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Abstract

We examine the design of optimal rating systems in the presence of moral hazard.

First, an intermediary commits to a rating scheme. Then, a decision-maker chooses

an action that generates value for the buyer. The intermediary then observes a noisy

signal of the decision-maker’s choice and sends the buyer a signal consistent with

the rating scheme. We fully characterize the set of allocations that can arise in equi-

librium under any arbitrary rating system. We use this characterization to study

various design aspects of optimal rating systems. Specifically, we examine scenarios

in which the intermediary can observe a noisy outcome of the decision-maker’s ef-

forts and when the decision-maker can manipulate what the intermediary observes.

In presence of manipulation, rating uncertainty should be used fairly robustly. A de-

cline in the cost of manipulation leads to more informative optimal ratings which use

a mixture of full revelation and rating uncertainty.

1 Introduction

Several markets rely on information disclosure or ratings to facilitate trade and incentivize

quality provision. For example, ESG ratings aim to incentivize companies to improve their
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environmental and social impact. Similarly, certification by government or private agen-

cies is used in the labor market for college graduates (university course grades), credit

markets (credit scores), etc. Although these tools are increasingly used in markets suf-

fering from moral hazard, several questions are yet to be answered: What are the key

trade-offs involved in the design of rating systems when market participants can react

to them? What happens when the participants can manipulate the information observed

by the certifier in their favor? What are the certifier’s incentives in designing the rating

systems? What are the trade-offs between transparent and opaque rating systems?

In this paper, we answer these questions by using a parsimonious model of rating

under moral hazard, and develop the theoretical techniques required to study its optimal

design. In our setting, an intermediary (e.g., an ESG rating firm) observes possibly noisy

information about the actions of a decision maker (DM) (e.g., a company seeking an ESG

rating) and decides how to convey this information to a third party (e.g., market or a

buyer—henceforth “market”). We assume that the DM’s actions are costly and some of
them are valued by the market. Finally, we assume that the market is willing to pay its

expected value for the item or service based on the signal it received from the intermediary

and its prior.

To answer the above questions in this setting, we must first describe the set of achiev-

able outcomes. In standardmodels of contracting, incentive compatibility of effort choices

is sufficient to describe the set of achievable outcomes. In contrast, in our paper, since ar-

bitrary payments are not available to the intermediary, this sufficiency does not hold.

Perhaps surprisingly, relatively little is known about this question. The key difficulty is

that the DM’s choice of action is endogenous and is affected by the rating system. Addi-

tionally, when this system involves random signals (“rating uncertainty”), the DM must

form beliefs about the market’s expectation; these are the DM’s second-order beliefs. Our

first result provides a simple characterization of the set of achievable outcomes, which

relies on the concept of interim prices, defined as the DM’s expected prices given the

state and the market’s belief. They are thus the second-order expectation of the state and,

generally, cannot be fully characterized in a simple fashion. However, we obtain a sharp

result when interim prices and market valuation are comonotone (i.e., move in the same

direction). In this case, the existence of a signal structure is equivalent to interim prices

being a mean-preserving contraction of market valuations. We can thus cast the prob-

lem of rating design as a mechanism-design problem with transfers (i.e., interim prices),

where transfers must satisfy a certain feasibility constraint (i.e., second-order stochastic
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dominance relative to market valuations).

We then proceed to study several applications to draw on the key implications of

optimal rating design undermoral hazard. Specifically, we focus on twomain applications:

1. when the outcome of the DM’s effort is a noisy signal observed by the intermediary and

the market values the effort and the signal 2. when the DM can ex post manipulate the

signal observed by the intermediary at a cost. Our key criterion for the evaluation of rating

systems is the intermediary’s revenue from charging a fee for information disclosure. In

our setup, non-trivial rating, i.e., not revealing all the information leads to reshuffling

of payoffs across states. This could be desirable due to the disagreement between the

intermediary and the DM. This disagreement can arise when there are different types

of DMs, and the intermediary wishes to encourage participation of a particular type of

DM to maximize revenue. Alternatively, it can arise when DM can manipulate the signal

observed by the intermediary at a cost.

Our analysis identifies three broad lessons for optimal rating design stemming directly

frommoral hazard. First, absent any ability to manipulate the signals ex post, optimal sig-

nal structures are deterministic, monotone, and alternating partitions (i.e., they alternate

between full revelation and pooling intervals). Second, when the DM can ex post manip-

ulate the signal observed by the intermediary, in contrast, the optimal signal structure

necessarily mixes randomization and full revelation. Finally, the extent of the mixture

between full revelation and randomization is determined by the cost of manipulation.

When the DM cannot manipulate ratings, the optimal ratings are always monotone

and alternating partitions. This is essentially due to the linearity of the problem. Since

the DM cannot directly control the outcome of the signal generated by their effort, her

incentive compatibility constraints are linear in interim prices and thus optimal interim

prices are extreme points of the set of functions that majorize market’s valuations. Hence,

they should be associated with monotone and alternating partitions. The number of such

partitions and their design is mainly determined by the strength of two forces: first, a

redistributive force due to the incentives of the intermediary in encouraging entry by

less-efficient DM types; second, an incentive force which leads to higher total surplus and

allows the intermediary to collect higher fees.

Next, we consider an environment where the DM can manipulate the signal observed

by the intermediary. Specifically, the DM can alter the realization of market valuation at

a cost. Here, a trade-off between effort and manipulation exists. In order to incentivize

the DM to exert effort, interim prices should be higher for higher realizations of market
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values, but this can lead to manipulation. Hence, withholding some information reduces

the incentives for manipulation. The optimal rating system balances the incentives for

effort with the cost of manipulation; so, allowing for manipulation in equilibrium can

provide incentives for (ex ante) effort.

Assuming that the cost of manipulation is a quadratic function of the difference be-

tween market valuation and the intermediary’s observed signal, we show that interim

prices should be continuous, so there should be no jump in interim prices as a function of

observed market valuations. Thus, the rating system should have randomness as its main

feature. This is in contrast with our result from the case where there was no possibility

of manipulation because the optimal rating system was monotone partitions.

Finally, under some distributional assumptions, we can fully characterize optimal rat-

ing systems in the presence of costly manipulation. More specifically, we show that any

optimal rating system requires an interval of intermediate values forwhich the state is per-

fectly revealed. For extreme values of the state, the optimal rating system is random and

involves uncertainty. The extent of revelation depends on the cost of manipulation. Per-

haps counterintuitively, as this cost declines, the full-revelation interval expands, mainly

because of the value of manipulation for the provision of ex ante incentives. When this

cost is low, a high degree of manipulation and a high dispersion of interim prices are re-

quired to implement a particular ex ante effort. Because interim prices need to be less

dispersed than market valuations, full revelation for the intermediate values of the state

is required.

Beyond its technical contributions, our paper has implications for the regulation and

design of rating systems and certification. Rating uncertainty can be interpreted as the

opaqueness of the rating system, where it is not fully disclosed by the intermediary. There

are various examples of rating opaqueness: One is in the context of consumer credit

scores—though the rough statistics that increase these scores can be determined, their

cutoffs and formulas are unclear. Another is in the context of e-commerce platforms:

In an experiment using eBay data, Nosko and Tadelis (2015) use a particular measure of

seller quality in the search result ranking without the sellers’ knowledge, showing it can

improve eBay’s reputation system. Our analysis sheds light on the optimal design of such

experiments where full-revelation rating systems should be combined with random ones.
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1.1 Related Literature

Our paper is related to a few strands of the literature in information economics andmecha-

nism design. It is closely related to a recent literature that studies information designwhen

strategic behavior affects the state by the choice of the information structure (e.g., Frankel

and Kartik (2019), Ball (2019), and Perez-Richet and Skreta (2022)). In contrast with Ball

(2019) and Frankel and Kartik (2019), our mathematical result on second-order expecta-

tions allows us to study a larger class of problems without any restrictions on information

structures. Our analysis, thus, identifies both the precise shape of the optimal information

structure and when it is optimal to use uncertain rating systems. Furthermore, our appli-

cation where the DM can manipulate the outcome observed by the intermediary is similar

to the falsification model in Perez-Richet and Skreta (2022). However, given that we use

different optimal information structures, our analysis emphasizes the need for informa-

tion revelation. Whereas in Perez-Richet and Skreta (2022), the main goal of information

revelation is a more accurate decision by an uninformed receiver, in our setup, it is to

induce a more efficient effort choice by the DM.

A closely related paper to ours is Boleslavsky and Kim (2020). They study a model of

Bayesian persuasion with moral hazard, similar to ours, in which an agent (corresponding

to our DM) chooses an effort level that affects the distribution of the state, and a sender af-

fects a receiver’s action using an information structure. However, they study this problem

using the concavification method of Kamenica and Gentzkow (2011), but because it relies

on formulating the problem in terms of the beliefs, it is generally difficult to handle large

state spaces. In contrast, our mathematical result in Section 3 allows us to use standard

optimal control methods and work with arbitrary state spaces.
1

Our paper is also related to the Bayesian persuasion literature (e.g., Kamenica and

Gentzkow (2011), Dworczak and Martini (2019), and Kolotilin et al. (2023)). Theoretically,

our solution method is closer to that of Dworczak and Martini (2019) and Kolotilin et al.

(2017), because our characterization result in Section 3 allows us to pose the information

design problem using majorization ordering and use optimal control techniques. In terms

of information structure, our optimal rating design with rating uncertainty is different

from most of the literature and it identifies the role of moral hazard.

From a technical perspective, our results are related to a result in mathematics and

1
Unlike Boleslavsky and Kim (2020), in most of our analysis, we assume that the DM is paid the value of

market’s expectation. In the online Appendix, we show how to extend our analysis to allow for an action

by the market.
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statistics shown by Strassen (1965), among others, on the existence of joint distributions

with given marginals. However, our paper is different because we are concerned with

second-order expectations, which are not straightforward marginals of the joint distribu-

tion of the signal and the state. Moreover, to the extent that our result holds only under a

particular assumption about the correlation of interim prices and the state (i.e., comono-

tonicity), it is novel to this literature.

In our formulation, we use the majorization ranking for the functions representing

interim prices and action profiles by the DM. Thus our rating design problem is equivalent

to a mechanism design problem with transfers in which the transfer function majorizes

the market valuations function. Similar to this problem, Kleiner et al. (2021) solve a class

of problems where majorization appears as a constraint. Their solution method uses the

characterization of extreme points of the set of functions that majorizes a certain function.

Although we use their result in our first application, in general, the presence of incentive

constraints makes their approach not exactly applicable to our environment. In contrast,

our solution of the mechanism design problem involves the calculus of variations because

of the lack of linearity in our model.

Our paper is also related to the literature concerned with the problem of certification

and its interactions with moral hazard: Albano and Lizzeri (2001), Zubrickas (2015), and

Zapechelnyuk (2020).
2
A notable contribution is that of Albano and Lizzeri (2001), where

the key assumption that the intermediary can charge an arbitrary fee schedule leads to

an indeterminacy between using transfers and ratings to implement desired outcomes.

Zubrickas (2015), Zapechelnyuk (2020), and Onuchic and Ray (2021) also study variants

of this problem, but they focus on deterministic rating systems. As we will show, rating

systems with uncertainty are important when signals can be manipulated.
3

Finally, our paper complements the empirical literature on certification and disclosure

in markets with asymmetric information, such as online platforms (e.g., Hui et al. (2020)

and Nosko and Tadelis (2015)), health insurance markets (Vatter (2022)), food labeling

(Barahona et al. (2023)), and ESG investing (Berg et al. (2022)). We contribute to this

literature by developing theoretical methods and general lessons for the optimal design

of rating systems.

2
Our paper is also related to the extensive and growing literature that studies the problem of certification

and information disclosure absent moral hazard (e.g., Lizzeri (1999) and Hopenhayn and Saeedi (2020) in

static settings and Horner and Lambert (2020) and Kovbasyuk and Spagnolo (2023).)

3
Ali et al. (2022) study a model with adverse selection (i.e., exogenous state), where optimal disclosure

involves uncertainty, but it is a way of uniquely implementing an intermediary’s desirable outcome.
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The rest of the paper is organized as follows: We start with an example in Section 2;

in Section 3 we set up the model; in Sections 4 and 5 we describe two applications of the

model; in Section 6 we consider some extensions of our model; finally, in Section 7 we

present our conclusions. All the proofs are relegated to the Appendix unless otherwise

indicated.

2 Simple Example

Before diving into the model, we explore a simple example which illustrates the trade-

offs involved in rating under moral hazard. A DM chooses to exert effort a ∈ [0, 1], which

determines the distribution of quality, y ∈ [0, 1], given by the following distribution:

G (z|a) = Pr (y ≤ z|a) = z
1

1−a
−1.

The DM can be of two possible types, θ ∈ {1/2, 4/5}, which determines the cost of

exerting effort, c (a, θ) = a2/ (2θ). Suppose that Pr (θ = .5) = 1/2 and that θ is private

information to the DM, not observed by the other market participants.

An intermediary, such as a certifier or a platform, observes the realization of qual-

ity y and commits to an information structure (S, π (·|y)), where π (·|y) ∈ ∆(S).4 The

intermediary charges the DM a tariff, t, for this information. The market’s payoff is y,

but it observes only the signal realization sent by the intermediary. It then uses its prior

and the signal from the intermediary to update its beliefs, and pays its posterior mean,

p̂ (s) = Eπ [y|s] to the DM. The DM’s payoff from choosing effort a is thus given by∫ 1

0

∫
S

p̂ (s) π (ds|y) dG (y|a)− t− c (a, θ) .

Suppose that the DM’s outside option has a payoff of 0. The intermediary wishes to

maximize its own revenue by choosing the optimal signal structure and the tariff level.

