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Abstract

We examine receiver-optimal mechanisms for aggregating information divided across

many biased senders. Each sender privately observes an unconditionally independent sig-

nal about an unknown state, so no sender can verify another’s report. A receiver makes a

binary accept/reject decision that determines the players’ payoffs via the state. When infor-

mation is divided across a small population, and bias is low, the receiver-optimal mechanism

coincides with the sender-preferred allocation, and can be implemented by letting senders

confer privately before reporting. However, for larger populations, the receiver can bene-

fit from the informational divide. We introduce a novel incentive-compatibility-in-the-large

approach to solve the high-dimensional mechanism design problem for the large-population

limit. Using this, we show that optimal mechanisms converge to one that depends only on the

accept payoff and punishes excessive consensus in the direction of the common bias. These

surplus burning punishments lead to payoffs that are bounded away from the first-best.

1 Introduction

Decision makers often have to rely on information that is divided across individuals with whom

they have a conflict of interest. For instance, a CEO considering a new product needs to un-

derstand both the demand and the costs associated with it. However, this information is divided
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between themarketingmanager (demand) and the productionmanager (costs) who have different

incentives to the CEO. In other settings, the information is divided across much larger popula-

tions, which may fundamentally alter the decision maker’s approach to eliciting it. For example,

governments have to assess the effectiveness of policies that may depend on local knowledge

spread across large populations. Similarly, social media and e-commerce platforms often need

to aggregate information about consumer products, political news, and opinions that is divided

among a large number of individuals whose interests differ from those of the platform or society

at large.
1

A natural solution to this problem is verification. In particular, it might be possible to compare

a source’s report to that of the others and punish them collectively in case of disagreement. This

strategy is effective when agents’ information sets overlap to such an extent that each individual’s

information is largely dispensable.
2
However, when information is divided among individuals as

in the aforementioned examples, cross-verification is not possible: no individual has information

that can be used to verify the claims of another.
3
A natural question then arises: Even though

verification is impossible, is there some other way for a decision maker to benefit from informa-

tion being divided across many agents? Specifically, how does dealing with a large number of

senders affect optimal aggregation?

We examine this problem by studying optimal aggregation mechanisms in a multi-sender

cheap talk environment. A receiver faces a binary decision: “accept” or “reject”. While the payoff

to reject is known, all players’ payoffs from accept increase in an aggregate state variable. We

consider a population of N biased senders, each receiving a private signal about the state. The

senders share a common bias toward acceptance. Crucially, the senders’ signals are uncondition-

ally independent, meaning no sender can verify another’s report.
4
We take a mechanism design

approach to find aggregation rules that maximize the receiver’s payoff in this environment.

Of particular interest is themechanism’s ability to improve the payoffswhen the same amount

of information is divided among a larger number of agents. To examine this question, we adjust

1
In the context of product ratings, a constant problem that e-commerce platforms and regulators have to deal

with is fake reviews and other forms of ratings manipulation by merchants and customers. A sizeable literature in

computer science and marketing discusses methods for detecting fake reviews; see, for example, Mohawesh et al.

(2021) or He et al. (2022).

2
For instance, Krishna and Morgan (2001) show how to extract information perfectly when two senders have the

same information. Gerardi et al. (2009) show a similar result with large populations. In these settings, in addition to

having information that is valuable to an uninformed receiver, the senders’ information can be used as a verification

tool to incentivize truth-telling.

3
Verification mechanisms often rely on fact checking, which is known to be costly to implement. Fact checking

is often noisy and, despite social media companies’ efforts, fairly ineffective. For example, since February 2025, Meta

stopped fact checking to a great extent. For an example of ineffectiveness of fact checking in France, see Barrera

et al. (2020).

4
This structure of private information also satisfies the statistical properties of privacy developed in Strack and

Yang (2024) and He et al. (2024). Hence, privacy of information and verifiability are intimately related.
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the informativeness of each sender’s signal so that as the number of senders changes, their col-

lective private information (i.e., the total variance of the state variable) stays constant relative

to their conflict of interest with the receiver. Formally, in our baseline model, we assume that

signals are i.i.d. across senders and that the state is the sum of the signals divided by

√
N .

5

Our first result shows that when the number of senders is low and bias is moderate, the

receiver-optimal aggregation mechanism coincides with the mechanism preferred by senders.
The sender-preferred mechanism collects all signals and recommends accept whenever doing

so serves the senders’ common interest. While senders have clear incentives to report truthfully

under this mechanism, it imposes costs on the receiver: there exists an intermediate region of

state values—the disagreement region—where the receiver would prefer reject but the mecha-

nism recommends accept. Despite this cost, Proposition 1 establishes that the sender-preferred

allocation remains constrained optimal for the receiver when N is small and bias is moderate.

The key insight is that any attempt to tilt the mechanism toward the receiver’s preferences in

the disagreement region requires costly surplus-burning punishments in the agreement region

to maintain incentive compatibility. When the number of senders and bias are low, these punish-

ment costs outweigh the benefits. This result suggests that allowing senders to confer privately
and communicate as a unified entity can be optimal.

Our second and more important set of results concerns large populations, where each sender

possesses relatively little information. We show that in this case, we can improve upon the sender-

preferred allocation. While this may require complex mechanisms that depend on the entire pro-

file of senders’ reports for any fixed N , we can characterize optimal aggregation mechanisms as

the number of senders approaches infinity. Theorem 2 shows that a simple mechanism depending

only on the aggregate state characterizes the optimum in the limit. This mechanism, depicted in

Figure 1, recommends accept for an intermediate range of state values while rejecting both both

low and extremely high values.

Even though the limit mechanism is simple, deriving it requires new methodology. A chal-

lenge of working with mechanisms in the large economy is that the report of a single sender does

not affect the distribution of reports, i.e., the probability of being pivotal is zero. To overcome

this challenge, we introduce the concept of mechanisms that are Incentive Compatible in the Large
(ICL). A mechanism defined for N = ∞ is ICL if there exists a sequence of incentive compatible

mechanisms that converge to it as N → ∞. Our key technical innovation (Theorem 1) fully

characterizes these ICL mechanisms, showing that the incentive constraints collapse to simple

conditions akin to standard envelope and monotonicity constraints.

5
As we describe in Section 4, the large economy is equivalent to one in which the state is the realization path of a

standard Brownian motion where each sender observes the incremental change of its path. In Section 5.2, we allow

for general dependence of payoffs on the realization of signals.
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The core insight is that as the number of senders grows, a sender’s impact on the aggre-

gate state vanishes at the same rate as their information rents. Information rents—the utility

advantage one sender type can guarantee over another—depend on the probability of acceptance

conditional on the sender’s signal. By the law of large numbers, this probability becomes indepen-

dent of any individual sender’s report. While this intuition provides the necessary conditions for

Theorem 1, establishing sufficiency requires sophisticated tools from functional analysis such as

Banach’s open mapping theorem and some inequalities related to the concentration of probabil-

ity measures. Nevertheless, Theorem 1 enables a complete characterization of ICL mechanisms,

allowing us to analyze the large economy (i.e., with an infinite number of senders) directly.

The intuition behind this interval mechanism centers on how it maintains incentive com-

patibility. The mechanism trades off two scenarios where a sender’s upward lie matters: at the

lower threshold, lying induces acceptance when payoffs are low; at the upper threshold, lying

induces rejection when payoffs are high. To understand why this structure is optimal, consider

starting from the sender-preferred mechanism and reducing acceptance probability at the bot-

tom of the disagreement region, where the receiver gains most from rejection. Since senders are

nearly indifferent at this boundary, the change minimally affects their over-reporting incentives.

However, this perturbation still violates incentive compatibility. Surprisingly, the cheapest way

to restore incentives is to punish senders by rejecting when the payoff to acceptance is highest

for all players. While this punishment is costly when it occurs, such high-state reports have very

low likelihood under truthful reporting relative to upward lies, due to the declining tail of the

state distribution (as depicted in Figure 1). Hence, punishing at the top has the smallest ex-ante

cost to the receiver relative to the incentive effect on the sender. Nonetheless, the use of such

surplus-burning punishments imply that we are strictly bound away from first best even in the

large-economy limit.

receiver’s payoff

a = 0

a = 1

a = 0

reject agreement

disagreement

accept agreement

Figure 1: Optimal mechanism in the large economy. In the disagreement region, the preferred action of the senders

is accept, and the receiver prefers reject. The dashed blue line represents the distribution of the receiver’s payoff

from accept as the number of senders tend to infinity.

4



Our results speak to the conditions under which aggregation mechanisms can benefit from

keeping agents informationally divided in order to carefully manage the discourse. Proposition 1

states that there can be no benefit when groups are smaller and the conflict of interest is not too

large. Indeed, the decision maker would like the informed parties to privately confer with one

another andmake a single joint recommendation. This implication is consistent with the common

practice in firms, where the CEO canvasses the views of division managers before presenting a

summary of the firm’s strategy to its board of directors. While private discussions are a simple

way of implementing the sender preferred allocation, recent work by Antic et al. (2025) shows

in a setting similar to ours that the senders can have “subversive conversations” where they are

able to ensure the sender-preferred allocation despite being observed by the receiver. Thus, in

combination with their results, Proposition 1 also provides conditions under which a completely

laissez-faire attitude to managing the discourse can be optimal.

By contrast, Theorem 2 implies that when dealing with large societies, we can benefit by

keeping agents informationally divided so that more sophisticated mechanisms can be applied.

Increasingly, online platforms have the power to control how participants can share information.

Moreover, as deep fakes, paid disinformation operatives, and fake reviews, make it ever harder to

directly verify information, the need formore sophisticated tools becomes imperative. One tool in

this fight, as suggested by Theorem 2, may be to punish suspiciously high levels of consensus by

pooling these cases with low reports. Indeed, this may already happen in practice. For example,

Facebook has a fact-checking policy that fits this insight to some extent. When there is a plethora

of particular stories or reports, recommender algorithms flag them as possible misinformation.

While this does not lead to removal of content, it can lead to Facebook reducing the visibility of

these stories.
6
Similarly, Amazon’s systems for deleting “fake” reviews appears very similar to a

protocol that deletes just some proportion of the 5-star reviews whenever there are “too many”

(He et al. (2022)).

The possibility of fake or paid reviews, deep fakes, and disinformation operatives suggests a

model where some agents have different and extreme biases. To this end, we show that the sim-

plicity of the optimal mechanisms identified using our concept of ICL for the baseline environ-

ment of the first part indeed generalizes beyond our environment to other aggregation problems.

