Optimal Rating Design Under Moral Hazard

Maryam Saeedi and Ali Shourideh

Carnegie Mellon University

SITE: Market Design August 2024

- Rating design is central to markets with asymmetric information
 - security rating, eBay, college grades, Google Ranking

- Rating design is central to markets with asymmetric information
 - $\circ\;$ security rating, eBay, college grades, Google Ranking
- Key Elements:
 - $\circ~$ Ratings are often used to incentivize quality provision
 - Grades motivate students
 - Google's ranking incentivizes higher quality content

- Rating design is central to markets with asymmetric information
 - $\circ\;$ security rating, eBay, college grades, Google Ranking
- Key Elements:
 - Ratings are often used to incentivize quality provision
 - Grades motivate students
 - Google's ranking incentivizes higher quality content
 - $\circ~$ Ratings often lead to window dressing: ESG Ratings, USNews, Google, \ldots

- Rating design is central to markets with asymmetric information
 - $\circ\;$ security rating, eBay, college grades, Google Ranking
- Key Elements:
 - Ratings are often used to incentivize quality provision
 - Grades motivate students
 - Google's ranking incentivizes higher quality content
 - $\circ~$ Ratings often lead to window dressing: ESG Ratings, USNews, Google, \ldots
- Ratings are information structure
- How should we think about information design when it provides incentives for the rated?

- Bayesian Persuasion: Kamenica and Gentzkow (2011), Dworczak and Martini (2019), Duval and Smolin (2023), ...
- Falsification and muddled information: Perez-Richet and Skreta (2020), Frankel and Kartik (2020), Ball (2020)
- Optimal communications in the presence of incentives: Boleslavsky and Kim (2023), Mahzoon, Shourideh, Zetlin-Jones (2023), Best, Quigley, Saeedi, Shourideh (2023)

- The General Model
- General characterization of optimal rating system
- An Application:
 - Optimal Ratings in a Multi-tasking model a la Holmstrom and Milgrom

THE GENERAL MODEL

- DM chooses an action $a \in A \subset \mathbb{R}^N$
- Induces $(y, v) \in \mathbb{R}^2$
 - $\circ y$: indicator observed by intermediary
 - $\circ~v:$ value for the market
 - $\circ \ (y,v) \sim \sigma \left(y,v | a \right)$
- Intermediary observes y and sends a signal to the market:

• Commits to $(S, \pi(\cdot|y))$ with $\pi(\cdot|y) \in \Delta(S)$

DM:
$$a \in A$$
 $y \in \mathbb{R}$
pay $\hat{p} = \mathbf{E}[v|s]$ $y \in S$
Market: $v - \hat{p}$

• Payoff of DM

$$\int_{Y} \int_{S} \mathbb{E}\left[v|s\right] d\pi\left(s|y\right) dG\left(y|a\right) - c\left(a\right)$$

• Payoff of DM

$$\int_{Y} \int_{S} \mathbb{E}\left[v|s\right] d\pi\left(s|y\right) dG\left(y|a\right) - c\left(a\right)$$

- Information:
 - \circ *a*: private to the DM
 - $\circ~y$ observed by Int.
 - $\circ~s$ observed by market

• Payoff of DM

$$\int_{Y} \int_{S} \mathbb{E}\left[v|s \right] d\pi \left(s|y \right) dG \left(y|a \right) - c \left(a \right)$$

- Information:
 - $\circ~a$: private to the DM
 - $\circ~y$ observed by Int.
 - $\circ~s$ observed by market
- Equilibrium: $\phi \in \Delta(A)$ is a PBNE
 - $\circ~$ Given π and market beliefs, a maximizes DM's payoff, a.e.- ϕ
 - Market beliefs are consistent with π , ϕ , and prior according to Bayes' rule

Feasible Outcomes _____

- What efforts, *a*, can be supported in some equilibrium?
- Incentive compatibility

$$a \in \arg\max_{a' \in A} \int_{Y} \underbrace{\int_{S} \mathbb{E}\left[v|s\right] d\pi\left(s|y\right)}_{p(y)} dG\left(y|a'\right) - c\left(a'\right)$$

