation; hand -in using

Gradescope.
¤Written problem sets; hand-in using

Gradescope

¤Programming assignments:
¤ Pre-published
¤ Due by end of day (11:59 PM)
¤ Handed in using Gradescope

17

Late Policy

¤ Assignments must be handed in on time.
¤ Late assignments receive a grade of 0.

¤ We will drop 1 written assignment and 1
programming assignment without penalty
(except where noted)

¤ We will drop 2 labs without any penalty.

18

Exams

¤ You must take all the exams, at the time they are
given.

¤ No makeups except for extreme circumstances
(major illness, death in immediate family, or a
university-sanctioned event with documentation
and prior permission)
¤ 2 Lab Exams
¤ 2 Written Exams
¤ Final Exam

19

Grading

OLI Materials: 10%

Homework Assignments: 25%

Lab Participation: 5%

2 Lab Exams: 10% (5% each)

2 Written Exams: 30% (15% each)

Final Exam:20%

20

Expected Effort

¤We assume that you have no prior
knowledge in computing.

¤Remarkably fast paced, aggressive
schedule

¤Expect to put in 12-15 hours a week
outside of class

21

How aggressive?

¤Summer Session: 2.5X times as fast

¤What to do if questions or concerns?

¤Can you catch up?

22

Academic Integrity Policy

¤ University Policy on Cheating and Plagiarism

¤ Complete OLI Course module, including quiz.

¤ Academic Integrity Form
¤ On the SYLLABUS page of the course web page.
¤ Print it out.
¤ Read it.
¤ Sign it.
¤ Bring it to class on Friday, July 5th

23

Getting Started with
Computational Thinking

Computation
¤ A computer does 2 things

¤ Performs instructions
¤ Remembers their results

¤ Historically computation speed was limited by the
human brain and the ability to record results by the
human hand. But modern computers relieved us
from those constraints.

25

The very basics

¤ Letters -> words -> sentences -> …

¤ Computers:
¤ On – Off
¤ Yes – No
¤ True – False

¤ 0 - 1

How many options?

0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111

Mechanical Procedure

¤ Computers execute mechanical procedures --
procedures that can be followed without any
thought.

¤ We need to give them unambiguous instructions
such that when followed step by step the
execution will finish and yield a result.

¤ An algorithm is a mechanical procedure that is
guaranteed to eventually finish.

28

Procedure Example:

¤ …Combine the flour, sugar, yeast and salt in a mixing
bowl.

¤ Start the mixer.

¤ Add water and 2 tablespoons of oil.

¤ Beat until the dough forms into a ball.

¤ If the dough is too sticky, add additional flour and beat.

¤ If the dough is too dry, add ddtional water and beat.

¤ Otherwise, stop and kneed.

29

Describing what to do

If I was a robot, how would you
describe/direct me on how to exit
from the class…?

Example

¤ I can execute the instructions that I understand. I have
memory to remember things. Suppose I know how to
do arithmetic. Give me a sequence of instructions to
count the number of students present in the room.
¤ Multiple ways to do this.
¤ How can you express the instructions unambiguously?
¤ How can you compare alternative procedures in terms

of efficiency -- time it takes to get the end result.

¤ What if multiple people can do the counting in
parallel?

One Algorithm

1. Take a card

2. Write the number 1 and stand up

3. Pair with a student who has a card in hand

4. Sum the numbers on your cards

5. Shorter student: cross out number on card, write
new sum.

6. Taller student sits, the other goes back to step 3.

Primitives and Abstraction

¤Suppose I know how to
draw lines along a given
direction and turn a
given number of
degrees as I draw. Can
you give me instructions
to draw this house?

Abstraction

¤Suppose I already
know how to draw
a triangle and a
square. Can you
give me instructions
to draw this house?

Abstraction: now we can think in terms of
triangles and squares instead of lines

Reusability

How to draw this?

We can even think in terms of houses. What is the
advantage of using abstraction like this?

Managing complexity, reusability …

General Purpose Computing

¤We can design machines for specific
computing tasks (averages, sums)

¤Many earlier machines were fixed program
computers

¤Modern computers store sequences of
instructions and execute them

37

Programs to Describe Mechanical
Procedures

¤What if we have millions of steps to specify
for a computer?

38

We typically use higher-level programming
languages to describe computations

Online Communication

¤Email addresses are on the website (use [15-
110] in the subject), but we prefer Piazza. Why?

¤Do not copy your source code in your posting.

¤Help one another, but do not provide direct
solutions/assignments.

39

Today’s Lab and First PA

¤Getting set up and using the lab

¤Programming with Blockly (code.org)

40

First Assignments

¤ Find and bookmark the course web page:
www.cmu.edu/canvas

¤Review the syllabus and schedule on that
page.

¤Complete the OLI module on Academic
Integrity. Read, sign and return the Academic
Integrity Form to your TA in the lab on Thursday.

41

http://www.cmu.edu/ca

Reading

¤Blown to Bits Chapter 1 “Digital
Explosion”.

¤Begin reading “What is Code”

42

Next Lecture

¤A brief history of computing

¤Programming with Python

¤Thursday: No class!

43