First, we consider a model where senders have heterogeneous biases but are otherwise the same

as in the first part. In this setting, optimal mechanisms depend only on the aggregate state for

each bias class of senders. Additionally, and when there are two groups of senders, the region

of accept at the optimum is the area between two hyperbolic curves and relies more heavily on

6
As of January 9th 2025, this is how Meta describes its fact-checking program, see

https://www.facebook.com/formedia/blog/third-party-fact-checking-how-it-works. However, Meta announced

at the beginning of 2025 that they plan to roll back this practice.
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the report of low-bias senders. Second, we consider a model where the payoffs of senders are

arbitrary functions of the distribution of signals. In some linear examples, optimal mechanisms

are simple in that they depend only on the payoff realizations of the senders and of the receiver.

The rest of the paper is structured as follows. First, we review the relevant literature. Section

2 introduces the model. Sections 3 and 4 characterize the optimal mechanisms for small and

large economies, respectively. Section 5 extends the model. Section 6 concludes the paper with a

discussion. Proofs are relegated to the Appendix.

1.1 Related Literature

There is a long literature in information economics showing how information can be fully ex-

tracted via a cross-checking approach when agents have correlated information. Crémer and

McLean (1988) show that transfers can be used to achieve full surplus extraction when each

agent’s information statistically identifies the others’. In a standard cheap talk setting (Crawford

and Sobel, 1982) with multiple senders, Krishna and Morgan (2001), Battaglini (2002), and Meyer

et al. (2019) show how punishing disagreement can support a fully revealing equilibrium when

both senders have almost identical information. Battaglini (2004) and Gerardi et al. (2009) extend

this to imperfectly correlated information, showing similar methods can still be used to imple-

ment the receiver-preferred allocation if the population is arbitrarily large. These results rely on

being able to partially verify one sender’s claim by comparing it to the claims of the others. How-

ever, this comparison is not possible in our setting, so we cannot obtain the receiver-preferred

allocation. Moreover, our optimal mechanisms may punish agreement rather than disagreement.

A notable exception to this literature in cheap talk is Levy and Razin (2007).
7
In a setting with

multiple senders with (multidimensional) imperfect signals, they show that the fully revealing

equilibrium of Battaglini (2002) often fails to be an equilibrium. In their model, the senders and

receivers fail to perfectly communicate, because information about a dimensionwith little conflict

reveals too much about dimensions with too high of a conflict. While our models differ on details

of payoffs and signals, both models share the feature that verification is impeded with perfect

communication. To the extent that this is the case, a natural question is how can communication

be improved by mediation or aggregation mechanisms. Our paper is one of the few that take a

mechanism design approach to this question to study the optimal structure of communication.

The closest papers to ours are Wolinsky (2002) and, more recently, Kattwinkel and Winter

(2024). Wolinsky (2002) examines a multiple-sender model with unconditionally independent bi-

nary types and a binary action. In his environment, senders can verifiably disclose their signals.

He shows that optimal mechanisms are non-monotone and can consist of several intervals. In

7
In addition to the multiple-sender case, and similar to Chakraborty and Harbaugh (2010), they also consider a

one sender environment with multiple dimensions.
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contrast, our paper allows for a general distribution of uncorrelated signals as well as a com-

plete lack of commitment from the senders. This makes our model more suitable for analysis of

information aggregation in environments where anonymity makes commitment difficult, such

as social media. Kattwinkel and Winter (2024) show that, fixing population size, an interval

mechanism is optimal for a sufficiently large bias in a binary-type binary-action setting with

correlated types. The binary-type structure of both of these papers rules out the possibility of

higher-dimensional mechanisms. We examine a complex multidimensional mechanism design

problem. Nonetheless, we provide sharp conditions for the optimality of a very simple mecha-

nism: the sender-preferred allocation. Moreover, we look at the comparative statics of population

size, not just the conflict of interest. Finally, we show how the high-dimensional problem can be

simplified for large populations. This insight extends beyond our particular interval mechanism

structure, providing a novel approach for thinking about transfer-free mechanism design with

large populations.

Another notable literature relevant to our paper is the one that studies communication by a

single sender with mediation. Goltsman et al. (2009), Salamanca (2021), Corrao and Dai (2023),

and Best and Quigley (2024) examine mediated communication with a single sender. One can

interpret our results as providing conditions under which a mediator can (or cannot) improve on

the single-sender setting by dividing information across many senders. Carroll and Egorov (2019)

show that full information extraction is possible from a single expert who has multidimensional

information when the designer can verify one dimension of the expert’s information. Instead,

we examine a setting with multiple experts, each observing a single dimension of information.

Critically, we have no source of verification, not even in equilibrium. Additionally, our techniques

for dealing with large economies without transfers can be further employed to study different

problems in this literature.

Additionally, our paper is related to a strand of the political economy literature that studies

the problem of aggregation of voters’ preferences via elections. In a seminal paper, Feddersen and

Pesendorfer (1997) show that voting can perfectly aggregate the information of voters with cor-

related information if the population is arbitrarily large. They show that in the large-population

limit, an infinitesimal fraction of the population votes based on their private information about

the candidate’s competence. However, due to the law of large numbers, this fraction has so much

information about the candidate that the information of all the remaining voters is rendered ir-

relevant. Our results imply that the manner in which the economy becomes larger matters. In

Feddersen and Pesendorfer (1997), as well as in Battaglini (2004) and Gerardi et al. (2009), in-

creasing the size of the population increases the information held by any randomly chosen small

set of the informed parties. In contrast, in our exercise, as we increase the size of the popula-

tion, information is divided so that a small fraction of the population has little information and
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the information of the remainder is indispensable. Thus, if an ever-shrinking proportion of the

population provides information, then aggregation necessarily gets worse.

Our paper also relates to a rich literature on dynamicmulti-sender cheap talk, such as Aumann

and Hart (2003), Krishna and Morgan (2004), Ambrus et al. (2013), Golosov et al. (2014), Migrow

(2021), and Antic et al. (2025). While these papers examine specific communication protocols via

extensive form games, we take a mechanism design approach to find the receiver’s best possible

communication outcome under any protocol.

Finally, our work is related to several recent papers that examine the limiting properties of

optimal mechanisms. Battaglini and Palfrey (2024) study collective action problems where agents

hold private information about their cost of contribution and optimal mechanisms to mitigate

free-riding. Frick et al. (2023) and Frick et al. (2024) analyze mechanism design as data availability

grows. Similar to our paper, they use properties from concentration of probability measures to

describe limiting properties of various mechanisms. However, in contrast to our work, they apply

mechanism design in environments where uncertainty vanishes as the economy becomes large.

This approach implies that using mechanism design in the limit becomes trivial, and the critical

step is to study the convergence properties of mechanisms for finite economies. In contrast, in

our work, because uncertainty does not vanish in the limit, optimal mechanisms in the limit are

nontrivial, and our characterization result in Theorem 1 greatly simplifies the problem of finding

them.

2 Model

We consider a model of strategic information transmission involving multiple senders (each “he”)

and a single receiver (“she”).

There areN senders, denoted by i ∈ {1, 2, · · · , N}, who privately observe a random signal si

(their “type”). This signal is distributed according to a common cumulative distribution function

F (s), with density f (s) on an interval S = [s, s] ⊂ R, that satisfies
´
S
sf (s) ds = 0.8 Given

the flexibility in the payoffs, as we will show, this normalization is without loss of generality. We

assume si’s are independent from each other. As a result, in our setting, each sender’s private

signal contains no information about other senders’ information; therefore, it cannot be used to

evaluate the truthfulness of the other agents’ reports. We use s = (s1, s2, ..., sN) to denote the

senders’ type profile. Additionally, with a slight abuse of notation, we let F (s) =
∏

j F (sj) and

F−i (s−i) =
∏

j ̸=i F (sj) be the distribution functions of s and s−i, respectively, with the obvious

corresponding density functions.

8
In Sections 4 and 5, we allow the distribution to be discrete, in which case, the density is taken with respect to

a counting measure.
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The receiver faces a binary decision problem, choosing an action a ∈ {0, 1}. We refer to

action a = 0 as “reject”, and to action a = 1 as “accept”. The payoffs of the receiver and of the

senders are, respectively,

uR (a, ω) = a (ω + r)

uS (a, ω) = a (ω + b)

where

ω =
N∑
i=1

si√
N
, (1)

with b > 0 and r < b being the parameters determining the senders’ and the receiver’s preference

toward a = 1,respectively. Note that since b > r, senders are “biased” toward a = 1. In other

words, a conflict of interest exists between the senders and the receiver for realizations of the

“state”, ω, between −b and −r, where the senders prefer a = 1 while the receiver prefers a = 0.9

With a slight abuse of notation, we sometimes refer to ω as ω (s); we refer to the set of s such

that ω (s) ∈ [−b,−r] as the disagreement region.
Our definition of ω scales each sender’s contribution by 1/

√
N , so that the variance of the

aggregate private information is constant in N , while the information held by each individual

sender shrinks. This approach allows us to think of increasing N as dividing information into

smaller increments. Indeed, even as N → ∞, the distribution of ω remains non-degenerate, and

individual senders may continue to influence outcomes at the margin. This perspective aligns

with an interpretation in which each sender observes a disjoint increment of a Brownian motion,

with its terminal value determining the payoff to action a = 1; we return to this formulation in

Section 4.

We take a transfer-free mechanism design approach to identify the communication proto-

cols that maximize the receiver’s payoff. In other words, we consider the set of mediated games

between the senders and the receiver whose equilibrium is the standard perfect Bayesian equi-

librium. The revelation principle of Myerson (1982) can be applied in our setting, and thus it is

without loss to focus on direct recommendation mechanisms. Formally, a direct recommendation

mechanism (henceforth, mechanism) collects the reports of the senders’ signals, the vector s, and

recommends an action to the receiver. Hence, we can view a direct recommendation mechanism

as a mapping σ : SN → [0, 1], where σ (s) = Pr (a = 1|s) is the probability of recommending

a = 1.

The revelation principle then requires that the mechanism σ satisfy (Bayesian) incentive com-

9
This paper focuses on the case where senders are united in their disagreement with the receiver. Nonetheless,

in Section 5.1, we show how our results extend to the case of heterogeneous bias.
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patibility for the senders and obedience for the receiver:

1. Incentive compatibility: For each sender i ∈ {1, · · · , N}, and for all si, ŝi ∈ S,

E [σ (s) (ω (s) + b) |si] ≥ E [σ (ŝi; s−i) (ω (s) + b) |si] . (2)

2. Obedience:
E [σ (s) (ω (s) + r)] ≥ 0 ≥ E [(1− σ (s)) (ω (s) + r)] . (3)

Inequality (2) requires that each sender prefer to truthfully report his own type to the mediator,

given that the other senders do the same and the receiver obeys the mediator’s recommendation.