Feasible Efforts _____

• Incentive compatibility

$$a \in \arg\max_{a' \in A} \int_{Y} \underbrace{\int_{S} \mathbb{E}\left[v|s\right] d\pi\left(s|y\right)}_{p(y)} dG\left(y|a'\right) - c\left(a'\right)$$

Feasible Efforts _____

• Incentive compatibility

$$a \in \arg\max_{a' \in A} \int_{Y} \underbrace{\int_{S} \mathbb{E} \left[v|s \right] d\pi \left(s|y \right)}_{p(y)} dG \left(y|a' \right) - c \left(a' \right)$$

• $p(y) = \mathbb{E}\left[\mathbb{E}\left[v|s\right]|y\right]$: interim prices

Feasible Efforts ____

• Incentive compatibility

$$a \in \arg\max_{a' \in A} \int_{Y} \underbrace{\int_{S} \mathbb{E} \left[v|s \right] d\pi \left(s|y \right)}_{p(y)} dG \left(y|a' \right) - c \left(a' \right)$$

• $p(y) = \mathbb{E}\left[\mathbb{E}\left[v|s\right]|y\right]$: interim prices

Proposition. If $p(\cdot)$ is an interim price function, then $p \preccurlyeq_{\text{maj}} \mathbb{E}[v|y]$. Moreover, if $p(\cdot)$ is co-monotone with $\mathbb{E}[v|y]$, i.e., $p(y) > p(y') \Rightarrow \mathbb{E}[v|y] > \mathbb{E}[v|y']$, and $p \preccurlyeq_{\text{maj}} \mathbb{E}[v|y]$, then $p(\cdot)$ is an interim price function.

- Assuming that $\mathbb{E}\left[v|y\right]$ are comonotone allows us to significantly simplify the problem
 - $\circ~$ Textbook moral hazard with an extra majorization constraint
 - interim prices play the role of transfers
- Given co-monotonicity, WLOG

Assumption. Full-info market values, $\mathbb{E}[v|y]$, are increasing in y.

GENERAL CHARACTERIZATION OF OPTIMAL RATINGS

Optimal Ratings _____

• Notion of optimality: objective

$$\int W\left(a\right) d\phi + \int p\left(y\right) \alpha\left(y\right) dG\left(y|a\right) d\phi$$

with $\alpha(y) \geq 0$.

• Recall ϕ : distribution of action $a \in A$

Optimal Ratings _____

$$\int W(a) \, d\phi + \int p(y) \, \alpha(y) \, dG(y|a) \, d\phi$$

• Examples:

• Correcting an externality : $\alpha(y) = 0$ and $W(a) \neq V(a) = \mathbb{E}[v|a] - c(a)$

total surplus

Optimal Ratings _

$$\int W(a) \, d\phi + \int p(y) \, \alpha(y) \, dG(y|a) \, d\phi$$

- Examples:
 - Correcting an externality: $\alpha(y) = 0$ and $W(a) \neq V(a) = \mathbb{E}[v|a] c(a)$
 - Learning Externality a la Holmstrom (1999): $\alpha(y) = 0, W(y) = V(y)$
 - Under full information: market's belief about $v,\,\mathbb{E}\,[v|y],$ does not vary with DM's choice of a
 - Externality when $\frac{\partial}{\partial a} \mathbb{E}[v|y] \neq 0$.

Optimal Ratings ____

$$\int W(a) \, d\phi + \int p(y) \, \alpha(y) \, dG(y|a) \, d\phi$$

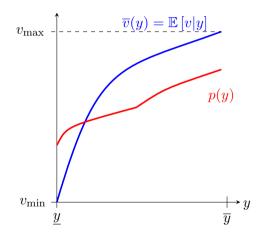
- Examples:
 - Correcting an externality: $\alpha(y) = 0$ and $W(a) \neq V(a) = \mathbb{E}[v|a] c(a)$
 - $\circ~$ Learning Externality a la Holmstrom (1999): $\alpha\left(y\right)=0,W\left(y\right)=V\left(y\right)$
 - Under full information: market's belief about $v,\,\mathbb{E}\,[v|y],$ does not vary with DM's choice of a
 - Externality when $\frac{\partial}{\partial a} \mathbb{E}[v|y] \neq 0$.
 - **Distributional concerns:** $\alpha(y)$ varies with y