First, consider the full-revelation rating system, i.e., S = [0, 1], π ({y} |y) = 1. In

this case, p̂ (y) = y. Hence, conditional on participation, the marginal benefit of effort

is

∫
ygady = 1. Setting this equal to marginal cost, each DM’s profit is maximized at

a∗L = 1/2, a∗H = 4/5. Given these choices, the before-tariff payoffs of each DM type are

uL = 1/4 and uH = 2/5. This implies that the intermediary can charge either uL and

4
We use ∆(S) to denote the set of all Borel probability measures over the set S.
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both types participate or uH and only θ = 4/5 participates. Comparing the two cases

shows the optimal tariff and the intermediary’s expected revenue are given by t = 1/4

and Revenue = 1/4, respectively.

Next, we examine if the intermediary can increase its revenue by hiding some in-

formation. Consider a partial pooling rating system where the intermediary pools the

realizations of y above 0.353 and fully discloses the lower realizations. Pooling high re-

alizations of y allows a reshuffling of profits from the low-cost DM to the high-cost one

while changing the DM types’ incentives for exerting effort. This effect can potentially

lead to a higher level of tariff that can keep both DM types engaged. The equilibrium ef-

forts under this rating system are a∗L = 0.458, a∗H = 0.59, u∗
L = 0.259 = Revenue, which

is higher than the revenue of the intermediary under full information.

Several questions arise from this exercise. Given that it is optimal for the intermediary

to hide some information, what is the optimal information structure? Would randomized

signals ever be optimal? What happens when the DM can manipulate the signal observed

by the intermediary? In what follows, we develop techniques for a general solution of

this problem. In Section 4, we show that the optimal information structure pools values

of y for some intermediate interval and otherwise it is fully revealing.

3 General Model and Interim Prices

We now describe our general model of rating design and provide a sharp characterization

result for the set of feasible payoffs. In general, we are interested in settings in which an

intermediary observes some information about a DM’s chosen actions and decides how

to convey this information to a third party, henceforth “the market”, who then pays its

posterior mean as a price to the DM.

More specifically, consider a DM who chooses an action a ∈ A ⊂ RN
, which creates

a possibly random realization y ∈ Y ⊂ RM
with distribution σ (·|a) ∈ ∆(Y ). The action

and the outcome generate a value of v (a, y) for the market, who then pays its expected

payoff E [v (a, y) |s] to the DM. This expectation is calculated using the information avail-

able, s, and the common belief about equilibrium play.
5
The intermediary first commits

to a signal structure (S, π (·|y)), where S is a set of signal realizations and π (·|y) ∈ ∆(S)

5
We maintain the assumption that the buyers are on the long side of the market, thus willing to pay

their expected value. One can extend our analysis by allowing the market to have positive outside options

or positive bargaining power.
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for all y ∈ Y .
6
Subsequently and with a full knowledge of the intermediary’s choice, the

DM chooses her action, which generates a signal for the intermediary and the market.

Figure 1 depicts the structure of the model and actions.

DM: a ∈ A y ∈ Y, y ∼ σ(·|a)Int.: π(·|y) ∈ ∆(S)

s ∈ S

Market: v(a, y)

pay p = E [v|s]

Figure 1: General structure of the model

The DM has a type θ ∈ Θ, with the probability distribution given by F ∈ ∆(Θ).7

Type θ affects the cost of exerting effort, c (a, θ). Hence, the DM’s payoff is given by∫
Y

∫
S

E [v|s] dπ (s|y) dσ (y|a)− c (a, θ) . (1)

In a pure-strategy equilibrium, the DM chooses a (θ) to maximize (1).

In the above, the ex post market price, E [v|s], not only depends on the information

structure, π (·|·), but also on the market’s prior about the distribution of (a, y), which

depends on the DM’s strategy profile (i.e., is an equilibrium object). More specifically,

the market uses its prior about the distribution of θ and its beliefs about the equilibrium

strategies of the DM types, a (θ), to form a prior µ ∈ ∆(A× Y ) and uses Bayes rule to

form the posterior expectation E [v|s] satisfying∫
A×Y

∫
S′
E [v|s] dπ (s|y) dµ =

∫
A×Y

v (a, y) π (S ′|y) dµ,∀S ′ ⊂ S. (2)

The above defines an equilibrium given the information structure. More specifically,

given an information structure (S, π), an equilibrium is an action profile a (θ) by different

6
An information structure is a family of probability spaces {(S,S , π (·|y))}y∈Y , where S is the space

of signal realizations and S is an σ-algebra. Throughout the paper, we work with S as a compact subset

of some Euclidean space, and S as the Borel σ-algebra associated with topology induced by the Euclidean

norm and a compact space for S. Hence, we drop the σ-algebra in our analysis. Additionally, when describ-

ing subsets, we refer to Borel subsets.

7
We will often assume that Θ ⊂ R has either a discrete distribution over a finite set of types or a

continuous distribution with c.d.f. F . Using F to denote the probability measure governing θ is a slight

abuse of notation, to avoid clutter.
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DM types where given market beliefs µ ∈ ∆(A× Y ) andE [v|s], a (θ)maximizes (1), and

given a (θ), the market beliefs satisfy

µ (A′ × Y ′) =

∫
A′

∫
Y ′

dσ (y|a (θ)) dF (θ) , ∀A′ ⊂ A, Y ′ ⊂ Y

together with Bayesian updating as defined in (2).

Examples

To clarify the scope and applicability of our analysis, we describe a few examples of the

above environment:

1. Reputation mechanisms in online platforms: Online platforms such as Airbnb

and eBay face challenges in designing their reputation systems because of adverse

selection and moral hazard. These platforms have access to performance data about

providers (i.e., hosts on Airbnb and sellers on eBay) not available to the market.
8

The platform’s certification policy, such as Airbnb’s Superhost or eBay’s Top Rated

Seller, is based on performance measures. According to Hui et al. (2020), the details

of this policy influence provider behavior, and they can be seen as the information

structure in our model. Our model examines the resulting issues and trade-offs for

both platform and providers. Reviews often serve as signals of past experiences, and

to capture this, we can set v (y, a) = a according to which past signals’ performance

measures are only a signal of the value created for the market.

2. Ratings in asset markets: Certification in financial markets relies on proprietary

data and forecasting models used by rating agencies (e.g., Moody’s, Fitch, and S&P).

The issuer pays for the rating, which is then made public. One can thus view our

analysis as the effect of credit ratingmodels on issuer behavior. While certain efforts

to increase value for bond holders may not be fully observable by rating agencies,

their models still influence issuer behavior, as in our model. An important topic

is the issue of regulation of the credit rating models, as discussed in Rivlin and

Soroushian (2017). We demonstrate that a deterministic rating model is desirable

when manipulation is not a concern (see Section 4). However, in the presence of

8
As documented by Saeedi (2019), Hui et al. (2016), and Nosko and Tadelis (2015), there are many per-

formance indicators available to eBay that are not conveyed to the market directly, such as total quantities

sold, and previous claims and their outcomes.
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manipulation, rating uncertainty becomes desirable, suggesting regulators should

allow for some degree of uncertainty in certification policies (see Section 5). Our

model provides insights into the nature of this opacity.

3. Manipulation of ratings: Rating-system manipulations are widespread, often in-

volving misrepresentation of data by the certified party.
9
Online platforms are fre-

quently plagued by data manipulation by providers.
10

For example, some third-

party sellers on Amazon pay customers for positive reviews and higher ratings, He

et al. (2022). In our model, the decision-maker can take costly actions to increase

an observed indicator y without affecting market valuation. This creates a trade-off

in rating design, because information provision incentivizes productive actions but

also raises incentives for data manipulation (details in Section 5).

3.1 Interim Prices: Definition and Characterization

In this section, we introduce amathematical object, interim prices, to simplify the problem

of rating design in the environment described above. Our first major result is a simple

characterization of these interim prices that allows us to solve the problem of rating design

in various applications.

The notion of interim prices is simple. They are the mathematical object that deter-

mines the DM’s incentives in choice of effort and will be present in the incentive con-

straints for the DM. Specifically, we define interim prices as

p (y) =

∫
E [v|s] dπ (s|y) . (3)

Given that E [v|s] is an equilibrium object that depends on the market’s beliefs about the

DM’s action profile, so is p (y). Nevertheless, it is a sufficient statistics for the information

structure from the DM’s perspective. Specifically, the DM’s payoff is given by∫
p (y) dσ (y|a)− c (a, θ) .

9
In recent year, several lawsuits have involved rating manipulation in different industries, such as edu-

cation (e.g., the case of Temple University, Temple Business School Dean Fraud, accessed August 16, 2022,

and the case of Columbia University in NYT on Columbia’s ranking manipulation and Michael Thadeuss

on ranking manipulation, accessed August 16, 2022) and financial markets (e.g., the case of Greenwashing

by Deutsche Bank, accessed August 16, 2022).

10
Feedback manipulation has long been a debated issue on e-commerce platforms (e.g., Hui et al. (2017)).

11

https://www.justice.gov/usao-edpa/pr/former-temple-business-school-dean-sentenced-over-one-year-prison-rankings-fraud-scheme
https://www.nytimes.com/2022/03/17/us/columbia-university-rank.html
http://www.math.columbia.edu/~thaddeus/ranking/investigation.html
http://www.math.columbia.edu/~thaddeus/ranking/investigation.html
https://www.bloomberg.com/news/articles/2022-05-31/deutsche-bank-s-dws-unit-raided-amid-allegations-of-greenwashing
https://www.bloomberg.com/news/articles/2022-05-31/deutsche-bank-s-dws-unit-raided-amid-allegations-of-greenwashing


Interim prices are essentially the DM’s beliefs about the beliefs of the market (or buyer)—

second-order beliefs. More precisely, at the interim time of y realization and before signal

realization, the DM faces a distribution over the realization of signals—when random sig-

nals are used—and thus over the market’s beliefs. One can thus interpret them as second

order beliefs of the DM.

Example 1. The following examples give a sense of interim prices and their relationship

with an information structure. Suppose that A = Y = [0, 1] , v (a, y) = y; that is, the

market values only the DM’s signal realization, and the intermediary observes it. Then

an example of an information structure with deterministic signals is one in which the

values of y ∈
[
y, y

]
are revealed while those above and below this interval are pooled.

In this case, interim price p (y) coincides with y when y ∈
[
y, y

]
, and is the conditional

mean of y when y ≤ y for lower values; higher values are similar.

Another example of an information structure is a partially mixing one in which the

state is revealed with probability α (y), and otherwise a generic signal with probability

1 − α (y) is sent. Here, the DM faces uncertainty regarding its ratings, and the interim

prices are given by

p (y) = α (y) y + (1− α (y))

∫
[1− α (y)] ydµ∫
[1− α (y)] dµ

.

Given our definition of interim prices, instead of viewing an equilibrium as an action

profile a (θ) and the distribution of market prices, E [v|s], it induces, we can view it as an

action profile a (θ) and an interim price function p (y). Evidently, given p (y), a (θ) must

be incentive compatible, i.e.,

a (θ) ∈ argmax
a∈A

∫
p (y) dσ (y|a)− c (a, θ) .

Generally, there are no simple conditions to characterize the set of interim price pro-

files that result from a particular information structure and action profiles. However, as

we will show next, under some restriction on information structures, a simple character-

ization exists.

First, we examine interim prices. Suppose that the sets Y , A, and S are finite so we
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can easily write conditional expectations. Interim prices are given by

p (y) =
∑
s∈S

∑
(a,ŷ)∈A v (a, ŷ)µ (a, ŷ) π (s|ŷ)∑

(a,ŷ)∈A µ (a, ŷ) π (s|ŷ)
π (s|y) .

Since

∑
s π (s|y) = 1, p (y) is a weighted average of the values of v (a, ŷ), where the

weights depend on y. The above can be written as

p (y) =
∑
ŷ∈Y

v (ŷ)
∑
s∈S

π (s|ŷ) π (s|y)µy (ŷ)∑
y′∈Y µy (y′) π (s|y′)

, (4)

where v (ŷ) = E [v (a, y) |ŷ] is the mean of v (a, y) conditional on the realization of y, and

µy (ŷ) =
∑

a∈A µ (a, ŷ) is the marginal distribution of µ along the y-direction. We make

the following assumption about v:

Assumption 1. The range of v (·), i.e., v (Y ), is a finite collection of closed subintervals of
R.

Assumption 1 is a technical assumption that allows us to prove our main result on

the characterization of interim prices, Theorem 1. It holds, for example, if Y is a finite

collection of disjoint connected sets and v (·) is continuous.
According to (4), p (y) is a weighted average of v (y). Hence, p (y) is a less dispersed

version of v (y), i.e., amean-preserving contraction. Indeed, we have the following lemma:

Lemma 1. For any information structure (S, π) and p (y) defined by (3), p (·) second-order
stochastically dominates v (·), i.e., for all concave and increasing functions u : R → R,∑

y∈

µy (y)u (v (y)) ≤
∑
y∈

µy (y)u (p (y))∑
y∈

µy (y) v (y) =
∑
y∈

µy (y) p (y) .