The obedience constraints in (3) state that the receiver should be willing to follow the recommen-

dation of the mechanism. Since we are interested in mechanisms that maximize the receiver’s

payoff and the receiver can take only two actions, it is sufficient to focus on incentive compat-

ibility and ignore obedience. This is because if for a mechanism σ, either of the inequalities in

(3) is violated, the default action absent any information would dominate σ and satisfy incentive

compatibility. We thus have the following lemma:
10

Lemma 1. If σ̂ achieves the highest payoff for the receiver among all mechanisms that satisfy in-
centive compatibility (2), then σ̂ satisfies obedience (3).

Lemma 1 implies that the problem of finding the receiver’s best mechanism boils down to the

following:

max
σ:SN→[0,1]

E [(ω (s) + r)σ (s)] (P)

subject to incentive compatibility (2).

Remark. In light of Lemma 1, the problem of finding the best mediated mechanism has an alter-

native interpretation. It can be directly considered a design problem in which the receiver can

commit to her actions as a function of the senders’ reports. For instance, we might equivalently

consider an organization that commits to a voting rule that maps votes (reports) into a decision.

Before analyzing problem (P), it is useful to consider a few examples of mechanisms. Consider

first the receiver’s optimal allocation, which involves choosing a = 1 if and only if the receiver’s

payoff from accept is positive: σR (s) = 1 [ω (s) + r ≥ 0]. Clearly, this mechanism can never be

incentive compatible: Facing σR
, a sender wishes to misreport his signal upward and increase the

probability of a = 1. However, incentive compatibility is trivially satisfied by what we call the

10
The formal proof of Lemma 1 is omitted for brevity and is available on request. When there are more than two

actions, dropping obedience may not be without loss. See Whitmeyer (2024) for a counterexample. A similar result

holds in Ball (2024). We thank Ian Ball for raising this point.
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sender-preferred mechanism: σS (s) = 1 [ω (s) + b ≥ 0]. Moreover, σS (s) is obedient whenever

it has a weakly positive payoff for the receiver: E
[
(ω (s) + r)σS (s)

]
≥ 0. When N = 2 and

r = 0 < b, these allocations are depicted in Figure 2a. As illustrated, the sender-preferred

mechanism has a cost to the receiver relative to σR
. It implies that a = 1 whenever the state is

in the disagreement region given by {s| − b < ω (s) < −r}.
In addition to the sender-best mechanism, there are potentially other mechanisms that could

satisfy incentive compatibility and obedience. Examples include equilibria of the cheap talk game

where each sender sends a separate message. Such mechanisms could potentially be better for

the receiver, but they are also costly, because the knowledge of the senders’ total information

could be beneficial for the receiver and for the senders.
11
The next section illustrates that indeed

this logic proves right for small economies.

3 Optimal Aggregation in Small Economies

In this section, we characterize the optimal recommendation mechanism when the number of

senders is small. For some intuition, we begin with the extreme case ofN = 1, i.e., when a single

sender wishes to communicate with the receiver. Because the sender fully knows the state, the

incentive compatibility condition (2) becomes

σ (s1) (s1 + b) ≥ σ (s′1) (s1 + b) ,∀s1, s′1 ∈ S.

This condition implies that either σ (s) is constant everywhere (i.e., is an uninformative mecha-

nism) or it is constant and positive when s1 + b ≥ 0, and 0 otherwise. Hence, if the information

that s1 ≥ −b is valuable for the receiver (i.e., σS
is obedient), the sender-preferred mechanism

σS (s1) is also the best mechanism for the receiver.

The reason we cannot do better than σS
with one sender is because he controls the entire

report and can condition his deviation on perfect information about the state. This constraint

implies that to reduce the probability of accept in the disagreement region, we also have to pay the

high cost of reducing the probability of accept whenever the receiver agrees, i.e., when ω ≥ −r.
When N > 1, each sender has fewer deviations available and less information; hence, there are

more complicated mechanisms that can be used to incentivize agents more cheaply. Yet, if N

is not too large, each sender still has too much information and control. Specifically, satisfying

incentive compatibility while reducing σ(s) requires costly distortions when the receiver agrees

on the optimal action that outweigh the benefit. The following proposition shows that when

11
In the Online Appendix, Section C.2, we provide a few examples of mechanisms arising from independent cheap

talk equilibria for the model with two senders as uniform signals.
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N > 1 is below an explicit bound, we cannot improve upon the sender-preferred mechanism.

Proposition 1. Let f (·) be a C1 function with a finite derivative and full support, and define
ℓ = infsi∈S f

′ (si) (s− si) /f (si). Then, for any sender and receiver payoff parameters, (b, r),
there exists a positive finite value N(b, r, ℓ, s) such that the sender-preferred mechanism σS (s) =

1 [ω (s) + b ≥ 0] is a solution to (P) whenever

N ≤ N(b, r, ℓ, s).

Proposition 1 states that if the number of senders is low enough, then the best incentive com-

patible mechanism from the receiver’s perspective is the same as that of the senders. It can be

shown that the finite bound on the number of senders for the optimality of the sender-preferred

mechanism, N(b, r, ℓ, s), is decreasing in the bias of the sender, b − r > 0. Of course, for large

levels of bias, even the uninformative allocation may be preferable to σS
. Perhaps also unsurpris-

ing, when σS
tends to the receiver first best, i.e., b − r → 0, then this bound tends to infinity.

12

As we discuss in more detail later, one way to interpret N ≤ N(b, r, ℓ, s) is as a condition under

which unrestricted private communication among the senders is indeed the best outcome from

the receiver’s perspective. Conversely, it identifies a necessary condition for the commitment of

the mediator to be able to create value for the receiver by exploiting the informational division

between the senders.

The proof of Proposition 1 has two parts. The first part establishes a weak duality result for

the optimization (P). This implies that it is sufficient to come up with Lagrange multipliers—

associated with the envelope formulation of the incentive compatibility and monotonicity of

E [σ (s) |si] with respect to si—for which the senders’ first-best allocation maximizes the La-

grangian associated with (P). We then prove the optimality of the sender-preferred mechanism

by constructing the associated Lagrange multipliers.

To improve on the sender-preferred mechanism, it is necessary for N to be larger than the

upper bound in Proposition 1. This condition is also sufficient when F is uniform.

Corollary 1. Suppose that f (s) = 1
|S| , i.e., si’s are uniformly distributed over the interval S.

Then, the sender-preferred mechanism σS is the best mechanism for the receiver if and only if N ≤
N(b, r, ℓ, s).

To understand these results better, we consider the case with uniform signals, si ∼ U [−1, 1] ,

12
The bound is decreasing in 0 ≥ ℓ > −∞. The value of ℓ is the upper bound on the negative curvature of F .

Thus, for highly negative values of ℓ, there may be a very large probability mass in the disagreement region relative

to the probability of being in the agreement region. By considering the N = 1 case, one can see how this could

easily imply that the cost of disagreement is just too high relative to the value of accepting when all parties agree.

12



and r = 0.13 Specifically, we consider a perturbation of the sender-preferred mechanism and

its effect on the receiver’s payoff. Obviously, any mechanism that benefits the receiver relative

to the sender-preferred mechanism must reduce the probability of acceptance somewhere in the

disagreement region (the red-dotted area in Figure 2a). Consider first reducing σ(s) for some

small amount ε1 in the hypercube B1 =
(
− b√

N
,− b√

N
+ dx

]N
. It is easy to see from the N = 2

case in 2b that B1 lies within the disagreement region (for sufficiently small dx); therefore, such

a reduction would benefit the receiver. However, it also violates incentive compatibility: Type

x1 = − b√
N
+ dx now has a strict incentive to make a marginal upward lie. This, in turn, can be

resolved by introducing a further reduction of σ by ε2 in the hypercube B2 = (x1, x1 + dx]Nso

this lie would now cause a loss when the other senders’ types are in B2. In turn, to preserve

incentive compatibility for x1+dx, we can reduce σ (s) by some ε3 < ε2 inB3 = (x2, x2 + dx]N ,

and so on, as seen in Figure 2b.

Critically, in this perturbation, the reduction in σ is decreasing, i.e., εi+1 < εi. This is because

for any adjacent Bi and Bi+1, the reduction in σ is applied when the other senders’ types are

higher; thus, a lie for type xi costs more per unit reduction in σ on Bi+1. Moreover, this per unit

cost is increasing inN : When there are more senders, their aggregate contribution to the state is

large conditional on being in Bi+1. Therefore, the rate at which εi decreases is increasing in N ,

and the cost of this perturbation to the receiver where ω ≥ 0 is lower when N is large. Hence,

the net value of the perturbation is increasing in N . Indeed, in the proof of Corollary 1 (Online

Appendix, Section C.3), we show that as dx becomes small, the gain for the receiver from such a

perturbation is proportional to b
√
N − 1. That is, this perturbation increases the payoffs of the

receiver if either the population or conflict of interest is large enough.

We briefly remark on the implications of our results for observed examples of information ag-

gregation. As we have mentioned, an interpretation of Proposition 1 is that optimal mechanisms

involve unrestricted private communication among the senders wherein the senders confer with

each other and make a joint recommendation. In reality, expert information is often privately

collated, before being disseminated via a single representative. Monetary policy committees an-

nounce their collated views to markets, spokespeople are frequently central in other political

communications, and CEOs communicate an overall outlook for the firm in financial reporting

periods. Our results indicate an advantage to such communication: When the number of senders

or the senders’ bias is not too large, it can maximize the expected payoffs of senders and receivers

alike.
14

13
In this case, the necessary and sufficient condition for the optimality of σS

is simply N ≤ N(b, 0, 0, 1) =
1

b2
.

14
While it is obvious that private communication among senders can implement the optimal mechanism in this

case, it should be noted that Antic et al. (2025) illustrate that even in public this can be implemented via subversive
conversations among the senders.
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(b) Intuition for Proposition 1.

Figure 2: Two sender example: preferred mechanisms and intuition . In (a), the colored areas are associated with

σ = 1. In (b), the red region represents the sender-preferred region with σ = 1. In the areas B1, B2, B3, · · · , σ is

reduced by ε1, ε2, ε3, · · · , respectively.