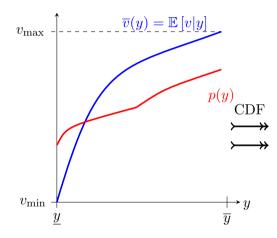
Optimality under Majorization _____

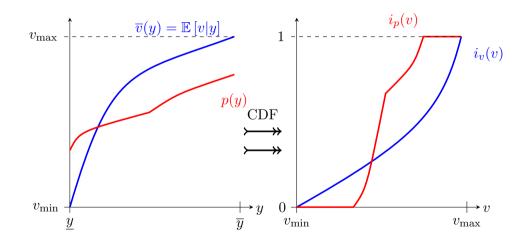
• Suppose mathematical problem of finding optimal interim prices was of the form (For now trust me that it is!!!):

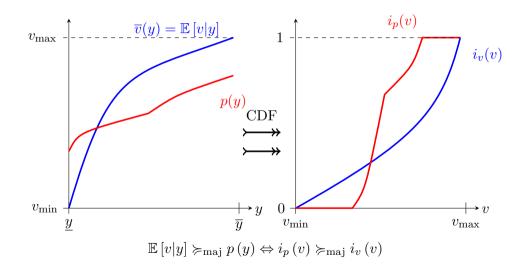
$$\max_{p(y):\mathbb{E}[v|y] \succcurlyeq_{maj} p(y)} \int h(y) p(y) dG(y)$$

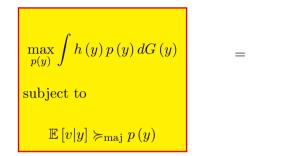
subject to monotonicity and given a ϕ







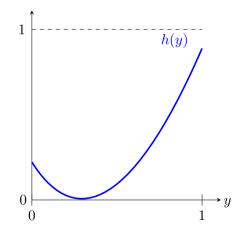


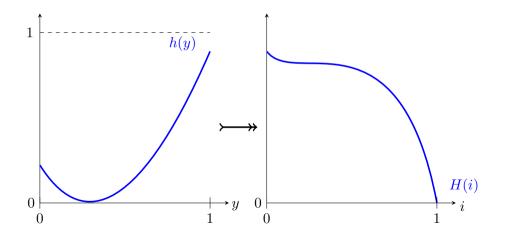


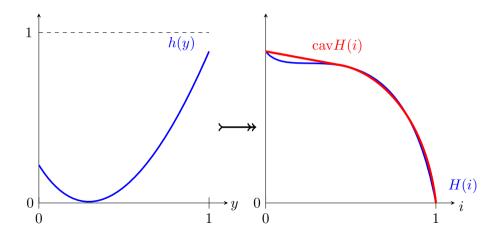
$$\int \operatorname{cav} H(i) \, dv_Q(i)$$

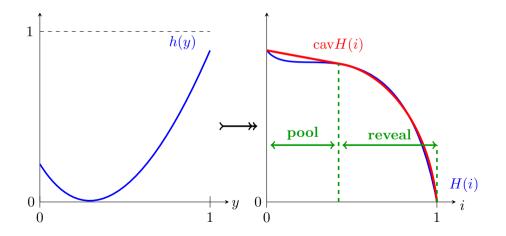
with
 $v_Q(i) = i_v^{-1}(i)$ Quantiles $\overline{v}(y)$

$$H(i) = \int \mathbf{1} \left[\left\{ y : \overline{v}(y) > v_Q(i) \right\} \right] h(y) \, dG \text{ Cumulative weight above } i$$









Optimal Ratings _

Theorem 1. The problem of optimal rating design is solved by solving the following

$$\min_{\Lambda} \max_{\phi, v_{Q}} \int W(a) \, d\phi + \int \operatorname{cav} H(i; \Lambda, \phi) \, dv_{Q}(i)$$

where

$$\begin{split} H\left(i;\Lambda,\phi\right) &= \int \mathbf{1}\left[\left\{y:\overline{v}\left(y\right) > v_{Q}\left(i\right)\right\}\right]\alpha\left(y\right)dG + \int \int_{\hat{a}\in A} \left[F\left(i|\hat{a}\right) - i\right]d\Lambda d\phi \\ &+ \int \int \left[c\left(\hat{a}\right) - c\left(a\right)\right]d\Lambda d\phi \end{split}$$

and

$$F(i|\hat{a}) = \int \mathbf{1} \left[y : \overline{v}(y) \le v_Q(i) \right] dG(y|\hat{a})$$