While the above result is a necessary requirement for interim prices, in general its

reverse is not true, as the following example shows:

Example 2. Suppose that A = Y = {0, 1, 3}, v (a, y) = v (a) = a, σ (Y ′|a) = 1 [a ∈ Y ′],

and µ ({a}) = 1/3. In words, the consumer cares only about the action of the seller, and y

coincides with it. Figure 2 depicts the values of p(0) and p(1); the sum of the three interim

prices always equals 4, given Bayes rule. Area A shows the set of vectors x = (x1, x2, x3)
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p(0)

p(1)

4

4

A

1
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Figure 2: The set of interim prices and mean-preserving contractions of market valuations

for Example 2. The green area, A, represents the three state random variables that are a

mean-preserving contraction of a. The yellow area, B, is the set of interim prices arising

from some information structure. The point c depicts a non-monotone interim price vec-

tor.

that second-order stochastically dominate (0, 1, 3). Each random variable is represented

by (x1, x2); the third element is the distance from the x1+x2 = 4 line. The conditions are

0 ≤ xi ≤ 3, 1 ≤ xi+xj ≤ 4, for all i, j, and x1+x2+x3 = 4. However, the set of interim

prices does not coincide with the set A, and is depicted by set B.
11
Moreover, interim prices

are not necessarily monotone. A signal that pulls a = 0, 3 and reveals a = 1 leads to an

interim price of 3/2 for a = 0 and 1 for a = 1, depicted by point c in Figure 2.

The above example illustrates the difficulties associated with identifying the set of

all interim prices for all information structures. Nevertheless, we can show a somewhat

general result when market valuations have the same ranking as interim prices. Our main

mathematical result is that when market valuations v (y) and p (y) are comonotone, then

the existence of a signal structure is equivalent to second-order stochastic dominance, as

stated by the following theorem:

Theorem 1. Consider an action profile a (θ) and its associated v (y) as defined in (4). Sup-
pose that p (y) is a function that maps Y into R such that

1. p (·) is comonotone with v (·), i.e., p (y) > p (y′) ⇒ v (y) > v (y′), and

11
To find the set of all interim prices, one can characterize the extreme points of B. These points are

associated with full revelation of some of the states and pooling of others.
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2. p (·) second-order stochastically dominates v (·).

Then, there exists an information structure (S, π) such that p (y) =
∫
E [v|s] dπ (s|y).

To see the intuition, suppose that Y = {y1, · · · , yn} is a finite set and v (yi+1) > v (yi).

We show the result by induction on the size of Y . The result is trivial for |Y | = 2, as we

can generate any monotone interim price by sending a low signal when the state is y1

and a high signal with some probability when the state is y2. For any finite set Y , we

consider the state yj that has the lowest value of λ =
p(yj+1)−p(yj)

v(yj+1)−v(yj)
. We then consider

the convex combination p (yi) = λp̃ (yi) + (1− λ) v (yi). Given the value of λ, it can be

shown that p̃ (yj) = p̃ (yj+1). We can thus consider a modified state space Ỹ = Y \ {yj+1}
and set the market value at yj equal to average of v (yj) and v (yj+1). For such market

values and state space, it can be shown that p̃ (y) is comonotone with and second-order

stochastically dominates v (y). Hence by the hypothesis of induction, p̃ can be generated

by a rating system. The rating system that generates p is one that randomizes between

full revelation (with probability 1 − λ) and a the signal for p̃ while pooling the states yj

and yj+1. Note that, this proof effectively identifies an algorithm for construction of one

rating system by a sequence of randomizations between full revelation and signals that

pool consecutive states.

For arbitrary compact Y , we approximate the distribution µy (·) with a sequence of

discrete distributions whose supports are ordered according to the subset order (i.e., they

are a filtration). We can then apply the result from the finite case to construct an infor-

mation structure associated with each of these discrete approximations. The main result

then follows from the compactness of the space of measures over the posterior mean and

y and the use of the martingale convergence theorem. We formalize this argument in the

Appendix.

The above theorem implies that we can characterize the comonotone equilibria of the

game for arbitrary information structures with an action profile {a (θ)}θ∈Θ and interim

prices p (y) such that:

1. The action profile is incentive compatible,

a (θ) ∈ argmax

∫
p (y) dσ (y|a)− c (a, θ) ,∀θ ∈ Θ. (5)

2. Interim prices p (y) dominate v (y) = E [v (a, y) |y] according to the second-order

stochastic order.
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3. Interim prices and market valuations are comonotone.

Remark on Theorem 1 The result in Theorem 1 is reminiscent of the result of Black-

well (1953) and Rothschild and Stiglitz (1970), whose general version can be found in

Strassen (1965). That result states that for any two random variables x and y, there ex-

ists a random variable s such that E [x|s] has the same distribution as y if and only if

y second-order stochastically dominates x. While similar, our result is different in two

ways. First, it is stated for the second-order conditional expectation, and thus Blackwell’s
result cannot be applied. The key intricacy is that the same signal structure that generates

the random variable E [v|s] must be used to generate E [E [v|s] |y]. Second, as illustrated
by Example 2, the equivalent of Blackwell’s result does not hold in general and can be

shown only when v and p are comonotone.

Majorization In the rest of the paper, we will use Theorem 1 to characterize opti-

mal rating systems in various applications. When Y ⊂ R, the majorization formulation

(see Hardy et al. (1934)) of second-order stochastic dominance helps us use a Lagrangian

method to solve for the optimal rating systems. When Y = R and both v (y) and p (y)

are increasing and comonotone, we can write

p ≽SOSD v ⇐⇒
∫ y

−∞
p (ŷ) dµy (ŷ) ≥

∫ y

−∞
v (ŷ) dµy (ŷ) ,∀y ∈ R. (6)

4 Application 1: Rating Design without Manipulation

Our first application of rating design is a general version of the model in Section 2, where

effort generates a random market valuation that is observable by the intermediary and

cannot be manipulated. We will show that revenue-maximizing rating systems are deter-

ministic. We will then provide a specific characterization of optimal rating systems and

how they depend on the outcome distribution.

More specifically, suppose thatA = [a, a] for some a > 0, Y = [0, 1], va (y, a) , vy (y, a) ≥
0, and Θ = {θ1, · · · , θm}. We assume that the cost function c (a, θ) is decreasing in θ, in-

creasing in a, and submodular. This implies that higher types (θ) are more efficient in

exerting effort. Additionally, we assume that y conditional on a is distributed according

to a continuously differentiable (c.d.f.) G (y|a). We make the following assumption:

Assumption 2. The distribution of y conditional on a satisfies the following conditions:
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1. Its likelihood function is monotone increasing, i.e., ∂2

∂a∂y
log g (y, a) = ∂

∂y
ga
g
≥ 0.

2. For any finite sequence (a1, · · · , aK) and any nonempty interval I ⊂ [0, 1], the func-
tions {g (y|ai) , ga (y|ai)}1≤i≤K are linearly independent over I .

This first part of Assumption 2 is the standard MLRP (monotone likelihood ratio as-

sumption) common in the moral hazard literature, and it will help us show that optimal

interim price functions should be increasing. Its second part is used to show that the op-

timal interim price function has to be an extreme point of the set of functions that are a
mean-preserving contraction of v (a, y) (see Kleiner et al. (2021)).

We aim to characterize revenue-maximizing information structures. Given any fee

charged by the intermediary, t, and considering c (a, θ) is submodular and decreasing in

θ, there must exist a marginal type θ̂ below which the DM does not participate, because

the DM’s profit becomes negative. The intermediary’s revenue is t
∑

θ≥θ̂ f (θ). Hence,

given θ̂, t coincides with the utility of the marginal type,

∫
pdG − c

(
a, θ̂

)
. Thus, given

θ̂, the problem of optimal rating is to choose p (y) and a (θ) to maximize

max
p(y),a(θ)

∫
p (y) dG

(
y|a

(
θ̂
))

− c
(
a
(
θ̂
)
, θ̂
)

subject to the incentive compatibility constraint (5), monotonicity of p (y), and majoriza-

tion constraint as stated in (6). In the above, we have assumed monotonicity of p (·); in
the online Appendix, we establish that this is without loss of generality.

12

Our first result illustrates that Pareto optimal rating rules are always deterministic:

Proposition 1. Suppose that Assumption 2 holds and that the first-order approach is valid.
Then the revenue-maximizing rating system is a monotone partition.

The idea behind the proof of this theorem can be understood by realizing that under

the first-order approach, Lagrangemultipliers γ (θ) , θ ≥ θ̂, must exist such that the choice

of optimal p (·) is equivalent to maximizing

∫ g (y|a(θ̂))+
∑
θ≥θ̂

γ (θ) ga (y|a (θ))

 p (y) dy (7)

12
If p (·) is decreasing over a subinterval followed by an increasing segment, we can increase prices for

low values of y and decrease them for high values of y. This keeps the incentives intact and redistributes

profits to the lowest type. If, on the other hand, p (·) is hump-shaped, a similar perturbation works.
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subject to monotonicity and majorization. In other words, p (·) must be an extreme point

of themonotone orbit of y. Hence the result of Kleiner et al. (2021) applies and the result in

Proposition 1 follows. The second part of Assumption 2 is used to show that the maximum

is indeed achieved by an extreme point and not a support point.

We assume that the first-order approach is valid, because in our proof of this theorem,

we use the existence of Lagrange multipliers on the incentive compatibility constraint.

The first-order approach ensures that such Lagrange multipliers exist and our proof is

valid. In the online Appendix, we provide sufficient conditions on the distribution func-

tion G (y|a) so that the first-order approach is valid.

This proposition illustrates that not only optimal rating systems are deterministic but
they are alsomonotone partitions. In otherwords, for any y, either y is revealed perfectly or
there exists an interval around ywhere it is revealed that y belongs to this interval. Inwhat

follows, we further investigate the properties of optimal rating systems by considering

certain classes of distributions.

Before proving our formal results, we provide a heuristic analysis of the trade-offs

involved in optimal rating. As discussed above, finding the optimal interim price is equiv-

alent to solving the following optimization:

max
p(·)

∫
Γ (y) p (y)h (y) dy

subject to the majorization and monotonicity constraints. In this formulation, h (·) is the
measure of y among the types that participate, i.e., h (y) =

∑
θ≥θ̂ f (θ) g (y|a (θ)). The

function Γ (y) is the gain function derived in 7 and is given by

Γ (y) =
g
(
y|a

(
θ̂
))

h (y)

1 +
∑
θ≥θ̂

γ (θ)
ga (y|a (θ))

g
(
y|a

(
θ̂
))

 . (8)

When g (·) satisfies themonotone likelihood ratio property, then the ratio g
(
y|a

(
θ̂
))

/h (y)

is a decreasing function of y. Hence, this term captures the redistributive forces present
in the design of rating systems. The second term in the gain function represents the im-

portance of the incentive provision for the participating types. When g (·) satisfies the
monotone likelihood ratio property, this term is increasing, which then creates benefits

for full revelation.

This implies that Γ (·) can be thought of as somewhat of a sufficient statistic that deter-
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mines the optimal disclosure policy. The function Γ (·) is not an exact sufficient statistic

because the effort levels chosen by DM types are endogenous to the rating system, which

in turn affects Γ (·).
Despite the issue of endogeneity, Γ (·) can be a useful determinant of optimal rating

systems for two reasons: First, given an allocation of efforts, it can determine a local per-

turbation that improves the objective. Second, it is possible to provide general properties

for its shape for a certain class of distribution functions g (·|·). In what follows, we provide
a few characterization results in this direction, to help us understand better when the two

forces present in Γ dominate each other.

In general, the key relevant property of Γ is the sign of its derivative. In Lemma 2

in the Appendix, we show that if Γ′ (y) changes sign k times, then the optimal interim

price is comprised of at most k partitions alternating between full revelation and pooling.

Moreover, full revelation happens only if Γ′ > 0. In what follows, by assuming that there

are two types of DM, we present some sufficient properties of the distribution function

g (·) that limits the number of times Γ′
has a change of sign. As a result, optimal ratings

take a simple form.

Proposition 2. Suppose thatG (·) satisfies Assumption 2, and its log-density satisfies log g =

r (y)m (a) + b (a), where r and a are increasing functions. If m = 2, then there exist two
thresholds y1 < y2 such that the optimal rating is pooling for values of y ∈ [y1, y2] and fully
revealing for values of y below y1 and above y2.

Under the assumption in Proposition 2, the incentive effect in the gain function domi-

nates for high and low values of y, and the redistributive effect dominates for mid-values.

A special case is that of the example in Section 2, where log g = (1/ (1− a)− 2) log y +

log (1/ (1− a)− 1). In that example, Proposition 2 implies that we need to consider

only mid-pooling information structures, and the optimal one has the bounds 0.0492 and

0.6636; the revenue of the intermediary is 0.269. The gain function and the optimal in-

terim price are depicted in Figure 3, which illustrates the optimality of this information

structure.

In sum, our first application highlights the importance of our characterization result in

3. Theorem 1 allows us to simply formulate the problem and identify the key determinants

of optimal rating systems. The key determinant is the shape of the likelihood function

ga/g, similar to the literature on moral hazard following Holmström (1979). Moreover,

the likelihood function affects the optimal rating through its effect on the shape of the
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Figure 3: Right figure shows The gain function for the example in Section 2; the optimal

efforts are a∗L = 0.401, a∗H = 0.635. Left figure shows the optimal interim price.

gain function defined in (7).
13

5 Application 2: Rating Design with Manipulation

In this section, we consider another application of our result in Section 3 to a setting

where the DM can manipulate the statistic observed by the intermediary. More specifi-

cally, consider a special case of the model in Section (4) where there is only one type, θ.

Suppose that market valuation is v (y, a) = y and that Y = [0, 1], and the intermediary

does not observe the true realization of y, but instead observes x, which the DM can ma-

nipulate at a cost. In particular, the DM, after observing y, can pay a cost and reveal x to

the intermediary. The cost of manipulation is given by cm (x− y) = k (x−y)2

2
+ τ |x− y|,

where k, τ ≥ 0 and τ < 1. We assume that the intermediary wishes to maximize the

surplus generated by the DM, which is given by

∫
[y − cm (x̂ (y)− y)] dG (y|a) − c (a),

where x̂ (y) is the manipulation strategy of the DM for each realization of y ∈ [0, 1].14

In this setup, a rating system is a signal structure (S, π (s|x)), i.e., an information

structure that maps manipulated values x into signals for the market (or buyers). In equi-

librium, there is common knowledge of strategies by the DM and thus the market’s inter-

pretation of the signals depends on the manipulation strategy of the DM. This updating

13
In the online Appendix, we provide another example of a separable distribution function g (y, a) =

A1 (a) +A2 (a) r (y). In this case, the gain function can be shown to be always monotone.

