
Optimal Rating Design Under Moral Hazard

Maryam Saeedi and Ali Shourideh

Carnegie Mellon University

SITE: Market Design

August 2024



Introduction

• Rating design is central to markets with asymmetric information

◦ security rating, eBay, college grades, Google Ranking

• Key Elements:

◦ Ratings are often used to incentivize quality provision

- Grades motivate students

- Google’s ranking incentivizes higher quality content

◦ Ratings often lead to window dressing: ESG Ratings, USNews, Google, ...

• Ratings are information structure

• How should we think about information design when it provides incentives for

the rated?
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Roadmap

• The General Model

• General characterization of optimal rating system

• An Application:

◦ Optimal Ratings in a Multi-tasking model a la Holmstrom and Milgrom



The General Model



The Model

• DM chooses an action a ∈ A ⊂ RN

• Induces (y, v) ∈ R2

◦ y : indicator observed by intermediary

◦ v : value for the market

◦ (y, v) ∼ σ (y, v|a)
• Intermediary observes y and sends a signal to the market:

◦ Commits to (S, π (·|y)) with π (·|y) ∈ ∆(S)

DM: a ∈ A
y ∈ R

Int.: π(·|y) ∈ ∆(S)

s ∈ S

Market: v − p̂

pay p̂ = E [v|s]



The Model

• Payoff of DM ∫
Y

∫
S
E [v|s] dπ (s|y) dG (y|a)− c (a)

• Information:

◦ a: private to the DM

◦ y observed by Int.

◦ s observed by market

• Equilibrium: ϕ ∈ ∆(A) is a PBNE

◦ Given π and market beliefs, a maximizes DM’s payoff, a.e.–ϕ

◦ Market beliefs are consistent with π, ϕ, and prior according to Bayes’ rule
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Feasible Outcomes

• What efforts, a, can be supported in some equilibrium?

• Incentive compatibility

a ∈ argmax
a′∈A

∫
Y

∫
S
E [v|s] dπ (s|y)︸ ︷︷ ︸

p(y)

dG
(
y|a′

)
− c

(
a′
)



Feasible Efforts

• Incentive compatibility

a ∈ argmax
a′∈A

∫
Y

∫
S
E [v|s] dπ (s|y)︸ ︷︷ ︸

p(y)

dG
(
y|a′

)
− c

(
a′
)

• p (y) = E [E [v|s] |y] : interim prices

Proposition. If p (·) is an interim price function, then p ≼maj E [v|y].
Moreover, if p (·) is co-monotone with E [v|y], i.e., p (y) > p (y′) ⇒ E [v|y] > E [v|y′],
and p ≼maj E [v|y], then p (·) is an interim price function.

Example Proof Majorization
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Recap

• Assuming that E [v|y] are comonotone allows us to significantly simplify the

problem

◦ Textbook moral hazard with an extra majorization constraint

◦ interim prices play the role of transfers

• Given co-monotonicity, WLOG

Assumption. Full-info market values, E [v|y], are increasing in y.



General Characterization of

Optimal Ratings



Optimal Ratings

• Notion of optimality: objective∫
W (a) dϕ+

∫
p (y)α (y) dG (y|a) dϕ

with α (y) ≥ 0.

◦ Recall ϕ: distribution of action a ∈ A



Optimal Ratings

∫
W (a) dϕ+

∫
p (y)α (y) dG (y|a) dϕ

• Examples:

◦ Correcting an externality : α (y) = 0 and W (a) ̸= V (a) = E [v|a]− c (a)︸ ︷︷ ︸
total surplus
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• Examples:

◦ Correcting an externality: α (y) = 0 and W (a) ̸= V (a) = E [v|a]− c (a)

◦ Learning Externality a la Holmstrom (1999): α (y) = 0,W (y) = V (y)

- Under full information: market’s belief about v, E [v|y], does not vary with DM’s

choice of a

- Externality when ∂
∂a

E [v|y] ̸= 0.
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◦ Distributional concerns: α (y) varies with y