Optimal Ratings _____

- Theorem 1 is a mouthful!
- Some unpacking:
 - Identifies the function to concavify:
 - changes in quantile distribution from binding deviation weighted by their shadow value

$$\int \int_{\hat{a}\in A} \left[F\left(i|\hat{a}\right) - i\right] d\Lambda d\phi$$

- Cumulative welfare weights

$$\int \mathbf{1} \left[\left\{ y : \overline{v} \left(y \right) > v_Q \left(i \right) \right\} \right] \alpha \left(y \right) dG$$

- No need for first order approach
- Proof: Uses Rockefellar-Fenchel duality
 - used also in Dworczak-Koloilin (2023), Corrao-Kolotilin-Wolitzky (2024), Farboodi-Haghpanah-Shourideh (2024)

Assumption 1. Distribution G(y|a) satisfies:

- 1. Interval Support (IS): $\forall a \in A, \operatorname{Supp} G(\cdot | a) = I \subseteq \mathbb{R},$
- 2. Independence (I). For any subinterval $I' \subset I$ and $a \neq a' \in A$, there exists $y_1, y_2 \in I'$ such that $G(y_1|a) / G(y_1|a') \neq G(y_2|a) / G(y_2|a')$.

Assumption 1. Distribution G(y|a) satisfies:

- 1. Interval Support (IS): $\forall a \in A, \operatorname{Supp} G(\cdot | a) = I \subseteq \mathbb{R},$
- 2. Independence (I). For any subinterval $I' \subset I$ and $a \neq a' \in A$, there exists $y_1, y_2 \in I'$ such that $G(y_1|a) / G(y_1|a') \neq G(y_2|a) / G(y_2|a')$.

Proposition. Suppose that IS and I hold, then the optimal rating is monotone partition.

Moreover, whenever $\operatorname{cav} H(i; \Lambda, \phi) = H(i; \Lambda, \phi)$, optimal rating reveals the value $\overline{v} = v_Q(i)$ to the market. When $\operatorname{cav} H(i; \Lambda, \phi) < H(i; \Lambda, \phi)$, then there exists an interval $i \in [i_1, i_2]$ such that optimal rating reveals that $\overline{v} \in [v_Q(i_1), v_Q(i_2)]$.

DISTRIBUTION INDEPENDENT OPTIMAL RATINGS

Implementable Efforts _____

- When $\alpha(y) = 0$, only relevant question is what subset A^* of A is implementable by some rating.
- Common case: $A \subset \mathbb{R}$, g(y|a) satisfies MLRP, i.e., g(y|a): log-supermodular

Proposition. Suppose that $A \subset \mathbb{R}_+$ and G(y|a) satisfies IS, I and MLRP. Then, $\max A^* = a_{FI}^*$ where a_{FI}^* is the highest level of equilibrium effort when y is fully revealed.

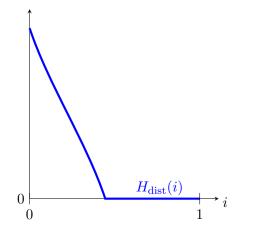
- The change in quantile distribution is concave
- See also: Dewatripont, Jewitt and Tirole (1999)

Implementable Efforts _____

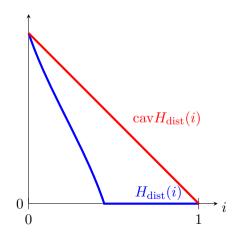
- Other specifications:
 - $y \sim N(a, ka), a \ge 0, \max A^* = \max a^*_{LS}$: the highest value of effort among all lower censorship policies.
 - $G(y|a) = e^{-y^{-1/a}}, a \le 1/2$. max $A^* = \max a^*_{HS}$: the highest value of effort among all upper censorship policies.
- Both among a class of distribution function where $\frac{\partial^2}{\partial a \partial y} \log g(y|a)$ switches sign only once.