14
This is a special case of the setup in Section 3, where the valuation of the market, y, is not observed by

the intermediary, who instead observes a signal x, controlled by the DM.
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takes the form of

E [y|s] = E
[
x̂−1 (x) |s

]
,

where x̂−1
is the inverse correspondence of the DM’s equilibriummanipulation strategy.

15

The DM’s interim price from reporting x′
to the intermediary is given by

E [E [y|s] |x′] = E
[
E
[
x̂−1 (x) |s

]
|x′] = p̂ (x′) . (9)

The payoff function of the DM being supermodular between x and y implies that the

equilibriummanipulation function x̂ (y) is increasing in y. Moreover, equilibrium interim

price p̂ (x̂ (y)) is also increasing. Therefore, the comonotonicity assumption of Theorem

1 holds. Hence, the existence of a signal structure that satisfies (9) is equivalent to p (y) =

p̂ (x̂ (y)) dominating y according to second-order stochastic dominance. Thus, we have

the following corollary:

Corollary 1. Consider any manipulation strategy x̂ (y) together with an information struc-
ture (π, S). Then x̂ (·) is an equilibrium strategy if and only if there exists an increasing
interim price function, p (y), such that:

1. The function p (y) second-order stochastically dominates y (given the distribution of y,
G (y|a)).

2. The pair of functions p (·) , x̂ (·) satisfies the incentive compatibility

p (y)− cm (x̂ (y)− y) ≥ p (y′)− cm (x̂ (y′)− y) ,∀y, y′ ∈ [0, 1] . (10)

Corollary 1 implies that the problem of optimal rating design in this application is

given by

max
p(y),x̂(y),a

∫
[p (y)− cm (x̂ (y)− y)] g (y|a) dy − c (a) (P1)

subject to the ex post incentive compatibility constraint (10), the optimality of effort a,

and monotonicity and majorization of p (y) by y. As there is only one type of DM, the

revenue maximization problem of the intermediary is equivalent to welfare maximization

for the DM because this way, the intermediary can charge the highest possible fee.

15
When there are multiple y’s that report x to the intermediary, set Ŷ ⊂ [0, 1], the conditional expec-

tation E
[
x̂−1 (x) |s

]
pools them together and treats them as one observation, with its value given by the

conditional expectation of E
[
y|y ∈ Ŷ

]
.
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In this environment, there is no reason for the intermediary to rule out manipulation

in equilibrium. When the cost of manipulation is high, e.g., τ is close to 1, it is optimal

for the interim prices to have a slope of τ , as we will show. Thus the marginal cost of

manipulation at x̂ (y) = y is equal to the increase in the interim prices, ruling out manip-

ulation in equilibrium. However, when τ is low, e.g., τ = 0, manipulation always occurs

in equilibrium.

We make the following assumption about the distribution G (·|·) and the validity of

the first-order approach:

Assumption 3. The following conditions are satisfied:

1. The c.d.f. of y, G (·|·), is a C2 function of y and a.

2. An increase in a shifts the distribution of y upwards, i.e., Ga (y|a) ≤ 0.

3. The first-order approach is valid so that optimality of effort a can be replaced by∫
[p (y)− cm (x̂ (y)− y)] ga (y|a) dy = c′ (a) . (11)

The first and second parts of the above assumption help us prove our main result

about the shape of optimal ratings in Theorem 2. The last part allows us to construct a

local perturbation argument which satisfies the constraint and improves the objective in

presence of a discontinuity in interim prices. While the validity of the first-order approach

is not without loss of generality, in the online Appendix, we provide conditions such that

the solution of the relaxed problem is indeed incentive compatible.

We proceed by stating our main result of this section:

Theorem 2. Suppose that Assumption 3 holds. If p (·) is an interim price function that
achieves the maximum in (P1), then p (·) is continuous.

The intuition of the proof relies on the continuity of Ga = ∂G (y|a) /∂a together

with the trade-offs involved in allowing for manipulation. The cost of manipulation is

destroyed surplus, and its benefit is that it provides incentives for ex ante effort. Because

the pricing function must be incentive compatible ex post, i.e., (10), a simple application

of the envelope theorem and integration by part implies that an increase in x (y) relaxes

(11) by −kGa (y|a). Hence, the marginal benefit of manipulation is continuous in y, and

its marginal cost is strictly convex. Therefore, optimal manipulation and, as a result,
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the interim price function should be continuous. This continuity implies that partitions

should not be used at the optimum.

A key insight of Theorem 2 is that we can divide the domain [0, 1] into a collection

of subintervals where the optimal interim price function alternates between the identity

function—for which the majorization constraint is binding—and one in which majoriza-

tion is slack and thus involves rating uncertainty. In other words, partitions often used

by various disclosure mechanisms where various states are pooled are not optimal. Addi-

tionally, the theorem illustrates an algorithm to find optimal rating via optimization over

alternating intervals.

The result in Theorem 2 is in sharp contrast with that in Proposition 1, in which we

established that optimal information structures are monotone partitions. This means that

the DM does not face any uncertainty when determining its rating. In contrast, when p (·)
is continuous and not all information is revealed, then the rating system must involve

randomization or rating uncertainty.

To provide two further characterizations of optimal rating under manipulation, we

make the following assumption:

Assumption 4. In addition to Assumption 3, the c.d.f of y, G (·|·), satisfies the following
properties:

1. Effort is mean y, i.e.,
∫ 1

0
ydG (y|a) = a.

2. The function Ga(y|a)
g(y|a) is bounded below.

3. G (·|·) satisfies the monotone likelihood ratio property, i.e., ga/g is strictly increasing.

The first part of Assumption 4 normalizes the choice of effort as choosing the mean of

the distribution y. Because this distribution as a function of a is ranked according to first-

order stochastic dominance, this is without loss of generality as long as cost is convex in

the mean of the distribution. The second part ensures that the change in the c.d.f. from

an increase in a is not too large relative to the density g (y|a). The last part allows us to
prove existence of Lagrange multipliers in Theorem 3.

Our first main result is on optimal rating whenmanipulation is costly (i.e., its marginal

cost at 0 is high).

Proposition 3. Suppose that Assumption 4 holds. Then, there exists τ ∈ (0, 1) such that
for all τ ≥ τ , there is no manipulation under optimal rating, i.e., x̂ (y) = y, and the optimal
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rating satisfies

S = {N} ∪ [0, 1] , π ({s} |y) =

τ s = y

1− τ s = N
. (12)

The idea behind Proposition 3 is quite simple. When τ is large enough, the marginal

cost of manipulation is too high and thus its benefit in incentivizing ex ante effort is too

small. Hence, we can think about the steepest interim price function that implements no

manipulation. This is a pricing function that satisfies p′ (y) = τ for all y ∈ [0, 1]. Similar

to Example 1, one way to achieve this is using a partial mixing information structure, as

described in (12).

By imposing more restrictions on the distribution function g (·), we can provide a

full characterization of optimal ratings. We make the following assumption about the

distribution function G (y|a):

Assumption 5. The log-density of the distribution function l (y, a) = log g (y|a) satisfies
the following conditions:

1. lya ≥ 0, lyy ≥ 0, ly ≥ 0

2. lyya ≥ lylya, lyyy ≥ lylyy, and 2lyy ≥ (ly)
2,

where ly, lyy, · · · are partial derivatives of l.

The following theorem provides a characterization of optimal rating systems under

the above assumption about the distribution function:

Theorem 3. Suppose that Assumptions 4 and 5 hold. Then for any given effort a, optimal
rating systems satisfy the following properties:

1. There exists an interval [y1, y2] (possibly empty) where the rating system is fully re-
vealing for values of x ∈ [y1, y2] and partially mixing for values of x in [0, y1] and
[y2, 1].

2. Optimality can be achieved by using a signal space of [0, 1] ∪ {L,H}.

Theorem 3 provides the conditions so that at the optimum, the majorization constraint

binds for at most one interval. The key implication of Assumption 5 is that absent the

majorization constraint, the optimal interim price is the steepest formid-values of y. Thus,

when the majorization constraint is violated, it is violated for an interval of values of y.
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Figure 4 depicts the optimal manipulation and interim prices for various k values.

When the value of k is high, the optimal level of manipulation required to provide ex-

ante incentives is low, and as a result interim prices are not very dispersed. For low values

of k, higher manipulation and higher dispersion of prices are needed. This implies that

majorization is binding for mid-values of y. For low values of y, the optimal manipulation

is 0 because the marginal cost of manipulation is positive and equal to τ while the benefit

of manipulation converges to 0 as y converges to 0.

y

x̂(y)− y

1

y

p(y)

1

1

Figure 4: Optimal manipulation and interim prices for low (red) and high (blue) values of

k = ∂2

∂x2 cm (x; y).

Our distributional assumptions in Theorem 2 are sufficient but not necessary. In gen-

eral, it is possible to weaken the assumptions, but we omit it here for brevity. In the class

of distribution functions that satisfy l (y, a) = r (y)m (a) + b (a), Assumption 5 holds if

r (y) = − log (1− y) and m (a) satisfies 1 ≥ m ≥ 0,m′ ≥ 0. More generally, r has to be

convex enough for Assumption 5 to hold.

Finally, regarding the second part of Theorem 3, when the majorization is slack, As-

sumption 5 implies that the optimal interim price function is convex for low values of

y and concave for high values of y. As a result, there are at most three values at which

p (y) = y. In the proof of Theorem 3, we show that such an interim price function can

always be implemented by a rating system similar to a partial mixing one, as in Example

1. The rating system differs for low and high values of y: when y is low, it reveals the state

with some probability and otherwise generates the signal L; when y is high, it reveals the

state and signals L and H probabilistically.
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6 Implications and Extensions

In this section, we discuss the key implications of our model on the design of rating sys-

tems under moral hazard.

Changes in the Cost of Manipulation and Design of Ratings Arguably, with the

increased ease in communication on the internet, rating manipulation and fake reviews

are easier to achieve. In Section 3, we discussed various studies that illustrate the preva-

lence of manipulation. But how should certifiers and platforms react to this decline in

cost? While efforts to detect fake reviews can address this problem, there are limits to

this practice. Our model shows how the rating system itself needs to change in response

to the decline in the cost of manipulation. Interestingly, it identifies a force which implies

that a lower cost of manipulation should be accompanied by more informative rating sys-

tems because of the interplay of ex ante incentives and limitations implied by stochastic

dominance.

Whereas rating uncertainty is a natural response to rating manipulation, perhaps

counterintuitively, a decline in the cost of manipulation leads to more informative rat-

ings (see Figure 4). A decline in k leads to a steeper interim price schedule and eventually

full revelation for intermediate values of y. A decline in τ works similarly; it leads to an

increase in manipulation and thus steeper interim prices.

Noisiness of Optimal Ratings at the Extremes A robust feature of optimal ratings

with manipulation is that they are noisy at extreme realizations of y. In general it is

difficult to verify this property in the data, but there is some suggestive evidence that

noisiness at the extremes could be present. At the low end, we note that several platforms

often provide a form of rating forgiveness. For example, Instacart, a delivery platform,

allows shoppers to apply for removal of their previous low ratings by customers.
16

This

in turn creates more uncertainty for shoppers with low ratings. On the high end, there is

some evidence of upward bias in rating systems used by several platforms—a feature that

creates more perceived noisiness for high ratings. Raval (2023) uses data on businesses’

ratings across several platforms such as Google, Facebook, Yelp, and BBB to estimate

quality, and suggests an upward bias is present in all platforms.

16
Changing How Ratings Work (accessed July 7, 2023)
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6.1 Extensions

Allowing for Market Action

In our focus on the effect of rating systems on moral hazard, we have abstracted from

several realistic features of these systems. Most importantly, for ease of analysis, we have

abstracted from situations in which ratings have value for the market, e.g., helping market

participants not make a purchase when the quality is low. In online Appendix B.5.1, we

show that an extension of our main result on the majorization of interim prices holds in

an environment with a market action. In such an environment, we need to allow for the

obedience constraint by the market. Nevertheless, we show that if one focuses on the

DM’s second-order expectation conditional on each action by the market, a similar result

holds and comonotonicity implies majorization.

Different Priors

Market participants may have different perceptions about the informativeness of rating

systems. In online Appendix B.5.2, we consider a version of our model where the market

has a dogmatic prior about the joint distribution of (a, y) which is not necessarily con-

sistent with the intermediary’s rating policy. Nevertheless, we show that the existence

of rating systems for interim prices that are comonotone with market values (appropri-

ately calculated) is equivalent to second-order stochastic dominance. We also characterize

optimal ratings in some special cases of this dogmatic bias.

7 Conclusion

We have explored the design of optimal rating systems in the presence of moral hazard.

Methodologically, we showed that interim prices—an informed decision-maker’s expecta-

tion of market expectation—can be used to simplify the design problem. It thus becomes a

mechanism design problem with transfers, where transfers have to be a mean-preserving

contraction of market values.

Using two applications, we have established that the interim price methodology helps

us derive substantive results on the design of rating systems. Specifically, we character-

ized optimal ratings when effort is valued by the market, either directly or through the

realization of a random valuation. Additionally, we considered a model where in addition

to making an effort valued by the market, the decision-maker can make an ex post costly
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effort to manipulate the signal observed by the rating agency. This model has important

implications for the design of rating systems in the presence of easier manipulation.
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A Proofs

A.1 Proof of Theorem 1

We will first prove the theorem when Y is finite. We will then show that the theorem can

be extended to the case when Y is a compact Euclidean space.