Finally, the aforementioned discussion suggests two features of optimal mechanisms when

the number of sellers or bias is large: First, the optimal mechanism may punish consensus among

the senders in a non-monotone fashion. Second, the optimal mechanism is a complex high-

dimensional function of the entire vector of reports s ∈ SN
. Indeed, in the Online Appendix,

Section D, we numerically show both of these to be true in the two-sender uniform example with

a large bias. However, in the next section, we show that as the population becomes increasingly

large, only the first feature is true, and that the optimal mechanism in the large-population limit

takes on a simple non-monotonic interval structure.

4 Optimal Aggregation in Large Economies

In this section, we provide a tractablemethod to solve for optimalmechanisms in large economies.

First, our main technical result (Theorem 1) provides a simple characterization for the limit set of

incentive compatible mechanisms. Then, we use this result to provide a simple characterization

of the optimal mechanism at infinity (Theorem 3), which we refer to as optimal aggregation in

the large. This mechanism can be used to characterize the optimal recommendation mechanisms

for large populations, because it is the limit point to which all optimal mechanisms converge.

As a first step, to deal with the exploding domain space SN
that accompanies large popula-
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tions, we reformulate the design problem as a choice over mechanisms that map frequencies of

signal realizations into the probability of recommending accept.

4.1 Preliminaries: Frequency Domain

For exposition, we assume a finite type space throughout the rest of the section.
15

Let each

sender’s type si take on a finite number of values in the set S = {t1, · · · , tK} with probability

fk = Pr (si = tk), where tk is increasing in k. We denote the vector of types by t = (t1, · · · , tK) ∈
RK

, and the probability distribution by f = (f1, · · · , fK). As before, we normalize the mean of

si to zero; therefore, f · t = 0.

As N → ∞, by the central limit theorem, the state ω (s) becomes a normally distributed

random variable. Moreover, the deviation of sample frequencies from distribution frequencies

converges to the Normal distribution. We define the sample distribution, hk, that represents this

deviation as

hk (s) =
√
N

(
|{i|si = tk}|

N
− fk

)
, (4)

with hN (s) = (h1 (s) , · · · , hK (s)). We refer to hN (s) as normalized empirical frequencies (NEF),
and to hk as k-NEF. For completeness, we present the multidimensional central limit theorem for

NEF in the following lemma:

Lemma 2. (Multidimensional Central Limit Theorem) Let hN (s) be the normalized empirical
frequencies of s as defined in (4). Then, as N → ∞,

hN (s) →d N (0,Σ) , (5)

with Σkl = fk (1 (k = l)− fl).

In what follows, we will use Lemma 2 to calculate the limits of the senders’ and receiver’s

payoffs as N → ∞.

Without loss of generality, we focus on symmetric recommendation mechanisms for which

σ (s) = σ (π (s)) for any π, a permutation of {1, · · · , N}.16 This implies we may consider σ as a

function in the frequency domain (i.e., NEF) for the realized si’s, which is given by the normalized

hN (s) into [0, 1]. With a slight abuse of notation, we denote this function by σ(hN (s)). The state

is defined as before, and we can write it in terms of hN (s):

15
While this assumption simplifies the technical analysis, it is not a substantive restriction. In Section 4.4, we

discuss how our results still apply for a continuous type space.

16
For any incentive compatible mechanism σ, the mechanism given by σ̂ (s) =

∑
π σ (π (s)) /N ! is incentive

compatible and symmetric and delivers the same payoff to the receiver.
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ω =
∑ si√

N
= hN (s) · t.

We further have that

∑K
k=1 h

N
k (s) = 0. Finally, let RK

0 be the subset of RK
whose elements sum

to zero.

4.1.1 Divided Information in the Large Economy

As we have emphasized, as N → ∞, our model can be interpreted as one in which information

is divided among a large group of senders. To see this, let X
(N)
t =

∑⌊Nt⌋
i=1

si√
N
. The standard

argument shows that as N → ∞
{
X

(N)
t

}
t∈[0,1]

converges to the sample paths of a Brownian

motionwith drift 0 and diffusion

√
var(si); see, for example, Theorem 4.20 in Karatzas and Shreve

(1988). In other words,X1 = {Xt}t∈[0,1] is the state of the large economy, and ω =
´ 1
0
dXt = X1

is the payoff-relevant statistic. Figure 3 depicts two sample path versions of the state (i.e., Xt)

and their associated NEFs. In subfigure (a), each sender’s information is an increment of the

accumulated signals. Subfigure (b) is constructed by calculating the frequency of the increments

associated with the sample paths, subtracting the distribution of the signals, and multiplying the

result by

√
N .

17

(a) Accumulated values of the signals (b) Normalized empirical frequencies (NEFs) as a func-

tion of signal realizations

Figure 3: Simulated state of an economy with N = 1000 and type si uniformly distributed over

the set {−10,−9, · · · , 10}. Subfigure (b) depicts the associated normalized empirical frequencies

(NEFs).

17
Aybas and Callander (2024) is another example of a cheap talk game with a Brownian state. In their model,

however, a single sender observes the entire realization of the Brownian motion.
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4.2 Optimality in the Large

We are interested in the limiting properties of optimal mechanisms asN grows large. To charac-

terize this limit, we study a design problem in which feasible mechanisms must satisfy a notion of

incentive compatibility in the large, which we define next. We show that this exercise is the correct

way to think about large economies, by showing that the solution to this problem is indeed the

unique limit point for all optimal, finite-N mechanisms (Theorem 1).

Definition 1. A recommendation mechanism σ : RK
0 → [0, 1] is incentive compatible in the

large (ICL) if a sequence of recommendation mechanisms σN
(
hN (s)

)
exist that satisfy incentive

compatibility, ∀tk, tl ∈ S,

EN
[
σN
(
hN (s)

) (
hN (s) · t+ b

)
|si = tk

]
≥ EN

[
σN
(
hN (tl; s−i)

) (
hN (s) · t+ b

)
|si = tk

]
,

and σN (h) converges to σ in L∞
(
RK

0

)
, which is the set of bounded real functions over RK

0 .

Our notion of convergence requires some discussion. Note that for any finite N , the set of

feasible NEFs is a finite subset of RK
0 . Therefore, for any finite N , a mechanism σN (h) specifies

the probability of a = 1 only for a finite number of points in RK
0 . To embed σN

in L∞
(
RK

0

)
, we

consider a partition of RK
0 into closed convex subsets, each of which contains exactly one point

of the form hN (s) given by An1,··· ,nK
, where hNk (s) = nk/

√
N − fk

√
N .

18
We then embed σN

into L∞
(
RK

0

)
by considering the function σ̂N

defined by

σ̂N (h) = σN
(
hN (s)

)
,h,hN (s) ∈ An1,··· ,nK

.

Thus, according to our definition, σ is incentive compatible in the large if there exists an incentive

compatible mechanism σN (h) so that its equivalent σ̂N (h) satisfies
∥∥σ̂N − σ

∥∥
∞ → 0.

The following theorem fully describes the set of ICL mechanisms:

Theorem 1. A recommendation mechanism σ : RK
0 → [0, 1] is ICL if and only if it satisfies

E [σ (h) (h · t+ b)hk/fk] = E [σ (h)] tk, 1 ≤ k ≤ K (6)

E
[
σ (h)

hk
fk

]
increasing in k, (7)

with h ∼ N (0,Σ).

Theorem 1 is the main technical result of our paper and significantly simplifies the analysis of

optimal mechanisms. As we illustrate next, the proof of the “only if” direction is straightforward

18
There are

(
N +K − 1

K − 1

)
such subsets.
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and uses a simple application of the central limit theorem to calculate the incentive constraints

in the limit as N → ∞. In contrast, the proof of the “if” direction is much more technically

challenging. Specifically, we use a multidimensional version of the Berry–Esseen theorem (see,

for example, Feller (1991) for a one-dimensional version of it) that establishes convergence of the

distribution of hN (s) to that of the normal distribution N (0,Σ) according to the Kolmogorov–

Smirnov metric (supremum difference between their measures), and the convergence is at rate

1/
√
N . We can then use classic results from functional analysis, the open mapping theorem of

Banach (see, for example, Brezis (2011)) to show existence of incentive compatible mechanisms

with finite N that converge to a mechanism that satisfies (6) and (7).

To see the “only if” direction, note that with finitely many senders, incentive compatibility

requires that type tk prefer not to mimic tl. Letting U
N
k denote tk’s truth-telling utility, we have

UN
k − UN

l ≥ tk − tl√
N

E
[
σN
(
hN (s)

)
| tl
]
. (8)

If tk mimics tl < tk, she can induce tl’s allocation and earn the right-hand side of (8) in marginal

information rent. Because type realizations are independent across senders, the information rent

of tk beyond the payoff of tl is tl’s allocation, i.e., the probability of a = 1 given tl, when the state

ω (s) is shifted by (tk − tl) /
√
N . By Bayes rule,

Pr
(
hN (s) |tl

)
= Pr

(
hN (s)

) |{i : si = tl}|
flN

= Pr
(
hN (s)

)( hl√
Nfl

+ 1

)
. (9)

Because (8) must also hold for type tl and a deviation to tk, incentive compatibility bounds the

rate at which utility varies in the sender’s private value, as follows:

E
[
σN
(
hN (s)

)
|tk
]
≥

√
N
UN
k − UN

l

tk − tl
≥ E

[
σN
(
hN (s)

)
| tl
]
. (10)

As N → ∞, the aforementioned bounds converge to the unconditional expectation E [σ(h)].

As (9) shows, when N becomes very large and each sender is a small component of the aggre-

gate, his private information becomes uninformative for h. Hence, in the limit, incentive com-

patibility pins the marginal utility of a unit increase in his private value (equivalently, a unit

increase in ω due to an increase in his type) down to E[σ(h)]. On the other hand, in any mech-

anism, the sender’s marginal utility depends only on the rate at which the sender’s conditional

beliefs about h diverge from the prior. Indeed, a direct calculation of

√
N
(
UN
k − UN

l

)
using

(9) shows that

√
N
(
UN
k − UN

l

)
→ E

[
(h · t+ b)σ(h)

(
hk

fk
− hl

fl

)]
, and hence that in the limit,

E
[
(h · t+ b)σ(h)

(
hk

fk
− hl

fl

)]
= (tk − tl)E [σ(h)].

Note that the incentive compatibility in the large is described by Theorem 1 in terms of condi-
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tions known in the mechanism design literature. As we will see, Equation (6) can be interpreted

as an envelope formulation of incentive compatibility; Equation (7) expresses a limiting version

of the familiar interim monotonicity constraint.