REDISTRIBUTIVE OPTIMAL RATINGS

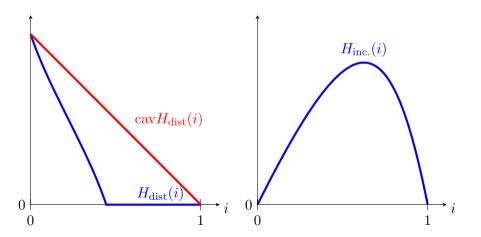
Redistributive Motives _____



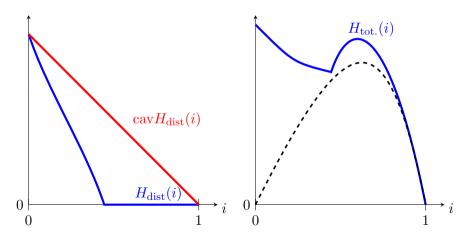
Redistributive Motives _____



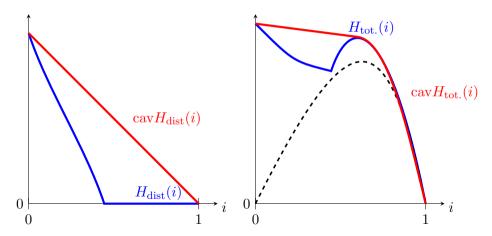
Redistributive Motives _



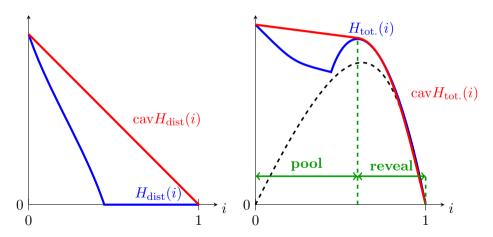
Redistributive Motives _



Redistributive Motives.



Redistributive Motives



- Suppose that $\alpha(y)$'s are positive and decreasing
- Typical case: optimality of lower censorship
- Has implications for the design of tests for admission into college

APPLICATION: A MULTI-TASKING MODEL A LA HOLMSTROM AND MILGROM (1991)

A Multi-Tasking Model ____

- Holmstrom and Milgrom (1991)
- Two tasks: $a = (e_1, e_2)$
 - $\circ e_1$: value generating
 - $\circ e_2$: window dressing
 - cost: $k_1 e_1^2 / 2 + k_2 e_2^2 / 2$
- Market values and indicators:
 - \circ values: $v = \beta \cdot e_1 + \varepsilon_v$
 - indicator: $y = \alpha_1 e_1 + \alpha_2 e_2 + \varepsilon_y$

$$\left(\begin{array}{c} \varepsilon_{v} \\ \varepsilon_{y} \end{array} \right) \sim N\left(0, \Sigma\left(a \right) \right)$$

•
$$\alpha_i, \beta > 0$$

A Multi-Tasking Model _____

- Inefficient action: window dressing
- Conditional expectation of v:

$$\mathbb{E}\left[v|y\right] = \beta e_1 + \frac{\sigma_{yv}\left(a\right)}{\sigma_v\left(a\right)^2}\left(y - \alpha_1 e_1 - \alpha_2 e_2\right)$$

• Holmstrom and Milgrom (1991): Assuming linear wage contracts, a decline in k_2 leads to lower power incentives.

Proposition. Suppose that $\frac{\partial}{\partial a}\Sigma(a) = 0$, then total surplus maximizing rating is always full information.

• $\frac{\partial}{\partial a} \Sigma(a) = 0$ implies MLRP

Proposition. Suppose that $\frac{\partial}{\partial a}\Sigma(a) = 0$, then total surplus maximizing rating is always full information.

• $\frac{\partial}{\partial a} \Sigma(a) = 0$ implies MLRP

Proposition. 1. Suppose that FOA holds, then total surplus maximizing rating is either lower censorship or higher censorship.