1. When Y is finite.
Let Y = {y1, y2, · · · , yn} such that v (y1) ≤ v (y2) ≤ · · · ≤ v (yn). When p (y) is

co-monotone with v (y), we must have that p (y1) ≤ p (y2) ≤ · · · ≤ p (yn). In this case,

S ⊂ Rn
. For simplicity, we also let fi = µy ({yi}) and vi = v (yi) and pi = p (yi).

We prove the claim by induction on n.

First step: The claim holds for n = 2.
If n = 2, then majorization implies that

f1v1 + f2v2 = f1p1 + f2p2,

0 ≤ p2 − p1 ≤ v2 − v1.

Consider a signal structure that only sends a low signal when the state is y1. When the

state is y2, it sends the low signal with probability α and otherwise a high signal. Let

0 ≤ α =
p1 − v1
v2 − p1

f1
f2

≤ 1.

Then, the ex post price upon observing the low signal is

v1f1 + αv2f2
f1 + αf2

=
v1f1 +

p1−v1
v2−p1

f1v2

f1 +
p1−v1
v2−p1

f1
=

v1f1 (v2 − p1) + (p1 − v1) f1v2
f1 (v2 − p1) + (p1 − v1) f1

= p1.

Thus the interim price when the state y1 is p1. The mean of p1 and p2 is the same as that

of y1, y2 which means that p2 is the second order expectation of v when the state is y2.

This proves the claim.

Second Step: If the claim is true for n− 1, then it is true for n.
Consider an interim price function {pi}. If for some i, pi = pi+1, we can reduce

the number of states by considering the interim price function p1 ≤ · · · ≤ pi ≤ pi+2 ≤
· · · ≤ pn distributed according to f1, · · · , fi−1, fi+fi+1, fi+2, · · · , fn andmarket values of

v1 ≤ · · · ≤ vi−1 ≤ fivi+fi+1vi+1

fi+fi+1
≤ vi+2 ≤ · · · ≤ vn. Since by the induction assumption, an

information structure π exists that generates this interim price function, simply pooling
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yi and yi+1 and using the information structure π generates the original interim price

function.

Suppose, on the other hand, that pi < pi+1 for all i. Let λ = mini≤n−1
pi+1−pi
vi+1−vi

. Let p̂j

be defined by

p̂j =
pj − λvj
1− λ

Then (1− λ) (p̂j+1 − p̂j) = pj+1 − pj − λ (vj+1 − vj) ≥ 0. Moreover,

k∑
j=1

fj (p̂j − vj) =
k∑

j=1

fj
pj − vj
1− λ

≥ 0,

and, finally, if λ = (pi+1 − pi) / (vi+1 − vi), then p̂i = p̂i+1. This implies that an argument

similar to the above shows that an information structure

(
π̂, Ŝ

)
exists that generates p̂

as its interim price. Now consider an information structure that reveals the state with

probability λ and otherwise it is the same as π̂. That is

π (s|yj) =

λ s = yj

(1− λ) π̂ (s|yj) s ∈ Ŝ.

Then, since the set of signals that reveal the state does not overlap with Ŝ, we must have

that ∑
s

π (s|yj)
∑

i π (s|yi) fivi∑
i π (s|yi) fi

=

∑
s∈Ŝ

(1− λ) π̂ (s|yj)
∑

i π̂ (s|yi) fivi∑
i π̂ (s|yi) fi

+λvj =

(1− λ) p̂j + λvj = pj.

This concludes the proof.

2. When Y is an arbitrary compact subset of a Euclidean space.
Let V = v (Y ) be the range of v and a subset of R. Furthermore, let us define

∀v ∈ V, p̂ (v) = p (y) , v (y) = v.
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This function is well-defined since p is co-monotone with v. That is, if for two values y1

and y2, v (y1) = v (y2), then we must have that p (y1) = p (y2). We also let µv ∈ ∆(V ) be

the probability measure induced on V using µy and v (·). Clearly, we also must have that

p̂ (·) is a monotone function of v.

By Assumption 1, V is a finite collection of subintervals. For ease of exposition, we

prove the claim when there is only one subinterval [v, v]. The proof with a finite num-

ber is almost identical but is more cumbersome. Consider a sequence of partitions V n =

{vn0 = v < vn1 < · · · < vnn = v} for n = 1, 2, · · · with min0≤i≤n−1 v
n
i+1 − vni → 0 and

V n+1 ⊂ V n
. We define

fn
i = µv

([
vni−1, v

n
i

))
, 1 ≤ i ≤ n− 1; fn

n = µv

([
vnn−1, v

])

vni =


∫
v1[v∈[vni−1,v

n
i )]dµv

fn
i

fn
i > 0, i ≤ n− 1∫

v1[v∈[vnn−1,v)]dµv

fn
n

fn
n > 0, i = n

vni−1+vni
2

fn
i = 0, i ≥ 1

p̂n (vni ) =


∫
p̂(v)1[v∈[vni−1,v

n
i )]dµv

fn
i

fn
i > 0, i ≤ n− 1∫

p̂(v)1[v∈[vnn−1,v)]dµv

fn
n

fn
n > 0, i = n

p̂(vni−1)+p̂(vni )
2

fn
i = 0, i ≥ 1.

In words, the above constructs a discretization of the buyer values v and the DM’s interim

prices p̂ (v). Since p̂n (v) is an increasing function of v and, by construction, p̂n ≽SOSD vn

and V n
is finite, we can apply the result from the first part. That is, an information struc-

ture (Sn, πn) existswhereπn : V n → ∆(Sn) such that p̂n (vni ) =
∑

s∈Sn πn ({s} |vni )E [v|s] .
Note that each (Sn, πn) induces a distribution over posterior beliefs of the buyers

given by τn ∈ ∆(∆ (V n)), since any probability measure in ∆(V n) can be embedded

in ∆(V ). This is because for any µ ∈ ∆(V n), we can construct µ̂ ∈ ∆(Θ) defined by

µ̂ (A) =
∑n

i=1 µi1 [v
n
i ∈ A], where A is an arbitrary Borel subset of V . Similarly, we can

find τ̂n ∈ ∆(∆ (V )), which is equivalent to τn.

Now consider the probability measure ζn representing the joint distribution of vn and

posterior mean Eµ [v] =
∫
vdµ for any µ ∈ Supp (τ̂n) induced by τ̂n. Note that ζn ∈

∆(V × V ). By an application of Reisz representation theorem (see Theorem 14.12 in

Aliprantis and Border (2013)), ∆(V × V ) is compact according to the weak-* topology.

This implies that the sequence {ζn} must have a convergent subsequence whose limit is

given by ζ ∈ ∆(V × V ). Let Gn
be the σ-field generated by the sets

{[
vni , v

n
i+1

)}
i≤n−1

∪{[
vnn−1, v

]}
and let Fn = Gn × {∅,∆(V )}. In words, Fn

conveys the information that
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v ∈
[
vni , v

n
i+1

)
or v ∈

[
vnn−1, v

]
. Note that Fn ⊂ Fn+1

because V n ⊂ V n+1
. Moreover,

E [ζn|Fn] = (vn, p̂n) ,

where (vn, p̂n) is the random variable with values (vni , p̂
n
i ) with probability fn

i . Note that

the above holds by the construction of τn and ζn. As a result

E
[
ζn+1|Fn

]
= E

[
E
[
ζn+1|Fn+1

]
|Fn

]
= E

[(
vn+1, p̂n+1

)
|Fn

]
= (vn, p̂n) ,

where the last equality follows because E [p̂ (v) |Fn] = p̂n,E [v|Fn] = vn given the def-

inition of p̂n and vn above. All of this implies that Fn
is a filtration and (ζn,Fn) forms

a bounded martingale (for a definition see Doob (1994)). Hence by Doob’s martingale

convergence theorem (see Theorem XI.14 in Doob (1994)), we must have that

lim
n→∞

E [ζn|Fn] = E [ζ|F ] .

Therefore, Eζ

[∫
vdµ|v

]
= p̂ (v). This concludes the proof.

A.2 Proof of Proposition 1

Proof. We first show that at the optimum, for all y, either the monotonicity constraint

or the majorization constraint, Equation (6), is binding. Suppose to the contrary that

this does not hold. Note that a change in p (y) for a measure zero set of y’s does not

affect the objective and the majorization constraint. This implies that in order to achieve

a contradiction, we need to rule out an interval in which neither the majorization nor

the monotonicity constraint is binding. Suppose that there exists an interval I = [y1, y2]

for which majorization and monotonicity are slack. Assuming the first-order approach is

valid, given any effort profile a (θ), the optimal rating system must be a solution to the

following planning problem:

max
p:monotone

∑
θ∈Θ

f (θ)λ (θ)

[∫ 1

0

p (y) g (y|q (θ)) dy − c (a (θ) , θ)

]
(P1)

34



subject to ∫ 1

0

p (y) gq (y|a (θ)) dy = ca (a (θ) , θ) ,∑
θ∈Θ

f (θ)

∫ y

0

[p (y′)− y′] g (y′|a (θ)) dy′ ≥ 0,∀y ∈ [0, 1] ,

∑
θ∈Θ

f (θ)

∫ 1

0

[p (y)− y] g (y|a (θ)) dy = 0,

By combining the Theorems 1 in Sections 9.3 and 9.4 of Luenberger (1997) together with

the fact that we have finitely many types and thus finitely many linear equality con-

straints, there must exist Lagrange multipliers γ (θ) – for the incentive compatibility con-

straint – so that p (y) satisfies

p ∈ argmax
p̂

∫ 1

0

p̂ (y)
∑
θ

f (θ) [λ (θ) g (y|a (θ)) + γ (θ) ga (y|a (θ))] dy. (13)

subject to p̂ ≽SOSD y, and p̂ (·) is monotone. Let us define h (y) =
∑

θ f (θ) g (y|a (θ)) and

α (y) =

∑
θ f (θ) [λ (θ) g (y|a (θ)) + γ (θ) ga (y|a (θ))]

h (y)
,

The Lagrangian associated with (13) is given by

L =

∫ 1

0

p̂ (y)α (y)h (y) dy +

∫ 1

0

∫ y

0

(p̂ (y′)− y′)h (y′) dy′dM (y)

−m

∫ 1

0

(p̂ (y′)− y′)h (y′) dy′

=

∫ 1

0

p̂ (y)α (y)h (y) dy +

∫ 1

0

(p̂ (y)− y) [M (1)−M (y)]h (y) dy

−m

∫ 1

0

(p̂ (y′)− y′)h (y′) dy′,

where M (y) is an increasing function y. Moreover,∫ 1

0

∫ y

0

(p̂ (y′)− y′)
∑
θ

f (θ) g (y′|a (θ)) dy′dM (y) = 0.

From the result in Kleiner et al. (2021), we know that there exists pe (y), an extreme
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point of the set {p : p ≽SOSD y, p : monotone} that maximizes the objective in (13), and a

collection of disjoint intervals

[
y
i
, yi

)
exists such that

pe (y) =


y y /∈

⋃
i

[
y
i
, yi

)
∫ yi
y
i
y
∑

θ f(θ)g(y|a(θ))dy∫ yi
y
i

∑
θ f(θ)g(y|a(θ))dy

y ∈
[
y
i
, yi

)
.

Note that optimality conditions implied by the Lagrangian are that if y ∈
(
y
i
, yi

)
, then

α (y)−m+M (1)−M (y) = 0.

In otherwords,α (y)must beweakly increasing. Moreover, if (z1, z2) ⊂ [0, 1] \
⋃

i

[
y
i
, yi

)
,

thenM (y) has to be constant.

If the solution of the optimization problem (P1) is not an extreme point of {p : p ≽SOSD y, p : monotone},
then by Krein-Milman (see Aliprantis and Border (2013)), it must be a convex combina-

tion of the extreme points of the set {p : p ≽SOSD y, p : monotone}. Hence, there must

exist another extreme point p̃e (y) that also achieves the optimum in (13). If pe ̸= p̃e, there

must exist y ∈ (0, 1) so that pe (y) = y for an interval around y and p̃e (y) is constant for

an interval around y. By optimality, it must be that

α (y′)−m+M (1)−M (y′) = 0,M (y′) = M (y)

for y′ ∈ I , an interval around y. This means that there must exist a constant, c = m −
M (1) +M (y), so that for all y′ ∈ I∑

θ

f (θ) [λ (θ) g (y′|a (θ)) + γ (θ) ga (y
′|a (θ))] = c

∑
θ

f (θ) g (y′|a (θ))

or ∑
θ

f (θ) [(λ (θ)− c) g (y′|a (θ)) + γ (θ) ga (y
′|a (θ))] = 0,

which then implies that {g (y|a (θ)) , ga (y|a (θ))}θ∈Θ are linearly dependent over I ′, which

is in contradiction with our assumption. This concludes the proof.

A.3 Proof of Proposition 2

We first prove the following lemma:

36



Lemma 2. Consider the optimization problem

max
p:p≽SOSDy,monotone

∫ 1

0

p (y) Γ (y)h (y) dy.

Suppose that Γ (x) is continuously differentiable and that its derivative changes sign k <

∞ times, i.e., we can partition [0, 1] into k intervals, where in each interval Γ′ (x) has the
same sign but not in two consecutive intervals. Then, an optimal information structure is an
alternating partition (between full revelation and pooling) with at most k intervals. Moreover,
if it is separating over an interval, then Γ′ ≥ 0 over this interval.

Proof. As in the proof of Proposition 1, we know that

∫ 1

0
pΓdH is maximized at extreme

point pe of the set {p : p ≽SOSD y, p : monotone} and hence pe is a collection of disjoint

intervals over which we either pool or fully separate the values of y. Thus, to prove the

optimality, it is sufficient to show that we cannot have two consecutive pooling intervals

and if Γ′ (y) < 0, we cannot have separation at y.