Optimality under Majorization

• Suppose mathematical problem of finding optimal interim prices was of the

form (For now trust me that it is!!!):

max
p(y):E[v|y]≽majp(y)

∫
h (y) p (y) dG (y)

subject to monotonicity and given a ϕ



Majorization: A Reformulation

vmin y

v(y) = E [v|y]

p(y)

y y

vmax

CDF

0 v

iv(v)

ip(v)

vmin vmax

1
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Majorization: A Reformulation

vmin y

v(y) = E [v|y]

p(y)

y y

vmax

CDF

0 v

iv(v)

ip(v)

vmin vmax

1

E [v|y] ≽maj p (y) ⇔ ip (v) ≽maj iv (v)



Majorization: A Reformulation

max
p(y)

∫
h (y) p (y) dG (y)

subject to

E [v|y] ≽maj p (y)

=

∫
cavH (i) dvQ (i)

with

vQ (i) =i−1
v (i) Quantiles v (y)

H (i) =

∫
1 [{y : v (y) > vQ (i)}]h (y) dG Cumulative weight above i



Majorization: A Reformulation

• Example: v = y ∈ [0, 1] , iv (v) = v, vQ (i) = i; v, y: uniformly distributed

0 y

h(y)

0 1

1

0 i

H(i)

0 1

cavH(i)

pool reveal
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Optimal Ratings

Theorem 1. The problem of optimal rating design is solved by solving the following

min
Λ

max
ϕ,vQ

∫
W (a) dϕ+

∫
cavH (i; Λ, ϕ) dvQ (i)

where

H (i; Λ, ϕ) =

∫
1 [{y : v (y) > vQ (i)}]α (y) dG+

∫ ∫
â∈A

[F (i|â)− i] dΛdϕ

+

∫ ∫
[c (â)− c (a)] dΛdϕ

and

F (i|â) =
∫

1 [y : v (y) ≤ vQ (i)] dG (y|â)

and Λ satisfies complimentary slackness.



Optimal Ratings

• Theorem 1 is a mouthful!

• Some unpacking:

◦ Identifies the function to concavify:

- changes in quantile distribution from binding deviation weighted by their shadow

value ∫ ∫
â∈A

[F (i|â)− i] dΛdϕ

- Cumulative welfare weights∫
1 [{y : v (y) > vQ (i)}]α (y) dG

◦ No need for first order approach

• Proof: Uses Rockefellar-Fenchel duality

◦ used also in Dworczak-Koloilin (2023), Corrao-Kolotilin-Wolitzky (2024),

Farboodi-Haghpanah-Shourideh (2024)



Simple Ratings are Optimal

Assumption 1. Distribution G (y|a) satisfies:

1. Interval Support (IS): ∀a ∈ A,SuppG (·|a) = I ⊆ R,

2. Independence (I). For any subinterval I ′ ⊂ I and a ̸= a′ ∈ A, there exists

y1, y2 ∈ I ′ such that G (y1|a) /G (y1|a′) ̸= G (y2|a) /G (y2|a′).

Proposition. Suppose that IS and I hold, then the optimal rating is monotone

partition.

Moreover, whenever cavH (i; Λ, ϕ) = H (i; Λ, ϕ), optimal rating reveals the value

v = vQ (i) to the market. When cavH (i; Λ, ϕ) < H (i; Λ, ϕ), then there exists an

interval i ∈ [i1, i2] such that optimal rating reveals that v ∈ [vQ (i1) , vQ (i2)].
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Distribution Independent Optimal

Ratings



Implementable Efforts

• When α (y) = 0, only relevant question is what subset A∗ of A is

implementable by some rating.

• Common case: A ⊂ R, g (y|a) satisfies MLRP, i.e., g (y|a): log–supermodular

Proposition. Suppose that A ⊂ R+ and G (y|a) satisfies IS, I and MLRP. Then,

maxA∗ = a∗FI where a∗FI is the highest level of equilibrium effort when y is fully

revealed.