Intuitively, one can view incentive compatibility in the large as balancing the cost and benefits

of being pivotal. Consider adding sender i, whose signal realization is tk. Sender i increases the

payoff relevant state ω by tk/
√
N no matter what he reports. At the same time, by reporting tk,

he changes the distribution of reports by Pr (h) hk

fk
√
N
. Hence, the pivotal effect of this sender is

given by E [σ (h) ((h · t+ b)hk/fk − tk)].

The value of Theorem 1 is that it significantly simplifies the problem of finding the optimal

mechanism as the number of senders converges to infinity. Specifically, an optimal mechanism

in the limiting economy as N → ∞ solves

max
σ:RK

0 →[0,1]
E [σ (h) (h · t+ r)] (P1)

subject to

E [σ (h) ((h · t+ b)hk/fk − tk)] = 0,E
[
σ (h)

hk
fk

]
≥ E

[
σ (h)

hk−1

fk−1

]
, (11)

where h ∼ N (0,Σ).

The following theorem contains our main result on optimal mechanisms for large economies:

Theorem 2. The optimum in (P1) is achieved by a recommendation mechanism that is a function
of only the sample mean, ω = h · t, and satisfies

σ∗ (h) =

1 ω = h · t ∈ [ω, ω] ,

0 ω /∈ [ω, ω] .

Furthermore, when r ∈
(

b−
√
b2+4
2

, b
)
, then the cutoffs ω, ω satisfy ω ∈ (−b,−r), ω ∈ (−r,∞). If

r < b−
√
b2+4
2

, then ω = ω and thus σ∗ (h) = 0 almost surely.
Moreover, σ∗ is the unique recommendationmechanism (up tomeasure zero changes) that achieves

the optimum in (P1).

Theorem 2 establishes that there is a unique optimal ICL mechanism. Therefore, this theorem

also establishes that for large populations, the optimal mechanism can be approximated by a

simple one-dimensional mechanism that recommends accept when the aggregate reported state

lies within a bounded interval. In particular, this mechanism recommends reject for a positive-

measure set of states [ω,∞) at which the mediator commits to recommend reject, despite all
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parties agreeing that accept would be better. This surplus burning at the top acts as a punishment

for over-reporting that allows us to take the receiver’s preferred action, reject, when ω ∈ [−b, ω).
In addition, Theorem 2 establishes that when r is negative, the bias b− r may be so large that the

uninformative mechanism is optimal.

The uniqueness result in Theorem 2 establishes that finding the optimal ICL mechanism was

the correct exercise for thinking about large economies. Indeed, since σ∗
is the unique ICL mech-

anism, applying Berge’s theorem of the maximum implies that any convergent sequence of σ∗
N ’s

optimal mechanisms for N -sender economies converge to σ∗
.

We need the notion of incentive compatibility in the large to solve this problem for the fol-

lowing reason. Had we expressed incentive constraints as simple differences in utilities, then the

payoff consequences of any report would have been zero in the limit, as each sender’s report

would have had no impact on h (s). By scaling the signals of each sender appropriately, ICL

ensures that incentive constraints continue to discipline the problem.

Beyond its technical implications, the scaling guarantees that senders remain informationally

impactful despite being small in the limit. In other words, as the number of senders grows large,

the benefits and costs of being pivotal decline together, and thus they have to balance each other

even in the limit. Hence, when we consider division of information over large economies, we do

not achieve the first best, not even in the limit. This result contrasts with the results in Feddersen

and Pesendorfer (1997) and Gerardi et al. (2009), for example, because in their limiting exercise,

they consider informational addition rather than division. They can thus achieve arbitrarily close

to first best if they can manage to extract a small fraction of the population’s information. In

contrast, in our setup, no small group of senders can observe the state, and thus the mechanism

has to discard meaningful information in order to provide incentives.

4.3 The Intuition Behind Optimality of Interval Mechanisms

Here, we provide an intuitive reasoning for the optimality of the interval mechanism of Theorem

2. Our intuitive argument can be broken into two parts: First, why is it that we can focus on

simple mechanisms that depend only on ω. Second, why are interval mechanisms optimal?

4.3.1 Payoff-Dependent Mechanisms for Large N

Consider a mechanism σN
that is incentive compatible. Then, consider an alternative mechanism

σ̂N (ω̂) = EN
[
σN (h) |ω̂ = ω (h)

]
that replaces the probability of accept for each realization h

with the probability of accept conditional on its associated state value ω(h). Since the receiver

only cares about ω, this mechanism provides her with the same payoffs. However, this modifi-

cation of the mechanism may no longer satisfy sender incentive compatibility. Nonetheless, it
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has a notable property, specifically, that the effect of an individual sender’s information, si, on

the mechanism or the payoffs is an order of magnitude lower than it would be if we were simply

controlling for ω.

To see this, consider the payoff of sender i, whose signal realization si takes a value tk ∈ S

when he reports this signal truthfully. This is given by

Uk = EN
[
σN (h) (ω + b) |si = tk

]
.

Using the law of iterated expectations, we can write the above as

Uk = EN
[
EN
[
σN (h) |ω, si = tk

]
(ω + b) |si = tk

]
.

We can also write

EN
[
σN (h) |ω, si = tk

]
=

∑
h:h·t=ω Pr

N (h|si = tk)σ
N (h)∑

h:h·t=ω Pr
N (h|si = tk)

=

∑
h:h·t=ω

(
hk

fk
√
N
+ 1
)
Pr

N (h)σN (h)∑
h:h·t=ω

(
hk

fk
√
N
+ 1
)
Pr

N (h)
.

We can view the above as a function of
1√
N

(without considering the effect of changes of N on

the probabilities, Pr
N
), and a Taylor approximation around 1/

√
N = 0 implies that

EN
[
σN (h) |ω, si = tk

]
= σ̂N (ω) +

1√
N
cov

N

(
hk
fk
, σN (h) |ω

)
+O

(
1

N

)
.

The above states that controlling for ω, the additional information contained in si = tk affects

the expected probability of recommending a = 1 only by an order of 1/
√
N , and thus this impact

shrinks at that rate as N converges to infinity. A similar property holds for the payoff of the

senders of a given type under truth-telling:

Uk = EN
[
EN
[
σN (h) |ω, si = tk

]
(ω + b) |si = tk

]
= EN

σ̂N (ω) +
cov

N
(

hk

fk
, σN (h) |ω

)
+O

(
1/
√
N
)

√
N

 (ω + b) |si = tk

 .
= EN

[(
hk

fk
√
N

+ 1

)
σ̂N (ω) (ω + b)

]
+O (1/N)

In arriving at the last expression, we have used the typical property of the multinomial distri-

bution in (9). Recall that we can cast the incentive compatibility using its envelope form and
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write

Uk − Ul ≥
tk − tl√

N
EN
[
σN (h) |si = tl

]
.

The right-hand side represents the extra surplus that a sender of type k is able to guarantee by

pretending to be of type l. Therefore, it determines themarginal information rent captured by that

sender. Applying the aforementioned logic to this incentive compatibility has a few implications

asN becomes large. First, the right-hand side of the above can be replaced by
tk−tl√

N
EN
[
σ̂N (ω)

]
+

O (1/N). Second, the left-hand side can be replaced by EN
[(

hk

fk
√
N
− hl

fl
√
N

)
σ̂N (ω) (ω + b)

]
+

O (1/N). In other words, the conditional mean of σN
is the main determinant of incentive pro-

vision up to a first order, and all of its higher moments—which fully determine the distribution

of σN
—affect the incentives with a lower order of magnitude. Since as we take limit, only the

first-order effects become relevant, we can simply replace σN
with σ̂N , and the resulting limit (as

N → ∞) will satisfy the conditions in Theorem 1.

4.3.2 Optimality of Interval Mechanism

As we have argued, it is without loss to focus on payoff-dependent mechanisms as N becomes

large. Given this observation, the optimality of the interval mechanisms follows from the fact

that ω is distributed normally (as N → ∞) and that the normal distribution has thin tails.

To see this, consider the impact of a change in σ (ω) on k’s truth-telling payoff

∑
h:h·t=ω

(
hk

fk
√
N

+ 1

)
Pr

N (h|ω) (ω + b) = Pr
N (ω) (ω + b)EN

[
hk

fk
√
N

+ 1|ω
]
.

As N → ∞, h and ω are normally distributed, implying that EN [hk|ω] converges to fktk
var(si)

ω. As

a result, the effect of a change in σ (ω) on the senders’ truth-telling incentive is higher for higher

values of ω. Because the relevant incentive constraints are those where l > k (i.e., senders lie

upward), information rents are more sensitive to changes in σ when ω is highest. As a result, it

is optimal to reduce σ for high enough values of ω and increase them for intermediate values.

Thus, the optimal mechanism is an interval mechanism.

4.4 The Case of Continuous Distributions

For ease of analysis, we have assumed that the distribution of the signals si had a finite support.

This assumption allowed us to view the empirical distribution of the signals h (s) defined in

(4) as a member of the Euclidean space RK
and thus the mechanism as a function that maps a

subset of the Euclidean space—indeed a hyperplane—into [0, 1]. In this case, we were able to use a

standard central limit theorem, Lemma 2, and show the convergence ofmechanisms by restricting
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attention to L∞
(
RK

0

)
, the set of bounded functions over RK

0 , because each mechanism belongs

to this space.

When si does not have a finite support and has an arbitrary distribution with support, say,

in R, then Lemma 2 becomes significantly more complex. This is because NEFs are cumulative

distribution functions, and hence a mechanism maps each such function to [0, 1]. Indeed, as

proved by Donsker—see, for example, Theorem 4.20 in Karatzas and Shreve (1988)—the NEFs

converge to the set of sample realizations of a Brownian bridge. As a result, all expectations

that describe the ICL have to be taken with respect to the Wiener measure on the Skorohod

space of cadlag functions—representing NEFs. However, while this approach is feasible, it is an

unnecessary difficulty. Given our results apply for arbitrarily large finite type spaces, we avoid

these technical issues without losing any economic relevance.

5 Extensions

In this section, we extend our analysis in two directions. In Section 5.1, we study optimal mecha-

nisms in the largewhen bias is heterogeneous across senders. In Section 5.2, we study the problem

under more general preferences.

5.1 Heterogeneous Bias

Here, we consider an extension where the senders’ bias is heterogeneous but observable. We

show that the general structure of the optimal mechanisms in the large does not change.