First, suppose that Γ′ (ŷ) < 0 and pe (y) = y for an interval (y1, y2) around ŷ. By

continuous differentiability of Γ, we can assume that Γ′ < 0 over the entire interval.

Since Γ is decreasing, Γ and y are negatively correlated over this interval and thus

cov (y,Γ|y1 < y < y2) < 0 →
∫ y2
y1

yΓ (y) dH

H (y2)−H (y1)
<

∫ y2
y1

ydH
∫ y2
y1

Γ (y) dH

(H (y2)−H (y1))
2 ,

which means that pooling over this interval improves the objective.

Now suppose that ∀y ∈ I1, p (y) = E [y|I1] and ∀y ∈ I2, p (y) = E [y|I2] for two
neighboring intervals I1 ≤ I2. If E [Γ (y) |I1] ≥ E [Γ (y) |I2]. In this case, the same ar-

gument as above implies that pooling I1 and I2 improves the objective. Suppose, on the

other hand, E [Γ|I1] < E [Γ|I2]. Let ŷ = min I2 = max I1. If Γ (ŷ) > E [Γ|I1], then sepa-

rating a small subinterval of I1 around ŷ improves the objective. Therefore, we must have

that Γ (ŷ) ≤ E [Γ|I1] < E [Γ|I2], which then implies that separating a subinterval of I2

around ŷ improves the objective. This proves the claim.

Now, we can use Lemma 2 to prove Proposition 2.

Proof. Recall that the gain function is given by

Γ (y) =
1 +

∑
j≥i λj

ga(y|aj)
g(y|ai)

fi +
∑

j>i fj
g(y|aj)
g(y|ai)

=
Γ1 (y)

Γ2 (y)
.
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Note that since the cost function c (a, θ) is submodular, any incentive compatible effort

choice should be weakly monotone. Moreover, it must be the case that λi ≥ 0 for all

i because we can assume that all the local incentive compatibility constraints hold with

equality such that the marginal benefit of effort is weakly higher than its marginal cost.

Now suppose that both types are participating under the optimal rating system. Then,

the gain function is given by

Γ1 (y) = 1 + λ1 [r (y)m (a1) + b (a1)] + λ2e
r(y)(m(a2)−m(a1))+b(a2)−b(a1) (r (y)m (a2) + b (a2))

Γ2 (y) = f1 + f2e
r(y)(m(a2)−m(a1))+b(a2)−b(a1).

If we define z = er(y)(m(a2)−m(a1))
, we have

Γ (y) =
λ+ α log z (y) + βz (y) log z (y)

f1 + γz (y)
= Γ̂ (z (y))

for some values of α, β, γ > 0 (because m′ ≥ 0 and a2 ≥ a1) and since z′ (y) > 0,

Γ̂′ (z (y)) and Γ′ (y) have the same sign. Then

d

dz

(
(f1 + γz)2 Γ̂′ (z)

)
=

(−α + βz) (f1 + γz)

z2
.

Since f1 + γz > 0, there are three possibilities: 1. βz (y) < α. In this case, the above

expression is always negative, which then implies that Γ̂′ (z) = 0 has at most one solution.

Below this point, Γ̂′ (z) > 0 and above it, Γ̂′ (z) < 0. By Lemma 2, the optimal rating

system is upper-censorship, 2. βz
(
y
)
> α. In this case, the above expression is always

positive and the same logic as before implies that the optimal rating system is lower-

censorship, 3. βz (y) > α > βz
(
y
)
. In this case, Γ̂′ (z) is zero at most at two points. If it

is zero at one point, then we have again lower- or upper-censorship. If, on the other hand,

it is zero at two points, z1 and z2, then Γ̂′
is positive for values of z below z1, negative in

between, and positive at the top. This implies that the optimal rating system structure is

mid-censorship, which concludes the proof.

A.4 Proof of Theorem 2

Before proceeding with the proof, we describe how to simplify the constraint set of our

optimization problem. More specifically, the ex post incentive compatibility is equivalent
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to (see Myerson (1981))

u (y) = p (y)− cm (x̂ (y)− y) = u+

∫ y

0

c′m (x̂ (z)− z) dz (14)

x̂ (y): monotone.

Replacing this into the ex ante incentive compatibility and using integration by parts

implies that ∫ 1

0

u (y) ga (y|a) dy = −
∫ 1

0

c′m (x̂ (y)− y)Ga (y|a) dy,

where the equality uses Ga (1|a) = 0 because G (1|a) = 0 for all values of a. We can also

replace this into the majorization constraint. Since, the mean of p (z) and z are the same,

we can write the majorization constraint as∫ 1

y

[z − p (z)] dG (z|a) ≥ 0,

Replacing for p from above and using integration by parts yields the following:∫ 1

y

[
z − cm (z)− c′m (z)

1−G (z|a)
g (z|a)

]
dG (z|a) (15)

−
(
u+

∫ y

0

c′m (z) dz

)
[1−G (y|a)] ≥ 0.

Proof. Suppose that, contrary to the claim, x̂ (y) and p (y) exhibit an upward jump at ỹ,

i.e., x̂ (ỹ+) > x̂ (ỹ). Note that without loss of generality, we can assume that x̂ (·) , p (·)
are left continuous. In what follows, we construct a new allocation that improves the

objective. Recall from above that we can replace the incentive compatibility for ex-ante

effort with

−
∫

c′m (x (y)− y)Ga (y|a) dy ≥ c′ (a) . (16)

Note that the inequality can be imposed because if it is slack, an increase in a increases

the objective.
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Consider now a perturbation of x̂ given by

δx̂ (y) =


ε1 y ∈ [ỹ − δ, ỹ)

−ε2 y ∈ [ỹ, ỹ + δ]

0 y ∈ [0, 1] \ [ỹ − δ, ỹ + δ] ,

where ε1, ε2, δ > 0 are small enough. Note that since there is a jump at ỹ, c′m (x̂ (ỹ+)− ỹ)−
c′m (x̂ (ỹ)− ỹ) = ∆ > 0 and hence δ > 0 can be chosen so that

c′m (x̂ (y2)− y2)− c′m (x̂ (y1)− y1) > ∆/2, ∀y1 ∈ [ỹ − δ, ỹ) , y2 ∈ [ỹ, ỹ + δ] ,

Moreover, we assume that ε1 and ε2 satisfy

ε = ε1

∫ ỹ

ỹ−δ

[c′m (y) g (y) + k (1−G (y))] dy = ε2

∫ ỹ+δ

ỹ

[c′m (y) g (y) + k (1−G (y))] dy.

(17)

The above implies that this perturbation is budget balanced. Moreover, since x̂ (y) is

increasing, and it has a jump at ỹ, the resulting perturbed function is also increasing for

small values of ε1, ε2 > 0. Finally, the approximate change in prices is given by

δp (y) =



0 y < ỹ − δ

ε1c
′
m (y) + ε1k (y − ỹ + δ) y ∈ [ỹ − δ, ỹ)

−ε2c
′
m (y) + ε1kδ − ε2k (y − ỹ) y ∈ [ỹ, ỹ + δ]

−ε2kδ y > ỹ + δ.

Given (17), we must have that

∫ 1

0
δp (y) dG = 0. Additionally,

∀y ∈ [ỹ − δ, ỹ) , δp (y) = ε1 [k (x̂ (y)− ỹ) + τ ] + ε1kδ,

∀y ∈ [ỹ, ỹ + δ] , δp (y) = −ε2 [kx̂ (y) + τ ] + ε1kδ + ε2kỹ.

Since x̂ is an increasing function of y, the above implies that δp (y) is positive for values

of y below a certain threshold and negative for values of y above it. Hence,

∫ y

0
δp (z) dG

is a single-peaked function of y, which then implies that

∫ y

0
δp (z) dG ≥ 0 for all values

of y and
∫ y

0
δp (z) dG > 0 for all values of y ∈ [ỹ − δ, 1). Thus the perturbed allocation is
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feasible.

The change in the LHS of the modified incentive constraint above is given by

∆1 = ε2

∫ ỹ+δ

ỹ

λkGa (y|a) dy − ε1

∫ ỹ

ỹ−δ

λkGa (y|a) dy,

while the change in the objective is given by

∆2 =− ε1

∫ ỹ

ỹ−δ

c′m (y) g (y|a) dy + ε2

∫ ỹ+δ

ỹ

c′m (y) g (y|a) dy

=− ε2

∫ ỹ

ỹ−δ
c′m (y) g (y|a) dy ×

∫ ỹ+δ

ỹ
[c′m (y) g (y) + k (1−G (y))] dy∫ ỹ

ỹ−δ
[c′m (y) g (y) + k (1−G (y))] dy

+ ε2

∫ ỹ+δ

ỹ

c′m (y) g (y|a) dy.

Since the set of discontinuity points of a monotone function are countable, we can ap-

proximate all the above integrals by their integrand evaluated at ỹ+ (right limit at ỹ) and

ỹ− (left limits at ỹ) multiplied by δ – the length of the interval – as δ approaches 0. So for

small values of δ, we have

∆1

∫ ỹ

ỹ−δ

[c′m (y) g (y) + k (1−G (y))] dy ≈

−ε2δ
2λkGa (ỹ)× [c′m (ỹ+) g (ỹ) + k (1−G (ỹ))]

+ε2δ
2 [c′m (ỹ−) g (ỹ) + k (1−G (ỹ))]× λkGa (ỹ) =

−ε2δ
2Ga (ỹ) g (ỹ) (c

′
m (ỹ+)− c′m (ỹ+)) ≥ 0,

∆2

∫ ỹ

ỹ−δ

[c′m (y) g (y) + k (1−G (y))] dy ≈

−ε2δ
2c′m (ỹ−) g (ỹ)× [c′m (ỹ+) g (ỹ) + k (1−G (ỹ))]

+ε2δ
2 [c′m (ỹ−) g (ỹ) + k (1−G (ỹ))] c′m (ỹ+) g (ỹ) =

ε2δ
2kg (ỹ) [c′m (ỹ+)− c′m (ỹ−)] (1−G (ỹ)) > 0,

where the above are positive because c′m has a jump at ỹ and Ga ≤ 0. This implies

that for small enough values of δ, ∆1 ≥ 0,∆2 > 0. In other words, this perturbation

increases the value of the objective while satisfying the constraints. This gives us the
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desired contradiction.

A.5 Proof of Proposition 3

Proof. If we ignore the majorization constraint and solve out for p from the ex-post incen-

tive compatibility, our constraint set is linear in x̂. Thus, we conjecture the solution and

verify that it satisfies the first-order conditions. Specifically, we set x̂ (y) = y, c′ (â) = τ ,

p (y) = τy+(1− τ)
∫
ydG (y|â), and λ = 1−τ

c′′(â)
. Note that for this to be optimal, we need

0 ≥ −λGa (y|â) c′′m (x̂ (y)− y)− g (y|â) c′m (x̂ (y)− y) =

−λGa (y|â) k − g (y|â) τ,

In words, the social value of manipulation should be negative for all realizations of y. As

a result,

τ

1− τ
c′′

(
(c′)

−1
(τ)

)
≥ −kGa (y|â)

g (y|â)
,∀y ∈ [0, 1] .

By Assumption 4, the right-hand side is bounded above, while as τ gets closer to 1, the

left-hand side converges to∞. Moreover, given this choice of λ, the choice of â is optimal

because the effect of an increase in â on the marginal cost a is c′′ (â)„ while for p (y)

defined above, the marginal benefit is zero. Hence, the marginal total benefit of effort

1− c′ (â) should be equated with its marginal cost λc′′ (â). This concludes the proof.

A.6 Proof of Theorem 3

Proof. Without loss of generality, we can write the optimization problem in terms of the

extent of manipulation, m (y) = x̂ (y) − y. Since our optimization problem is in general

non-convex, we first solve a more relaxed version given by

max
m∈X̂

∫ 1

0

[y − cm (m (y))] dG (y|a) (P2)

subject to (16) and (15). In the above, X̂ is the set of functions m for which m (y) + y is

increasing and 1−y ≥ m (y) ≥ 0. Note that the constraints in (15) exclude the constraint

that states that the mean of p (·) and y are the same (including this constraint makes the

constraint set non-convex) and instead takes the utility of the y = 0, u, as given. Later, we

will show that by considering another optimization over u, we achieve the optimum in the
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main optimization. We prove the claim of the theorem for the solution of the optimization

(P2).

Now, consider the objective in (P2). Absent the majorization and the local incentive

constraint, this objective is maximized at a function m, which is monotone (this maxi-

mization possibly needs ironing a lá Myerson (1981) since a pointwise optimization of

the objective can lead to a non-monotone y +m (y).) If the incentive constraint and the

majorization constraints are satisfied at m, then this coincides with the solution of the

problem and proves our claim.

The strong duality result in the Online Appendix, Lemma (3) in Section (B.1), estab-

lishes that solving the optimization problem above is equivalent to the following:

max
m∈X̂

−
∫ 1

0

cmgdy+ (18)

λ

[
−
∫

c′mGady − c′ (a)

]
+

∫ 1

0

s (y;m) dΛ (y)

where s (y;m) is the LHS of (15), λ > 0 is a real number, andΛ is a positive Borel measure

over [0, 1]. Moreover, at the optimum,

∫
s (y;m) dΛ = 0. Using a similar argument as in

the proof of 2, we can show that the solution to the above optimization is a continuous

function. Thus, in order to prove the claim, it is sufficient to show that at the optimum,

there cannot exist an interval I = [y1, y2] for which (15) is slack in its interior and binding

at y1 and y2. Suppose to the contrary that this is the case.