2. If $\frac{\partial}{\partial e_1}\sigma_y = 0$, $\frac{\partial}{\partial e_2}\sigma_y > 0$, HM's result holds: as k_2 goes down, optimal rating becomes less informative.

- Studied optimal rating design in presence of incentives
- General Characterization of optimal ratings
- Our Techniques can be used to shed light on several design questions of interest:
 - HM's result on changes in window dressing costs
 - Possible to think about the redistributive design of exams and tests

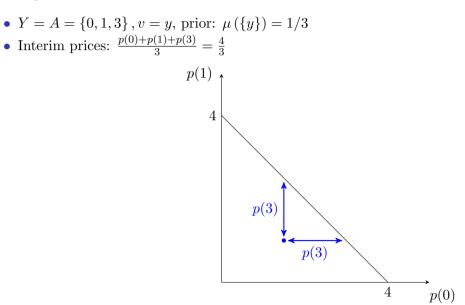
Definition. For a r.v. $y \sim H$, satisfy $f(y) \succeq_{\text{maj}} g(y)$ (equivalently, $g(y) \succeq_{\text{cv}} f(y)$ or $f(y) \succeq_{\text{cx}} g(y)$) if and only if

$$\int u\left(f\left(y\right)\right)dH \geq \int u\left(g\left(y\right)\right)dH, \forall u: \text{convex}, u: X \to \mathbb{R}$$

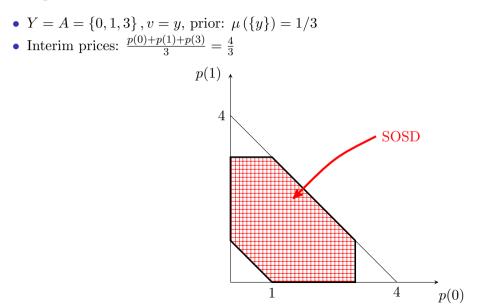
or equivalently

$$\int u\left(g\left(y\right)\right)dH \geq \int u\left(f\left(y\right)\right)dH, \forall u: \text{concave}, u: X \to \mathbb{R}.$$

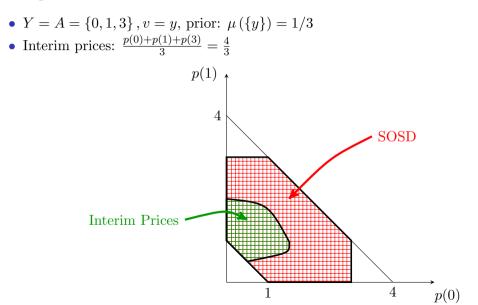
Example



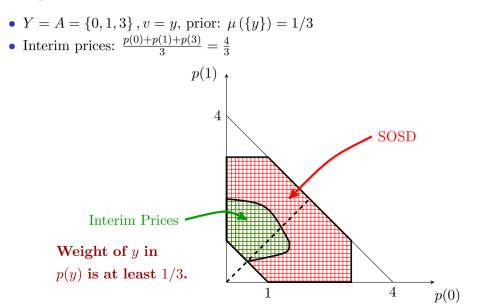
Example _



Example _



Example



Idea of Proof

- Steps:
 - Assume support y's, Y, is finite,
 - Use induction to construct π ,
 - $\circ~$ Approximate compact Y's
- Suppose Y is finite, Market values $\{\overline{v}_1 < \cdots < \overline{v}_n\}$.
- Co-monotonicity: $p_1 \leq \cdots \leq p_n$

Idea of Proof_

• A class of signal structures: for a given $i:1\leq i\leq n-1$

$$\pi\left(\{s\} | y\right) = \begin{cases} \lambda & s = y\\ (1 - \lambda) \,\hat{\pi}\left(\{s\} | y\right) & s \in \hat{S} \end{cases}, \hat{\pi}\left(\{s\} | y_i\right) = \hat{\pi}\left(\{s\} | y_{i+1}\right), \forall s \in \hat{S} \end{cases}$$

- Reveals the state with probability $\lambda \in [0, 1]$; otherwise pools i and i + 1.
- Can always choose i and λ so that the implied interim price for $\hat{\pi}$ is co-monotone and satisfies SOSD
 - $\circ~$ Use induction hypothesis