Formally, there are M bias classes, where a sender in class m ∈ {1, · · · ,M} has bias bm.

There are Nm senders in bias class m, and N =
∑

mNm. The relative size of class m is νm =

Nm/N, with ν1 + · · · + νM = 1. We assume that the senders’ signals are independent and

distributed according to a discrete distribution. That is, for a sender i of bias class m, si,m ∈
Sm = {t1,m < · · · < tK,m}, with fk,m = Pr (si,m = tk,m) such that

K∑
k=1

fk,mtk,m = 0,
K∑
k=1

fk,mt
2
k,m = var (si,m) = η.

Moreover, the payoff of the sender is given by(∑M
m=1

∑Nm

i=1 si,m√
N

+ bm

)
a = (ω + bm) a,

and the payoff of the receiver is (ω + r) a. As in the main model, we can define hm ∈ RK
0 as
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the deviations of the sample distribution of signals among the senders of type m from the true

distribution fm multiplied by

√
Nm. By the central limit theorem, hm →d N (0,Σm), where the

k, k′ element ofΣm is fk,m (1 [k = k′]− fk′,m). Wewill refer toωm = hm·tm as themean of group

m. Again, we focus on symmetric mechanisms, which are of the form σ (h1, · · · ,hM) ∈ [0, 1].

We can write

ω =

∑M
m=1 hm · tm

√
Nm√

N
=

M∑
m=1

ωm

√
νm.

The central limit theorem implies that ωm → N (0, η), and by assumption, ωm’s are independent

across groups. In this environment, an argument akin to that of Theorem 1 implies that the ICL

holds if and only if, for allm:

E
[
σ (h1, · · · ,hM)

(
(ω + bm)

hk,m
fk,m

− tk,m

)]
= 0, (12)

E
[
σ (h1, · · · ,hM)

hk,m
fk,m

]
is increasing in k.

With this result in hand, the rest of the characterization follows that of Theorem 2. The

following proposition states the main result for this extension:

Proposition 2. The receiver-optimal ICL mechanism is a function of the sample mean for each class
ωm = hm ·bm. Moreover, two vectors, λ = (λ1, · · · , λM) ∈ RM and ζ = (ζ1, · · · , ζM) ∈ RM , exist
such that the optimal mechanism σ∗ satisfies

σ∗ (ω1, · · · , ωM) = 1 ⇔ ω + r +
∑
m

λm [ωωm + bmωm − η] +
∑
m

ζmωm ≥ 0, (13)

E [σ∗ · ((ω + bm)ωm − η)] = 0, (14)

ζmE [σ∗ · ωm] = 0, ζm ≥ 0,E [σ∗ · ωm] ≥ 0. (15)

In Proposition 2, the λm’s are the Lagrange multipliers associated with the aggregated version

of the incentive compatibility, (12), in each bias class. Additionally, the ζm’s are the Lagrange

multipliers on the monotonicity constraints, which become E [σ∗ · ωm] ≥ 0. Thus, (15) is the

complementary slackness associated with this constraint. The proof of Proposition 2 closely

follows that of Theorems 1 and 2, and is relegated to the Appendix.

The variables λ, ζ that determine the region for which σ = 1 can be found by solving the

system of equations defined by the incentive constraints, (14) and (15). Their existence is guaran-

teed by the existence of the solution of the mechanism design problem, as we show in the proof

of Proposition 2.
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Example 1. There are two equally sized groups with biases b1 = 0.1, b2 = 0.3, with r = 0.

The payoff types have variance Var (si,m) = 1 for allm, which in turn implies that E
[
(ωm)

2] =
1. In this case, the sufficient statistics are ω1, ω2, which are the means in each group. We can

numerically solve the system of equations in (14) and check that E [σ∗ · ωm] > 0 for both types.

The results are depicted in Figure 4. As can be seen, the area where σ = 1 falls between two

parabolas. This mechanism is a natural extension of the interval mechanism in Section 4.When

b1 = b2, the optimal mechanism is an interval, and thus it is the area between two lines that

represent the cutoffs identified in Theorem 3. Here, since b2 > b1, the optimal mechanism relies

more on the report of the senders of type 1, i.e., the set of ω2’s for which a = 1 gets larger for

high and low values of ω1. Similarly to the homogeneous case, when both values are high or low,

a = 0 is recommended. A few observations are worth noting: The mediator relies more on the

signal of the group with lower bias. In this case, the punishment is in the area where both the

receiver and the two sender types prefer action 0, but action 1 is being recommended; however,

the probability of landing on that area is very low, so the punishment still occurs at extreme

values.

ω1

ω2

a = 0

a = 0

a = 1

ω = 0

Figure 4: Regions of action with heterogeneous bias; in the white region, a = 0, while in the blue

region, a = 1. The variance of the signals in each group is 1, and the biases are b1 = 0.1, b2 = 0.3.

5.2 General Preferences

In this section, we show how our main results on optimal aggregation in the large extend to more

general preferences.
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As before, there areN senders, and each has type si independently drawn from {t1, · · · , tK}
with probability fk. Again, let hk be the k-NEF. Focusing on symmetric mechanisms, we can

assume that a mechanism is a function of NEF. Hence, we let the payoffs of the senders and of

the receiver satisfy

uR (a,h) =

ur (h) a = 1

0 a = 0
, uS (a,h) =

us (h) a = 1

0 a = 0
. (16)

We make the following assumption on us, ur:

Assumption 1. The payoff functions ur, us : RK
0 → R satisfy the following properties:

1. They are continuous and differentiable.

2. The marginal value of hk for the sender,
∂us(h)
∂hk

, is higher for higher values of k.

3. There exists p > 1 such that us (h) = O (∥h∥pK) and ∥∇us (h)∥K = O (∥h∥pK).

4. The functions
{
us (h)

hk

fk
− ∂us(h)

∂hk

}K

k=1
are linearly independent.

In our model so far, the payoff functions are linear and thus satisfy the aforementioned as-

sumption. The monotonicity assumption on the senders’ marginal value of an additional type k

sender is akin to the standard single crossing assumption used in mechanism design. The last

parts of the assumption are technical ones that allow us to show the equivalent of Theorem 1 in

this general setting.

The following proposition is the equivalent of Theorem 1 for arbitrary payoffs:

Proposition 3. Suppose payoffs are given by (16) and satisfy Assumption 1. A recommendation
mechanism σ (h) is incentive compatible in the large if and only if there existsU such that it satisfies

E
[
σ (h)

(
us (h)

hk
fk

− ∂us (h)

∂hk

)]
= U,∀k (17)

E
[
σ (h)

(
hk
fk

− hl
fl

)(
∂us (h)

∂hk
− ∂us (h)

∂hl

)]
≥ E

[
σ (h)

(
∂2us (h)

∂h2k
+
∂2us (h)

∂h2l
− 2

∂2us (h)

∂hl∂hk

)]
(18)

for all k > l.

Proposition 3 describes how incentive compatibility in the large is affected by having arbitrary

payoffs. The first equality is the equivalent of the standard envelope condition as in (6). The

second inequality is the standard monotonicity condition. Notably, with general payoffs, the
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second derivative or curvature of the payoff function is also relevant to the standardmonotonicity

condition.

The complications arising from arbitrary payoffs imply that a general characterization of op-

timal mechanisms is not so straightforward. However, once the assumption of monotonicity is

not binding, the characterization of the resulting optimal mechanism is simple:

Proposition 4. Let σ∗ : RK
0 → {0, 1} be a mechanism that is ICL, i.e., satisfies the conditions in

Proposition 3. If {λk}Kk=1 exist such that

σ∗ (h) = 1 ⇔ ur (h) +
K∑
k=1

λk

(
hk
fk
us (h)−

∂us
∂hk

(h)

)
≥ 0; (19)

then σ∗ is an optimal mechanism.

This condition is equivalent to the interval condition in the case of our initial payoffs.

A particularly tractable specification is when ur and us are linear and satisfy the specification

in Proposition 5. Notably, this model is different from our baseline example, because the senders

and the receiver evaluate different signal realizations differentially. For example, in the context

of voting, the receiver’s preferences can represent how an uninformed voter cares about different

issues, while the senders’ preferences represent the interests of the differentially informed polit-

ical elite in terms of the same issues. In this case, optimal aggregation can be described by the

following Proposition:

Proposition 5. Suppose that ur (h) = tr · h and that us (h) = ts · h with ts, tr ∈ RK such that∑
k

fkts,k =
∑
k

fktr,k = 0,∑
k

fkt
2
s,k =

∑
k

fkt
2
r,k = 1,

∑
k

fktr,kts,k = γ

and ts,k, tr,k are increasing in k. Then, the optimal mechanism σ∗ is a function of ωs = ts · h, ωr =

tr · h and satisfies

σ∗ (ωr, ωs) = 1 ⇔ ωr + (λrωr + λsωs)ωs − γλr − λs

+ ωr

∑
k

(tr,k − γts,k) (ζk − ζk+1)

+ ωs

∑
k

(ts,k − γtr,k) (ζk − ζk+1) ≥ 0
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for some αr, αs and ζk ≥ 0 with ζ1 = ζK+1 = 0 such that

E
[
σ∗ ·

(
ω2
s − 1

)]
= 0 (20)

E [σ∗ · (ωsωr − γ)] = 0 (21)

and
ζk [(ts,k − ts,k−1)Eσ∗ · (ωs − γωr) + (tr,k − tr,k−1)Eσ∗ · (ωr − γωs)] = 0. (22)

Proposition 5 illustrates that the optimal mechanism takes a tractable form and is only a

function of the ex post payoffs of the senders and of the receiver. Moreover, (22) is the usual

complementary slackness associated with the monotonicity constraint (18). Hence, much in line

with standard models of mechanism design, Proposition 5 illustrates a procedure for finding the

optimal mechanism. That is, one can conjecture that the monotonicity constraints are slack,

i.e., ζk = 0, and find λr, λs so that ICL constraints (20) and (21) are satisfied. If the resulting

mechanism σ∗
satisfies the monotonicity constraint, it is the optimum. Otherwise, a procedure

akin to ironing is required to find which monotonicity constraints are binding.

The next example illustrates this result.

Example 2. Consider an example in whichK = 3 and ur (h) = ρ (−2h1 − h2 + 3h3) , us (h) =

ρ
(
−
√
7h1 +

√
7h3
)
, where ρ =

√
3/14 and f1 = f2 = f3 = 1/3. In this case, γ = 5

2
√
7
.