Letm∗
be the optimal manipulation strategy and p∗ its associated interim price given

by (14). Continuity of m∗
and p∗ together with majorization being binding at y1 and y2

implies that p∗ (y1) = y1 < p∗ (y2) = y2. Moreover, for values of y > y1 and close to

y1, we must have that p∗ (y) is increasing and p∗ (y) > y. Similarly, for values of y < y2,

p∗ (y) < y and p∗ is increasing. If this is not the case, majorization is violated. Note

further that by complementarity slackness, Λ (y) is constant for values of y ∈ (y1, y2).

We shall note that the objective in (18) is of the form

∫
F1 (m (y) , y) dy, where

F (m, y) =− cm (m) g (y)− λc′m (m)Ga (y)

+ [g (y) (y − cm (m))− c′m (m) (1−G (y|a))] Λ (y)

− c′m (m)

∫ 1

y

(1−G (z|a)) dΛ.
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Let m̃ (y) ∈ [0, 1− y] be the pointwise maximizer of the above for all y. The solution of

(P2), m∗ (y), deviates from m̃ (y) only when m∗ (y) + y is constant for an interval above

or below y. As we argued above, in intervals above y1 and below y2, p
∗
and as a result,

m∗ + y are increasing, which means that m̃ = m∗
for such intervals. Moreover, since

p∗ (y1 + ε) > p∗ (y1) + ε for some ε > 0, we must have that m∗ (y1) > 0. A similar

argument shows that m∗ (y2) < 1. Therefore, for values of y close to y1 and y2, we must

have thatm∗ = m̃ and Fm (m̃, y) = 0. Using integration by parts, we can write this as

m̃ (y) = −τ

k
+

−λGa (y|a)−
∫ 1

y
Λ (z) dG

(1 + Λ (y)) g (y)
.

For all y ∈ (y1, y2), due to slackness of the majorization constraint, Λ (y) is constant.

Using this property and in what follows, we show that under Assumption P2, the interim

price function associated with m∗
cannot imply p∗ (y2) = y2 and p∗ (y) < y for y < y2,

yielding a contradiction. The manipulation function m̃ (y) can be written as

m̃ (y) +
τ

k
=

∫ 1

y
[λℓa − Λ (z)] g (z) dz

g (y) (1 + Λ (y))
.

Since m̃ > 0 and d
dy
m̃ > 0 for values of y below y2, we must have that

d

dy
m̃ (y) =

Λ (y)− λℓa (y)

1 + Λ (y)
− (m̃+ τ/k) ℓy > 0,

where we have used the fact that Λ (y) is constant over (y1, y2). By Assumption 5, we

know that ℓy ≥ 0. Hence the above inequality implies that

Λ (y)− λℓa (y) > 0 (19)

for values of y close to y2. Since by Assumption 5, ℓay ≥ 0, the above implies that (19)

should hold for all values of y ≥ y1. This in turn means that the derivative of the function∫ 1

y
[λℓa (y)− Λ] dG is positive over (y1, y2) and, as a result, m̃ (y)+τ/k > 0 for all values

of y ∈ (y1, y2). Moreover,

d2

dy2
m̃ (y) = − λℓay (y)

1 + Λ (y)
− (m̃+ τ/k) ℓyy − ℓy

d

dy
m̃.

By Assumption 5, we must have that ℓyy, ℓay, ℓy ≥ 0, which implies that the above is
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negative and thus m̃ is concave. Since m̃ is increasing at y2, concavity implies that it

should be increasing for all values of y ∈ [y1, y2]. This implies that m̃ = m∗
and the

monotonicity constraint is slack for the entire interval. Finally,

d3

dy3
m̃ =− λℓayy (y)

1 + Λ (y)
− (m̃+ τ/k) ℓyyy − 2ℓyy

d

dy
m̃− ℓy

d2

dy2
m̃

=− λ
ℓayy − ℓyℓay
1 + Λ (y)

− (m̃+ τ/k) [ℓyyy − ℓyℓyy]−
(
2ℓyy − (ℓy)

2) d

dy
m̃.

By Assumption 5, all of the elements of the above are negative and thus
d3

dy3
m̃ ≤ 0. Hence,

d3p∗

dy3
=

d2

dy2
(km∗ + τ)

(
1 +

d

dy
m∗

)
=k

d2m∗

dy2

(
1 + 3

dm∗

dy

)
+ (km∗ + τ)

d3m∗

dy3
≤ 0.

This implies that if at y, p∗ is concave, it should be concave for all higher values. Now recall

that using majorization, we had argued that
d
dy
p∗ ≥ 1 for values of y close to and above

y1. Since majorization is binding at y1 and y2 , we must have that

∫ y2
y1

(p∗ (y)− y) dG = 0.

Thus, for some intermediate value of y ∈ (y1, y2), we must have that
d
dy
p∗ < 1. This

in turn means that
d
dy
p∗ (y2) < 1, which cannot hold if we are to have continuity of the

interim price function and p∗ (y2) = y2. This concludes the proof.

Thus, it remains to show that the solution of (P1) is the same as that of (P2). Consider

the u∗
associated with the solution of (P1) and suppose that the solutions of (P1) and

(P2) are not the same. In this case, a similar argument to the perturbations considered in

Lemma 3 establishes that we can improve upon the objective in (P1).
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B Online Appendix

B.1 Strong Duality for Optimal Ratings with Manipulation

In this section, we show that strong duality holds for the optimization problem in (P2).

This would imply that Lagrange multipliers exist so that the constrained optimization is

equivalent to unconstrained optimization of the Lagrangian.

We use a result from Mitter (2008) (see also Kleiner and Manelli (2019)) to show ex-

istence of Lagrange multipliers for the optimization (P2). Mitter’s result establishes that

strong duality holds for an optimization problem of the formmin {f (u) |u ∈ C, g (u) ≤ 0} =

V0 where C is a convex set, ≤ is associated with a convex cone and g (·) is convex if

∃ε > 0,M > 0 s.t. f (u) ≥ V0−M |b| for all u ∈ C, g (u) ≤ b, |b| ≤ ε. The objective f (·)
is a convex function that is possibly infinite-valued. We state this in the following lemma:

Lemma 3. The optimization in (P2) satisfies strong duality.

Proof. To apply Mitter (2008)’s result, let us define the linear vector space

X = {m (y) = x̂ (y)− y|m : [0, 1] → R,m (1) = 0}

equipped with the sup-norm. Let C ⊂ X satisfy (15), m (y) ≥ 0, and 1 − y ≥ m (y)

andm (y)+ y is increasing.The set C is obviously convex since cm is convex. Let F (b) ={
m ∈ C| −

∫ 1

0
c′m (m (y))Gady − c′ (a) ≥ b

}
. Then our optimization isV (b) = minm∈F (b) f (m)

where f (m) is the negative of the objective in (P2) and b ∈ R. Let m∗
be a feasible ma-

nipulation strategy for which f (m∗) = V (0). Let m ∈ F (b). If b > 0, then since

F (b) ⊂ F (0), we have that f (m) ≥ f (m∗) = V (0) .

Now, suppose that b is negative. To prove the claim, we proceed as follows:

Step 1. We show that there exists m̂ ∈ C such that −
∫ 1

0
c′m (m̂)Gady = c′ (a) + d

for some d > 0. To see this, consider the point of optimality m∗
. Since m∗ ∈ [0, 1− y]

for values of y close to 1, the implied interim price must have a low slope and thus the

majorization constraint must be slack. This in turn implies that there exists a highest

value of ỹ < 1 so that majorization is binding at ỹ and slack for values of y > ỹ. Since we

can use the argument in Theorem 2 to show that optimal manipulation and interim prices

are continuous functions. This implies that for values of y close to ỹ, p (y) is increasing

and p (y) > y. Consequently, m∗ (y) > 0 and m∗ (y) + y is strictly increasing for such

values. Let I = [y1, y2] be an interval of y’s for which these properties hold. Suppose
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contrary to the claim that ∀m ∈ C ,

−
∫

c′m (y)Gady ≤ c′ (a)

Consider the following set

A =


m : [y1, y2] → R

∣∣∣∣∣∣∣∣∣∣∣∣

m (y1) = m∗ (y1) ,m (y2) = m∗ (y2)

m+ yincreasing∫
I
c′mdy =

∫
I
c′m (m∗) dy

,
∫ y2
y1

[cmg (y) + c′m (1−G (y))] dy ≤∫ y2
y1

[cm (m∗) g + c′m (m∗) (1−G)] dy


This is a convex set. Moreover, let

B =

{
m : [y1, y2] → R| −

∫
c′m (y)Gady ≥ −c′ (a)

}
B is a convex set with non-empty interior. Then our contrary assumption implies that

A∩B = {m∗}. Sincem∗+y is strictly increasing over I , it must be that every perturbation

ε (y) of m in every direction that satisfies

∫
I
[c′mg + c′′m (1−G)] εdy = 0 and ε (y1) =

ε (y2) = 0 =
∫
I
εdy. As a result and by using separating hyperplane theorem, there must

exist λ1 and λ2 such that

∀y ∈ I, c′m (m∗ (y)) g (y|a) + k (1−G (y|a)) = λ1k − λ2Ga (y|a) k (20)

Now consider the set

B′ =

{
m|m ∈ B,

∫
I

[c′m (m)− c′m (m∗)] (1−G) dy ≥ 0

}
We can again show that A ∩ B′ = {m∗}. To see this, suppose there exists m′ ̸= m,m′ ∈
A ∩B. Then strict convexity of cm implies that if we set m = (m+m′) /2, then∫ y2

y1

[cm (m (y)) g (y) + c′m (m (y)) (1−G (y))] dy <∫ y2

y1

[cm (m∗ (y)) g (y) + c′m (m∗ (y)) (1−G (y))] dy
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Sincem ∈ B′
, we must have that∫

I

c′m (m (y)) (1−G (y|a)) dy ≥
∫
I

c′m (m∗) (1−G (y|a)) dy

Adding the two above inequalities implies that∫
I

cm (m) gdy ≤
∫
I

cm (m∗) gdy

Hence, the function m̃ (y) = m∗ (y) , y /∈ I and m̃ (y) = m (y) , y ∈ I satisfies all the

constraints in F (0) and improves the objective in (P2) which is in contradiction withm∗

being optimal. Thus A ∩B′ = {m∗}. A similar argument as before shows that

∀y ∈ I, c′m (m∗ (y)) g (y|a) + k (1−G (y|a)) = µ1k − µ2Ga (y|a) k + µ3 (1−G (y|a)) k

Combining the above with (20) implies that

µ1k − µ2Ga (y|a) k + µ3 (1−G (y|a)) k = λ1k − λ2Ga (y|a) k,∀y ∈ I

If we take a derivative of this equation, we must have

(µ2 − λ2) ga (y|a) + µ3g (y|a) = 0,∀y ∈ I

Since MLRP is a strictly increasing function, this leads to a contradiction. Therefore, we

must have that there exists m̂ ∈ C such that −
∫
c′m (m) dG = c′ (a) + d for some d

positive.

Step 2. Given m̂, for any m ∈ F (b) for b < 0, consider m̃ = d
d−b

m + −b
d−b

m̂. Since C

is convex, we must have that m̃ ∈ C . Moreover, since c′m (·) is linear, we must have that

−
∫ 1

0

c′m (m̃ (z))Ga (z|a) dz − c′ (a) =

d

d− b
b− b

d− b
d = 0
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This implies that m̃ ∈ F (0). Moreover,

∥m̃−m∥ =
−b

d− b
∥m̂−m∥

=
−b

d− b
sup
y

|m̂ (y)−m (y)|

≤ −b

d− b
≤ |b|

d

It is fairly straightforward to show that f (·) has a Frechet derivativewith a bounded norm.

Therefore, N > 0 exists such that for all m1,m2, |f (m1)− f (m2)| ≤ N ∥m1 −m2∥.
Thus, we have

f (m) ≥ f (m̃)−N ∥m− m̃∥ ≥ f (m̃)− |b|
d
N ≥ f (m∗)− |b|

d
N

which concludes the claim.

B.2 Optimal Ratings without Manipulation with Separable Distri-
butions

In this section, we characterize the optimal rating systems in section 4 for a special case

of separable distributions.

Consider the problem in this section and assume that g (y|a), the density of y given a

satisfies the following separability

g (y|a) = 1 + β (a)m (y) (21)

wherem (y) is an increasing function that satisfies
∫ 1

0
m (y) dy = 0 and β (a) is increasing

and concave. Note that under this specification, the marginal benefit of effort is given by∫ 1

0

p (y) ga (y|a) dy = β′ (a)

∫ 1

0

p (y)m (y) dy

Hence, if effort profile a (θ) is optimal, then

β′ (a (θ))

∫ 1

0

p (y)m (y) dy = ca (a (θ) , θ)
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Hence, we must have

ca (a (θ) , θ)

β′ (a (θ))
=

ca (a (θ
′) , θ′)

β′ (a (θ′))

Thus, if we choose the effort level of the lowest type a, the above determines the effort

level for all the other types. Let us refer to the solution of the above as â (a, θ). Hence,

the problem of optimal rating design is given by

max
a,p(·)

∫ 1

0

p (y) g (y|a) dy − c (a, θ)

subject to ∫ 1

0

p (y) ga (y) dy = ca (a, θ) (22)∫ y

0

p (ŷ)

∫
g (ŷ|â (a, θ)) dFdŷ ≥

∫ y

0

ŷ

∫
g (ŷ|â (a, θ)) dFdŷ,∀y ∈ (0, 1)∫ 1

0

p (ŷ)

∫
g (ŷ|â (a, θ)) dFdŷ =

∫ 1

0

ŷ

∫
g (ŷ|â (a, θ)) dFdŷ

p (y) ≥ p (y′) ,∀y ≥ y′

Similar to the analysis in subsection 4, given a, the problem of solving for optimal interim

prices is to maximize

∫
p (y) g(y|a)+γga(y|a)

h(y)
h (y) dy subject to majorization and monotonic-

ity where h (y) =
∫
g (y|â (a, θ)) dF (θ). Note that in this formulation γ is the Lagrange

multiplier associated with the incentive constraint

Given the separability assumption on g (·|·), we can show that the function
g(y|a)+γga(y|a)

h(y)

is either decreasing in y – when γ is low enough – or increasing – for high γ. Thus the

solution of the above problem is either full pooling or full information. Since full pooling

leads to marginal benefit of effort being 0, we have the following proposition:

Proposition 4. Suppose that g (·|a) satisfies (21).Then optimal monopoly rating system is
full disclosure.

