Information Disclosure in Matching Markets

Hugo Hopenhayn¹ Maryam Saeedi² Ali Shourideh³

SAET- July, 2023

¹UCLA ²Carnegie Mellon University ³Carnegie Mellon University

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

- Matching environment (consumer, products)
- Vertical differentiation
- Allocation (possibly random) of products to consumers
- Implementation: Information and prices
- Example: rating systems and allocation
- Sorting (information) and consumer welfare

- Matching Environment Vertical Differentiation
- Consumer heterogeneity: x ~ F (x), measure m > 1. Continuous strictly increasing.
 - Define \tilde{F} to be F restricted to the set $x \ge x_0$, where $m(1 F(x_0)) = 1$
- Utility u(x, y) = xy t(x)

Monotone Allocation

- Any G such that \overline{G} is a mean preserving spread of G
 - suppressing information or pooling
 - Example: Split y's into two pooling groups: {[y_{min}, y₁), [y₁, y_{max}]} and G point mass on conditional means y_L, y_H
 - Extremes: \underline{G} (point mass 1 at \overline{y}) and \overline{G} .
- Monotone allocation y(x)
 - If G is continuous,

$$G(y(x)) = \tilde{F}(x)$$
 for $x \ge x_0$

• If G has points of discontinuity (e.g. pooling regions):

Discontinuous G

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Information Disclosure in Matching Markets

Discontinuous G _____

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Information Disclosure in Matching Markets

Discontinuous G

$$y(x) = G^{-1}(F(x))$$

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Incentive Feasible Allocation

• $G \lesssim_{SOSD} \bar{G}$

• monotone allocation $y(x) = G^{-1}(F(x))$ and transfers t(x)

$$u(x) = xy(x) - t(x)$$

- Individual Rationality: x_0 must be indifferent in participating, so $u(x_0) = 0$
- Incentive compatibility:

$$u(x) = \int_{x_0}^x y(u) du$$

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Pure Random Matching (no information) _____

Distribution \underline{G} point mass on \overline{y}

$$y(x) = \overline{y}$$
 for all $x \ge x_0$

$$u(x) = \int_{x_0}^{x} y(u) \, du + u(x_0) \\ = (x - x_0) \, \bar{y}$$

Using $\bar{y} = \int G^{-1}(u) du$

$$u(x) = (x - x_0) \int G^{-1}(u) du$$

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Proposition

For any distribution G such that $\underline{G} \prec_{SOSD} G \lesssim_{SOSD} \overline{G}$ there exists $x_1 > x_0$ such that for all $x_0 < x \le x_1$, $u(x) < (x - x_0) \overline{y}$

Proposition

For any distribution G such that $\underline{G} \prec_{SOSD} G \lesssim_{SOSD} \overline{G}$ there exists $x_1 > x_0$ such that for all $x_0 < x \le x_1$, $u(x) < (x - x_0) \overline{y}$

Proof.

Take x_1 such that $y(x_1) < \overline{y}$. Then for all $x \in (0, x_1]$,

$$u(x) = \int_{x_0}^{x} y(u) du \le (x - x_0) y(x_1) < (x - x_0) \bar{y}$$

Proposition

For any distribution G such that $\underline{G} \prec_{SOSD} G \lesssim_{SOSD} \overline{G}$ there exists $x_1 > x_0$ such that for all $x_0 < x \le x_1$, $u(x) < (x - x_0) \overline{y}$

Proof.

Take x_1 such that $y(x_1) < \overline{y}$. Then for all $x \in (0, x_1]$,

$$u(x) = \int_{x_0}^{x} y(u) \, du \le (x - x_0) \, y(x_1) < (x - x_0) \, \bar{y}$$

Proposition

For any $G \lesssim_{SOSD} \overline{G}$, $u(x) \leq (x - x_0) \overline{y}$ implies that the same holds for all x' < x.

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Proposition

For any distribution G such that $\underline{G} \prec_{SOSD} G \lesssim_{SOSD} \overline{G}$ there exists $x_1 > x_0$ such that for all $x_0 < x \le x_1$, $u(x) < (x - x_0) \overline{y}$

Proof.

Take x_1 such that $y(x_1) < \overline{y}$. Then for all $x \in (0, x_1]$,

$$u(x) = \int_{x_0}^{x} y(u) \, du \le (x - x_0) \, y(x_1) < (x - x_0) \, \bar{y}$$

Proposition

For any $G \lesssim_{SOSD} \overline{G}$, $u(x) \leq (x - x_0) \overline{y}$ implies that the same holds for all x' < x.