Using Proposition 5, we can numerically find the values of λr, λs that satisfy the conditions in

Proposition 5. Figure 5 depicts the set of ωs, ωr’s for which a = 1. In this example, the agreement

regions are the positive and negative quadrants, while the disagreement regions are the remaining

regions. The optimal mechanism creates value for the receiver by recommending a = 1 when

ωr > 0 and ωs < 0—the disagreement quadrant preferred by the receiver. Surplus burning is

occurring in the positive and negative quadrants. In the positive quadrant, high reports of ωs

and low reports of ωr are punished by recommending a = 0. In the negative quadrant, surplus

burning is happening by recommending a = 1 when both the senders and the receiver prefer

a = 0.

6 Conclusion and Discussion

We studied the optimal design of communication protocols when multiple biased senders possess

indispensable private information that cannot be verified through cross-checking. Our results

show that when information is concentrated among sufficiently few people, and conflicts of in-

terest are moderate, then there can be no benefit from keeping people informationally divided.

In this case, it would be optimal for a single person to hold all the information or, alternatively,
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ωs

ωr

a = 1

a = 0

Figure 5: Optimal mechanism in Example 2. The sender’s payoff ωs is on the x-axis, and the receiver’s

payoff ωr is on the y-axis.

to let all the agents confer with each other privately and make a joint recommendation. Such a

communication protocol is consistent with the practice in firms of the CEO canvassing the views

of division managers before presenting a summary of the firm’s strategy to its board of directors.

Given the results of Antic et al. (2025) on subversive conversations, this result might also be in-

terpreted as conditions under which a completely laissez-faire attitude to managing discourse is

optimal.

However, the picture changes when information is divided among larger groups. We demon-

strate that keeping agents informationally divided enables more sophisticated mechanisms that

can improve information elicitation. Crucially, and in contrast to settingswhere cross-verification

is possible because of the senders’ observing correlated information, these mechanisms work by

punishing agreement. Of course, if agents could verify one another’s information, then punishing

disagreementwould bemore effective. Moreover, the results of Gerardi et al. (2009) and Feddersen

and Pesendorfer (1997) suggest it could be possible to perfectly identify and extract information

in large populations. Instead, in our setting, the designer falls short of the first best: While it

may be optimal to punish suspiciously high levels of consensus, doing so still burns significant

degrees of surplus.

Nonetheless, it appears that platforms have practices that bear some resemblance to ourmech-

anism. For instance, Facebook has a fact-checking policy that fits this insight to some extent.

When there is a plethora of particular stories or reports, Facebook flags them as possible mis-

information. While this does not lead to removal of content, it can lead to Facebook reducing
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the visibility of these stories. Our interval mechanism also has some similarities to Amazon’s

practice of predominantly deleting 5-star reviews, discussed in He et al. (2022). The occurrence

of such deletions, even when it appears the platform cannot reliably distinguish genuine from

paid reviews, aligns with our findings.

In recent years, verification has become increasingly difficult because of deep fakes, fake re-

views, sock-puppet accounts, and disinformation campaigns. The mechanisms we identify offer

some guidance: Specifically, punishing consensus may substitute for verification, although im-

perfectly. The practical implications and implementation of such mechanisms remain important

areas for future research.
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A Proofs

A.1 Proof of Proposition 1

Proof. We prove the claim in two steps: First, we show that one can use standard Lagrangian

techniques to characterize the solution of problem (P). Second, we construct the Lagrange multi-

pliers – members of an appropriate dual space to be precisely defined below – so that the sender-

preferred allocation, σ∗
S (s), maximizes the appropriate Lagrangian.

We begin by rewriting the problem (P) as follows:

max
σ:SN→[0,1],v

ˆ
SN

(ω (s) + r)σ (s) f (s) ds

subject to

E [(ω (s) + b)σ (s) |si] = v +
1√
N

ˆ si

−1

E [σ (s) |s̃i] ds̃i,∀si ∈ S, i ∈ {1, · · · , N} , (23)

E [σ (s) |si] ≤ E [σ (s) |s′i] ,∀si ≤ s′i (24)

0 ≤σ (s) ≤ 1, s ∈ SN . (25)

The first constraint is the integral form of the envelope version of incentive compatibility (2),

while the second constraint is the standard monotonicity of the interim allocations E [σ (s) |si].
Finally, the last condition is the upper and lower bounds on σ (s).19 We can thus frame the

problem in a convenient way for establishing weak duality or standard sufficiency conditions

for optimality—see Theorem 1 in Section 8.4 in Luenberger (1997).

More specifically, let x = (σ, v) ∈ X = L2

(
SN
)
× R and Z = L2 (S)

3N × L2

(
SN
)2
. The

above program is a linear programming problem whose constraint set is of the form G (x) ≤ 0

for some G : X → Z , where ≤ is defined below. The function G (x) is given by the quintuple

19
That incentive compatibility is equivalent to the envelope condition (23), and the monotonicity of E [σ (s) |si]

is standard. See, for example, Myerson (1981).
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(G1 (x) , · · · , G5 (x)). In this quintuple, G1, G2 : X → L2 (S)
N
and are given by

G1,i (x) (si) = E [(ω (s) + b)σ (s) |si]− v − 1√
N

ˆ si

−1

E [σ (s) |s̃i] ds̃i ≤ 0

G2,i (x) (si) = −G1,i (x) (si) ≤ 0.

That is, instead of using an equality constraint in (23), we use two inequality constraints that have

the same implication; G3,i : X → L2 (S) is given by G3,i (x) (si) = −E [σ (s) |si] (associated
with (25)), andG4, G5 : X → L2

(
SN
)
are simplyG4 (x) (s) = −σ (s) andG5 (x) (s) = 1−σ (s)

(associated with (24)). The relation ≤ is associated with the cone of members of Z whose first,

second, fourth, and fifth elements are nonnegative while its third element is a non-decreasing

function.

Given this formulation, we can use Theorem 1 in Section 8.4 in Luenberger (1997) (switched

to maximization), which states that if there exist x0 ∈ X and z∗0 ∈ Z∗
such that the Lagrangian

L (x, z∗) = w (x) + ⟨z∗, G (x)⟩ has a saddle point at x0, z∗0 ,

L (x, z∗0) ≤ L (x0, z
∗
0) ≤ L (x0, z

∗) ,∀x ∈ X, z∗ ≥ 0.

Then x0 ∈ argmaxx∈X,G(x)≤0w (x). In our setting, G is as defined before, while w (x) =

E [σ (s)ω (s)]. If x0 satisfies ⟨z∗0 , G (x0)⟩ = 0, then the second inequality is satisfied by the def-

inition of the dual cone in Z∗
. Thus, we have to construct the Lagrange multiplier z∗0 such that

⟨z∗0 , G (x0)⟩ = 0, and the first of the aforementioned inequalities holds.

Using the Riesz representation theorem—see Theorem 14.12 in Aliprantis and Border (2006)—

we can write the Lagrangian as

L (x, z∗) =

ˆ
(ω (s) + r)σ (s) f (s) ds

+
∑
i

ˆ
S

G1,i (x) (si) dΛ
1
i (si) +

∑
i

ˆ
S

G2,i (x) (si) dΛ
2
i (si)

+
∑
i

ˆ
S

G3,i (si) dΩi (si) +

ˆ
σ (s) dζ (s) +

ˆ
(1− σ (s)) dζ.

Here, Λ1
i ,Λ

2
i ’s are positive Borel measures over S, and ζ, ζ are positive Borel measures over SN

,

since z∗0 should be a member of the dual cone of ≥ in Z∗
. Additionally, Ωi is a signed measure

that satisfies Ωi ([s, s]) ≥ 0,∀s ∈ S.20 Let ∆Λi = Λ1
i − Λ2

i . We can use integration by parts to

20
Recall that the dual cone of increasing functions is the set of signed Borel measures Ω so that

´
f (si) dΩ ≥ 0

for all increasing f . This coincides with the set of measures that satisfy Ω ([s, s]) ≥ 0.
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write the Lagrangian as

L (x, z∗) =

ˆ
(ω (s) + r)σ (s) f (s) ds

+
∑
i

ˆ
S

ˆ
SN−1

[(ω (si; s−i) + b)σ (si; s−i) f−i (s−i) ds−i − v] d∆Λi

− 1√
N

∑
i

ˆ
S

ˆ
SN−1

σ (si; s−i) f−i (s−i) ds−i∆Λi ([si, s]) dsi

+

ˆ
σ (s) dζ (s) +

ˆ
(1− σ (s)) dζ (s) +

∑
i

ˆ
S

ˆ
SN−1

σ (si; s−i) f−i (s−i) ds−idΩi (si) .

We are now ready to identify the relevant Lagrange multipliers and verify that—under the upper

bound onN—they support the sender-preferred allocation x0 =
(
σS (s) , vS (s)

)
as a saddle point

of L. To that end, set

∆Λi ([s, si]) =

0 si = s

f (si)
b−r

b+
√
Ns

(s− si) si > s

Ωi ([s, si]) = 0.

By the Jordan decomposition theorem, any signedmeasure can be written as the difference of two

positive measures. Therefore, consider two positive measures Λ1
i ,Λ

2
i such that ∆Λi = Λ1

i − Λ2
i .

Given the aforementioned Lagrangian, let us define the “first order condition” as follows:
21

∀i, si > s : λ (s) = (ω (s) + r) f (s)

+
N∑
i=1

(ω (s) + b)
f (s)

f (si)

b− r

b+
√
Ns

d

dsi
(f (si) (s− si))

+
1√
N

N∑
i=1

f (s)
b− r

b+
√
Ns

(s− si) .

Moreover, we can write

s,∃i, si = s :
λ (s)

(ω (s) + b) f (s)
=

b− r

b+
√
Ns

(s− s)
N∑
j=1

1 [sj = s] .

This holds since Λi has a mass point at s, and when calculating the Fréchet–Gateaux derivative

of the Lagrangian, the effect of changes in the direction of the Dirac’s delta at s, only mass points

21
Formally, λ (s) is the Fréchet derivative ofL (x, z) evaluated at x∗

and in the direction of the dirac delta function

at s.
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are relevant.

In order to show optimality of sender-preferred allocation, it is sufficient to show that

λ (s) ≥ 0 ⇐⇒ ω (s) + b ≥ 0.