• The change in quantile distribution is concave

• See also: Dewatripont, Jewitt and Tirole (1999)



Implementable Efforts

• Other specifications:

◦ y ∼ N (a, ka), a ≥ 0, maxA∗ = max a∗LS : the highest value of effort among all

lower censorship policies.

◦ G (y|a) = e−y−1/a

, a ≤ 1/2. maxA∗ = max a∗HS : the highest value of effort

among all upper censorship policies.

• Both among a class of distribution function where ∂2

∂a∂y log g (y|a) switches
sign only once.



Redistributive Optimal Ratings



Redistributive Motives

• Suppose that α (y)’s are positive and decreasing

0 i
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0 1

Htot.(i)
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pool reveal
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Redistributive Motives

• Suppose that α (y)’s are positive and decreasing

• Typical case: optimality of lower censorship

• Has implications for the design of tests for admission into college



Application: A Multi-Tasking Model

a la Holmstrom and Milgrom (1991)



A Multi-Tasking Model

• Holmstrom and Milgrom (1991)

• Two tasks: a = (e1, e2)

◦ e1: value generating

◦ e2 : window dressing

◦ cost: k1e
2
1/2 + k2e

2
2/2

• Market values and indicators:

◦ values: v = β · e1 + εv

◦ indicator: y = α1e1 + α2e2 + εy(
εv

εy

)
∼ N (0,Σ (a))

◦ αi, β > 0



A Multi-Tasking Model

• Inefficient action: window dressing

• Conditional expectation of v:

E [v|y] = βe1 +
σyv (a)

σv (a)
2 (y − α1e1 − α2e2)

• Holmstrom and Milgrom (1991): Assuming linear wage contracts, a

decline in k2 leads to lower power incentives.



A Multi-Tasking Model

Proposition. Suppose that ∂
∂aΣ (a) = 0, then total surplus maximizing rating is

always full information.

• ∂
∂aΣ (a) = 0 implies MLRP

Proposition. 1. Suppose that FOA holds, then total surplus maximizing rating is

either lower censorship or higher censorship.

2. If ∂
∂e1

σy = 0, ∂
∂e2

σy > 0, HM’s result holds: as k2 goes down, optimal rating

becomes less informative.
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Conclusion

• Studied optimal rating design in presence of incentives

• General Characterization of optimal ratings

• Our Techniques can be used to shed light on several design questions of

interest:

◦ HM’s result on changes in window dressing costs

◦ Possible to think about the redistributive design of exams and tests



Majorization

Definition. For a r.v. y ∼ H, satisfy f (y) ≽maj g (y) (equivalently, g (y) ≽cv f (y)

or f (y) ≽cx g (y)) if and only if∫
u (f (y)) dH ≥

∫
u (g (y)) dH,∀u : convex, u : X → R

or equivalently∫
u (g (y)) dH ≥

∫
u (f (y)) dH,∀u : concave, u : X → R.

Back



Example

• Y = A = {0, 1, 3} , v = y, prior: µ ({y}) = 1/3

• Interim prices: p(0)+p(1)+p(3)
3 = 4

3

p(0)

p(1)

4

4

p(3)

p(3)

1

SOSD

Interim Prices

Weight of y in

p(y) is at least 1/3.

Back
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Idea of Proof

• Steps:

◦ Assume support y’s, Y , is finite,

◦ Use induction to construct π,

◦ Approximate compact Y ’s

• Suppose Y is finite, Market values {v1 < · · · < vn}.

• Co-monotonicity: p1 ≤ · · · ≤ pn



Idea of Proof

• A class of signal structures: for a given i : 1 ≤ i ≤ n− 1

π ({s} |y) =

λ s = y

(1− λ) π̂ ({s} |y) s ∈ Ŝ
, π̂ ({s} |yi) = π̂ ({s} |yi+1) , ∀s ∈ Ŝ

• Reveals the state with probability λ ∈ [0, 1]; otherwise pools i and i+ 1.

• Can always choose i and λ so that the implied interim price for π̂ is

co-monotone and satisfies SOSD

◦ Use induction hypothesis

Back