This result can be understood by considering the two effects identified before: redis-

tributive and incentive. Given our specification of the distribution, the forces cannot be

balanced. Since the redistributive force cannot dominate as it leads to no effort being

taken by the DM, full disclosure should be optimal.
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B.3 Monotonicity

In this section, we show that the monotonicity assumption on interim prices in section 4

is without loss of generality. We do this for continuously differentiable functions. More

specifically, we show that if p̂ is a continuously differentiable function that is decreasing

in some subinterval of [0, 1] , then there exists another p̃which is “less decreasing” and de-

livers a higher value to the lowest participating types and does not decrease the marginal

benefit of effort for all DM types. This implies that in the set of continuously differentiable

functions, each interim price function can be replaced with a monotone version of itself.

Since by Stone-Weierstrass theorem, the set of smooth functions is dense in L∞ ([0, 1]),

this implies focusing on monotone interim price functions is without loss of generality.

Note also that we do this in the set of random variables – implied by p̂ – that are a mean

preserving contraction of y. Obviously any interim price belongs to this set. Thus, if we

show that the optimal interim price in such a set should be increasing, we prove our claim.

Suppose that p̂ is strictly decreasing on an interval [y1, y2]. Since p̂ cannot be de-

creasing for the entire interval [0, 1], we can assume that p̂ is increasing over [y0, y1] and

p̂ (y0) = p̂ (y2) – an alternative would be that p̂ is increasing over [y2, y0] for some y0 > y2

but this is somewhat symmetric to our case and can be dealt with the sameway. Moreover,

let us choose the lowest such interval. This would imply that the majorization constraint

is not binding for values of p in such an interval – this is because p̂ is increasing below and

thus the quantile representation of p̂ is above that of y. This would imply that a spreading

of values in a neighborhood of this point does not violate the mean preserving contraction

property.
17

Let y′1 be the lowest value of y ∈ (y0, y1) such that p̂ (y′1) = p̂ (y1). Without loss of

generality, let us assume that y1 is the highest such value. Moreover, we can assume that

p̂ is strictly increasing over (y0, y
′
1) and strictly decreasing over (y1, y2). Now, consider

17
For any function q̂ (y), the random variable q̂ is a mean preserving spread of y if and only if∫ i

0

Qq (j) dj ≥
∫ i

0

Qy (j) dj,∀i < 1∫ 1

0

Qq (j) dj =

∫ 1

0

Qy (j) dj

where Qq and Qy are quantile representation of q̂ and y.
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the perturbation

p̃ (y) =

p̂ (y) + ε (y − y0) y ≤ ỹ

p̂ (y)− δ (y) y ≥ ỹ

where in the above, p̂ (ỹ) = p̂ (y1) − ε (ỹ − y0) , ỹ ≤ y1. Moreover, the function δ (y) is

constructed such that δ (y) is constant over (y′1, y1) and equal to ε2 (y2 − y) over (y1, y2).

Furthermore, ε
∫ ỹ

y0
(y − y0) dH =

∫ y2
ỹ

δ (y) dH whereH is the distribution of y and δ (ỹ) =

−ε (y − y0). Note that for ε small, the length of the interval (ỹ, y′1) is proportional to ε.

Additionally, ε2 is proportional to ε for small values of ε, ε2 > 0The change in incentives

for any type is given by∫ 1

0

(p̃− p) gady = −
∫ 1

0

Gad (p̃− p)

= −
∫ ỹ

y0

Gaεdy −
∫ y2

y1

ε2Gady + o
(
ε2
)

> 0

where the inequality follows from the fact thatGa < 0. This implies that marginal benefit

of effort increases for all DM types. Finally, we need to check that the payoff of the lowest

DM type increases. This is because the distribution of y, H (y), puts more weight on

higher realizations of y relative to that of the lowest participation type. This proves the

claim.

B.4 First Order Approach

Consider the payoff of the DM given by∫
p (y) g (y|a) dy − c (a)

For the validity of the first order approach, it is sufficient to have this function be concave

for all increasing functions p (y). This holds if∫
p (y) gaa (y|a) dy ≤ 0

or ∫
Gaa (y|a) dp (y) ≥ 0
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Since p (·) is monotone, the above implies that Gaa ≥ 0. Thus if G is convex in a, then

first order approach is valid. For the class of distribution functions of the form log g =

r (y)m (a) + b (a) with m and r increasing, we have

Gaa (y|a) =
∫ y

0

g (z|a)
[
(b′ (a) +m′ (a) r (z))

2
+m′′ (a) r (z) + b′′ (a)

]
dz

=

∫ y

0

g (z|a)
[
(b′ (a) +m′ (a) r (z))

2
+m′′ (a) r (z) + b′′ (a)

]
dz

If the expression in the bracket is decreasing in z, then Gaa ≥ 0. This is the case when

2 (m′)
2
r (y) + 2b′ (a)m′ (a) +m′′ (a) ≤ 0

2 (m′)
2
(r (1)− Er) +m′′ (a) ≤ 0

An example for this is whenG (y|a) = ym(a)
withm (·) increasing, concave and 2 (m′)2+

mm′′ ≤ 0.

Note that whileGaa ≥ 0 is sufficient, it is not necessary. More specifically, it is possible

thatGaa ≤ 0 for some values of y but if at such values p (y) is flat, then
∫
Gaa (y|a) dp ≥ 0

for all values of a and hence the first order approach is valid. For example, for G (y|a) =
1−(1− y)1/a−1

withm (a) ≤ 0 and increasing, the above inequality is violated. However,

if p is pooling for y above 1 − e2a then the objective is concave and thus the first order

approach is valid.

B.5 Extensions

In this section, we expand on the extensions that were briefly discussed in section (6).

B.5.1 Allowing for Market Action

So far, our analysis of rating systems was limited to environments where the market sim-

ply pays its expectation to the DM. In several settings, the information provided is also

valuable for the market since it allows it to make better decision.Here, we show that it is

possible to extend our characterization result to such settings.

Specifically, suppose that market participants have a payoff of e ·
(
y − y

)
with e ∈

{0, 1} being chosen by the market. Suppose as before that the price paid to the DM is(
E [y|s]− y

)
1
(
E [y|s] ≥ y

)
. For any arbitrary rating system (S, π), we can define the
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following objects:

q (y) = Pr
({

s : E [y|s] ≥ y
}
|y
)

p̂ (y) =
1

q (y)
E
[(
E [y|s]− y

)
1
(
E [y|s] ≥ y

)
|y
]
, if q (y) > 0 (23)

In words, q (y) is the probability that market action is equal to 1 conditional on the state

being equal to y. Furthermore, p (y) = q (y) p̂ (y) is the interim price vector faced by the

DM. Thus, p̂ (y) is the interim price conditional on e = 1.

Note that given this change of variable, we can write

p̂ (y) =
∑
s∈Ŝ

π̂ (s|y)
∑

y′∈Y π̂ (s|y′)
(
y′ − y

)
q (y′)µy (y

′)∑
y′∈Y π̂ (s|y′) q (y′)µy (y′)

where Ŝ =
{
E [y|s] ≥ y

}
and π̂ (s|y) = π(s|y)

q(y)
. This implies that π̂ (·|y) ∈ ∆

(
Ŝ
)
. Thus,

p̂ (y) becomes the interim price function associated with the signal structure (S, π̂ (·|y))
with the prior distribution of y given by q (y)µy (y).

The following proposition summarizes this logic while allowing for arbitrary proba-

bility measures and a direct application of Theorem 1 to p̂ and π̂:

Proposition 5. Suppose that market payoff is given by v (a, y) · e where e ∈ {0, 1} is
the action optimally taken by the market and that marginal distribution of y is given by a
probability measure µy. Then if a positive measure ρ and a pricing function p̂ (y) exists such
that

1. ρ
(
Ŷ
)
≤ µy

(
Ŷ
)
for all Borel subsets Ŷ ⊂ Y ,

2. interim price function satisfies p̂ (y)∫
p̂ (y) dρ =

∫
v (y) dρ∫

u (p̂ (y)) dρ ≥
∫

u (v (y)) dρ, ∀u: concave

3. p̂ (y) is co-monotone with v (y) and miny∈Y p̂ (y) ≥ 0

4.
∫
v (y) dµy ≤

∫
p̂ (y) dρ
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Then, there exists (S, π) such that∫
A

p̂ (y) dρ =

∫
A

E
[
E
[
max

α∈{0,1}
v · α

∣∣∣∣ s]∣∣∣∣ y] dy (24)

for all Borel subsets A of Y .

Note that (24) is the measure theoretic version of (23). When ρ is a sum of continuous

and discrete distributions, then it reduces to

ρ (y) p̂ (y) = E
[
E
[
max
e∈{0,1}

v · e
∣∣∣∣ s]∣∣∣∣ y]

where ρ (y) is the density or probability of ρ at y.

It is worth mentioning that, first, the positive measure ρ can be thought of as the prob-

ability of state being y and posterior mean of v (a, y) being positive. Since posterior mean

of v can be sometimes negative – which leads to e = 0, ρ is not necessarily a probability

but a positive measure. Moreover, by the first condition, ρ is absolutely continuous with

respect to µy and thus by Radon-Nykodim theorem there must exist 0 ≤ q ≤ 1 such that

ρ =
∫
q (y) dµy. The function q is then the probability of positive posterior mean condi-

tional on y ∈ Ŷ . Second, an incentive compatibility for the market needs to be included

which is given by part 4 in Proposition 5.

To summarize, Proposition (5) establishes that even in the presence of market action,

a modified version of our characterization result can be applied. In this case and under the

co-monotonicity restriction, the information structure can be summarized by two objects:

1. the probability that action e = 1 is chosen – represented by the measure ρ in the

Proposition; 2. the interim price function p̂ (·) which is conditional on inducing e = 1

as the action. To the extent that this is a more concise summary of a rating system, our

characterization significantly simplifies the information design problem in presence of

moral hazard. Finally, we should note that while we have decided to focus on a two

action problem, it is readily observed that this can be extended to many finite actions.

With many but finite actions and under certain monotonicity constraints, each action is

optimal for a certain interval of ex-post values for themarket. Knowing this, Proposition 5

can be extended by considering multiple interim price functions and multiple probability

measures for each action by the market.
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B.5.2 Different Priors

Consider a variation of the model in section 3, wherein the market has dogmatic prior

beliefs about the distribution of (a, θ); this is in contrast with the market having rational

expectations which coincide with the equilibrium behavior of DM. More specifically, let

ϕ ∈ ∆(A×Θ) be the prior of the market and suppose that the market uses this prior and

the true signal distribution to do Bayesian updating. When A,Θ, and Y are finite and we

can write ϕ (a, θ) as the probability of (a, θ) under market prior, interim prices are given

by

p (y) =
∑
s∈S

∑
(a,ŷ)∈A v (a, ŷ)ϕ (a, ŷ) π (s|ŷ)∑

(a,ŷ)∈A ϕ (a, ŷ)π (s|ŷ)
π (s|y) .

The above is identical to interim prices in section 3 except for the fact that ϕ is used instead

of the true distribution of (a, y). One can then conclude that the following holds:

Lemma 4. If market prior is given by ϕ and vϕ (y) = Eϕ,σ [v (a, y) |y], if p (y) is co-
monotone with vϕ (y) and p (y) ≽S.O.S.D vϕ (y), both distributed according to ϕy, then there
exists an information structure that induces p (y).

To see the benefit of this result, consider a simple setting in which there is only one

type of DM who has a cost c (a) and market has a biased belief that the density of y is

given by h (y). Moreover, suppose that Eϕ [v (a, y) |y] = vϕ (y) = αy + (1− α) y. Then

the problem of optimal rating design is to find p (y) and a to solve the following:

max
p(·),a

∫ 1

0

p (y) g (y|a) dy − c (a)

subject to ∫ y

0

p (y′)h (y′) dy′ ≥
∫ y

0

p (y′)h (y′) dy′∫ 1

0

p (y)h (y) dy =

∫ 1

0

vϕ (y)h (y) dy

We can then use simple arguments from calculus of variations, similar to those in section

4, to show the following:

Proposition 6. Optimal ratings are:

1. Upper-censorship if for all a, h (y) /g (y|a) is hump-shaped, i.e., increasing-then-decreasing.
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Moreover, if a∗ achieves the maximum of E [y|a]− c (a) and if h (y) is strictly domi-
nated by g (y|a∗) according to first order stochastic dominance, then optimal rating is
not full information.

2. Lower-censorship if for all a, h (y) /g (y|a) is U-shaped, i.e., decreasing-then-increasing.
Moreover, if a∗ achieves the maximum of E [y|a]−c (a) and if h (y) strictly dominates
g (y|a∗) according to first order stochastic dominance, then optimal rating is not full
information.

Proposition 6 again illustrates the power of our result on characterization of interim

prices. It describe how the shape of the bias determines the structure of optimal ratings.

More specifically, in the class of the distributions considered, more pessimism leads to

upper-censorship while more optimism leads to lower-censorship.
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