• In particular, the random allocation Pareto dominates G iff this holds for x_{max}.

Proposition

Sorting is Pareto dominated by a random allocation iff

 $\tilde{F} \succeq_{FOSD} U[x_0, x_{max}]$

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Information Disclosure in Matching Markets

Proposition

Sorting is Pareto dominated by a random allocation iff

 $\tilde{F} \succeq_{FOSD} U[x_0, x_{max}]$

Sufficiency

- Without loss of generality take $x_0 = 1$ and $x_{max} = 1$.
- Suppose $\tilde{F}(u) \leq u$ for all $u \in [0,1]$. Then:

Proposition

Sorting is Pareto dominated by a random allocation iff

$$\tilde{F} \succeq_{FOSD} U[x_0, x_{max}]$$

Sufficiency

- Without loss of generality take $x_0 = 1$ and $x_{max} = 1$.
- Suppose $\tilde{F}(u) \leq u$ for all $u \in [0,1]$. Then:

$$u(1) = \int_{0}^{1} G^{-1}\left(\tilde{F}(u)\right) du \leq \int_{0}^{1} G^{-1}(u) du = \bar{y}$$

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Sorting and Welfare _

• Necessity (need continuous \bar{G})

- Take some x_1 such that $x_1 < \tilde{F}(x_1)$.
- Take y_1 with $\overline{G}(y_1) = \widetilde{F}(x_1)$
- Split y's into two pooling groups: {[y_{min}, y_1), [y_1, y_{max}]} and G point mass on conditional means y_L, y_H

Sorting and Welfare _

• Necessity (need continuous \bar{G})

- Take some x_1 such that $x_1 < \tilde{F}(x_1)$.
- Take y_1 with $\overline{G}(y_1) = \widetilde{F}(x_1)$
- Split y's into two pooling groups: {[y_{min}, y_1), [y_1, y_{max}]} and G point mass on conditional means y_L, y_H

$$\begin{array}{rcl} u\left(1\right) & = & x_{1}y_{L}+\left(1-x_{1}\right)y_{H} \\ & > & \tilde{F}\left(x_{1}\right)y_{L}+\left(1-\tilde{F}\left(x_{1}\right)\right)y_{H}=\bar{y} \end{array}$$

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Consumer Pareto Frontier

- Characterize consumer's Pareto frontier allocations $\int_{x_0}^{1} u(x) \, dH(x)$
- H(x) is the accumulative welfare weight; H(1) = 1.

Consumer Pareto Frontier

- Characterize consumer's Pareto frontier allocations $\int_{x_0}^{1} u(x) \, dH(x)$
- H(x) is the accumulative welfare weight; H(1) = 1.
- Assumption: $H(\cdot)$ is increasing and differentiable. Moreover, $\frac{d\left(\frac{1-H(x)}{f(x)}\right)}{dx}$ switches sign finite times.

Consumer Pareto Frontier

 Characterize consumer's Pareto frontier allocations ₂1

$$\int_{x_0}^{x} u(x) \, dH(x)$$

- H(x) is the accumulative welfare weight; H(1) = 1.
- Assumption: $H(\cdot)$ is increasing and differentiable. Moreover, $\frac{d\left(\frac{\mathbf{1}-H(x)}{\tilde{f}(x)}\right)}{dx}$ switches sign finite times.

Theorem

(Myerson (1981), Kleiner et. al. (2021), Saeedi-Shourideh (2023)) Optimal matching satisfies the following:

- 1. It partitions $[x_0, 1]$ into finite intervals and alternates between fully assortative and fully random matching over the intervals
- 2. If $\frac{d}{dx} \frac{1-H(x)}{\tilde{t}(x)} < 0$, then x belongs to a random matching interval
- 3. The highest consumer x = 1 is always randomly matched.

- Cost of entry k. Random draw of quality from G_0
- Equilibrium condition $\int p(y) G(y) = k$
- p(y) decrease in k
- Total consumer surplus increases
- Increases at the lower end
- Might not increase everywhere

Endogenous Entry _____

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Information Disclosure in Matching Markets

Endogenous Entry _____

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Information Disclosure in Matching Markets

Endogenous Entry _____

Hugo Hopenhayn Maryam Saeedi Ali Shourideh

Information Disclosure in Matching Markets