When ∀i, si > s, we have

si > s : λ (s) = (ω (s) + r) f (s)

+
b− r

b+
√
Ns

N∑
i=1

(ω (s) + b) f (s)

(
−1 +

f ′ (si) (s− si)

f (si)

)

+
1√
N

N∑
i=1

f (s)
b− r

b+
√
Ns

(s− si)

= (ω (s) + b) f (s) + (r − b) f (s)

+ (ω (s) + b) f (s)
b− r

b+
√
Ns

N∑
i=1

(
−1 +

f ′ (si) (s− si)

f (si)

)

+ f (s)
b− r

b+
√
Ns

N∑
i=1

(s− si)√
N

=(ω (s) + b) f (s)

[
1 +

b− r

b+
√
Ns

N∑
i=1

(
−1 +

f ′ (si) (s− si)

f (si)

)]

+ (r − b) f (s) + f (s)
b− r

b+
√
Ns

(√
Ns− ω (s)

)
=

[
1− b− r

b+
√
Ns

+
b− r

b+
√
Ns

×
N∑
i=1

(
−1 +

f ′ (si) (s− si)

f (si)

)]
×

(ω (s) + b) f (s) + (r − b) f (s) + f (s)
b− r

b+
√
Ns

(√
Ns+ b

)
=

b− r

b+
√
Ns

N∑
i=1

(
−1 +

f ′ (si) (s− si)

f (si)
+

1

N

r +
√
Ns

b− r

)
× .

(ω (s) + b) f (s)

This implies that if the term in the last brackets is always positive, λ (s) ≥ 0 if and onlyω (s)+b ≥
0. Note that the term in the brackets is always positive if and only if

1

N

r +
√
Ns

b− r
≥ 1− inf

si∈S

f ′ (si) (s− si)

f (si)
= 1− ℓ→ r +

√
Ns ≥ N (b− r) (1− ℓ)

The above is a quadratic equation in

√
N and since 1−ℓ > 0, it should hold when

√
N is below its
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higher root. The squared value of this higher root is given byN(b, r, ℓ, s) =

(√
s2+4r(b−r)(1−ℓ)+s

2(b−r)(1−ℓ)

)2

which

gives us the (sufficient) bound on N .

When for some i, si = s, then from the calculation of L, it is clear that λ (s) ≥ 0 if and only

if ω (s) + b ≥ 0. This concludes the proof.

A.2 Proof of Theorem 1

Proof. “Only If” Direction. The only if direction of the proof is essentially provided in Section

4.2. Here we provide the details. Let σ : RK
0 → [0, 1] be an ICL mechanism. Then there must

exist a sequence of σN
that are incentive compatible and

∥∥σN − σ
∥∥
L∞

→ 0.

The key property that we use in the derivations is the formulation of the conditional proba-

bility for the multinomial distribution, (9). An implication of (9) together with the independence

of si’s, is that if s contains at least one tk, then

PrN

(
hN (s)

) hNk (s)
√
N + fkN

fkN
= PrN

(
hN (s+ el − ek)

) hNl (s+ el − ek)
√
N + flN

flN
,

where ek is a K-dimensional vector whose elements are 0 except for its k-th element, whose

value is 1. This in turn implies that the value for tk to pretend to be tl is

EN

[
σN
(
hN (s+ el − ek)

) (
hN (s) · t+ b

)
|tk
]
=∑

s

σN
(
hN (s+ el − ek)

) (
hN (s) · t+ b

) hNk (s)
√
N + fkN

fkN
PrN

(
hN (s)

)
=∑

s

σN
(
hN (s+ el − ek)

) (
hN (s) · t+ b

)
×

hNl (s+ el − ek)
√
N + flN

flN
PrN

(
hN (s+ el − ek)

)
=∑

s

σN
(
hN (s+ el − ek)

)(
hN (s+ el − ek) · t+

tk − tl√
N

+ b

)
×

hNl (s+ el − ek)
√
N + flN

flN
PrN

(
hN (s+ el − ek)

)
=

∑
s′

σN
(
hN (s′)

)(
hN (s′) · t+ tk − tl√

N
+ b

)
hNl (s′)

√
N + flN

flN
PrN

(
hN (s′)

)
=

E
[
σN
(
hN
)(

hN · t+ tk − tl√
N

+ b

)
|tl
]
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Hence, we can write the incentive constraints as

EN
[
σN (h) |tk

]
≥
UN
k,k − UN

l,l
tk−tl√

N

≥ EN
[
σN (h) |tl

]
, tk > tl, (26)

where UN
k,k is the utility of type k under truth-telling. Since by ICL, σN →L∞ σ, taking the limit

in (26) implies the only if direction—as explained in Section 4.2.

“If” Direction. For the if direction, the proof is much more involved. We prove it in steps

and describe the basic structure of each step here. The required results that are less substantial

are proven in the online Appendix. Consider a mechanism σ that satisfies (6) and (7). We prove

that this is an ICL mechanism in the following steps:

Step 1. The constraint σ (h) ∈ [0, 1] can be dropped and replaced by σ (h) ≥ 0 and suph σ (h) <

∞, i.e., σ ∈ L∞
(
RK

0

)
.

To see this, suppose that we have proven the only if direction under the above assumption

σ ≥ 0, σ ∈ L∞
(
RK

0

)
. Note that with finite N , any nonzero σN with 0 ≤ σN that satisfies the

incentive compatibility constraints (2) can be divided by maxs∈SN σN
(
hN (s)

)
. The resulting

mechanism satisfies incentive compatibility, and each σN is between 0 and 1.

Additionally, if we establish the result for arbitrary nonnegative mechanisms, then for any σ that

takes values between 0 and 1 and satisfies (6), consider the mechanism (1− 1/M)σ forM > 1.

Since (1− 1/M)σ satisfies the hypothesis, there must exist a sequence σM,N → (1− 1/M)σ

in L∞
(
RK

0

)
where σM,N is incentive compatible with N senders. Since σM,N converges to

(1− 1/M)σ and ∥(1− 1/M)σ∥L∞
≤ 1− 1/M , there must exist nM such that for all N ≥ nM ,∥∥σM,N −

(
1− 1

M

)
σ
∥∥
L∞

< 1
2M

and ∥σM,N∥L∞
< 1. Therefore,

∥σM,N∥L∞
−
∥∥∥∥(1− 1

M

)
σ

∥∥∥∥
L∞

≤
∥∥∥∥σM,N −

(
1− 1

M

)
σ

∥∥∥∥
L∞

<
1

2M

⇒ ∥σM,N∥L∞
<

∥∥∥∥(1− 1

M

)
σ

∥∥∥∥
L∞

+
1

2M
≤ 1− 1

M

⇒ ∥σM,N − σ∥L∞
≤
∥∥∥∥σM,N −

(
1− 1

M

)
σ

∥∥∥∥
L∞

+
1

M
∥σ∥L∞

≤ 3

2M
.

By choosing the sequence

{
{σM,N}N=nM ,··· ,nM+1−1

}∞

M=2
, we have a sequence of feasible incen-

tive compatible mechanisms that converge to σ, which is the desired result.

Step 2. It is sufficient to focus on functions σ ∈ L∞
(
RK

0

)
for which E

[
σ (h) hk

fk

]
is strictly

increasing.
To see this, suppose the only if direction is true for such σ’s. Now let σ be a function that

satisfies (6), and E
[
σ (h) hk

fk

]
be the same for two values of k. We can take another function σ̂ for

38



which E
[
σ̂ (h) hk

fk

]
is strictly increasing (this exists, obviously; for example, σ̂ = 1 [h · t+ b ≥ 0]

satisfies this condition). We then consider σ̃M =
(
1− 1

M

)
σ + 1

M
σ̂. All such mechanisms satisfy

(6), and E
[
σ̃M

hk

fk

]
is strictly increasing. Thus, they are ICL. Since asM → ∞, σ̃M →L∞ σ, one

can easily construct incentive compatible mechanisms that converge to σ.

Step 3. For finite N , local incentive compatibility implies incentive compatibility.
The argument here is standard.

22
Note that the local incentive compatibility constraints are

tk − tk−1√
N

EN

[
σN (h)

hk
√
N + fkN

fkN

]
≥ UN

k,k − UN
k−1,k−1 (27)

UN
k,k − UN

k−1,k−1 ≥
tk − tk−1√

N
EN

[
σN (h)

hk−1

√
N + fk−1N

fk−1N

]
, k ≥ 2.

Step 4. Consider σ ∈ L∞
(
RK

0

)
that satisfies (6) and for which E [σhk/fk] is strictly increasing

and, as a result, σ ̸= 0. Based on the local incentive constraints, we define linear operators TN , T
that map L∞

(
RK

0

)
into RK−1.

For all k ≥ 2, let us define the following functions:

wk (h) = (h · t+ b)

(
hk
fk

− hk−1

fk−1

)
− (tk − tk−1)

wk,N (h) = (h · t+ b)

(
hk
fk

− hk−1

fk−1

)
− (tk − tk−1)

(
1 +

1√
N

hk−1

fk−1

)
.

By the local incentive compatibility in (27), if a function σN
satisfies incentive compatibility, then

it must be that for all k ≥ 2,

tk − tk−1√
N

EN

[
σN (h)

(
hk
fk

− hk−1

fk−1

)]
≥ EN

[
σN (h)wk,N (h)

]
=

ˆ
σN (h)wk,N (h) dµN ≥ 0,

where µN
is the probability measure associated with h, as we have defined. Moreover, since σ

satisfies (6), we have that

E [σ (h)wk (h)] =

ˆ
σ (h)wk (h) dµ = 0.

Let us also define w (h) = (w2 (h) , · · · , wK (h)) and wN (h) =
(
wN

2 (h) , · · · , wN
K (h)

)
. Then,

22
See, for example, Myerson (1981).
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the linear operators T, TN are defined by

TN : L∞
(
RK

0

)
→ RK−1, TNx =

ˆ
σ (h)x (h)wN (h) dµN

T : L∞
(
RK

0

)
→ RK−1, Tx =

ˆ
σ (h)x (h)w (h) dµ.

Obviously, by assumption, σ satisfies T1 =
´
σ (h)w (h) dµ = 0 ∈ RK−1, where 1 is a function

whose value is always 1.

Step 5. For large enough N , the linear operators TN and T satisfy the following properties:

1. TheymapL∞
(
RK

0

)
ontoRK−1, i.e., for all y ∈ RK−1 , there exists x ∈ L∞

(
RK

0

)
s.t. Tx = y

(TNx = y).

2. There exists c, cN > 0 such that

BK−1 (0, c) ⊂ T (B∞ (0, 1)) , BK−1 (0, cN) ⊂ TN (B∞ (0, 1)) ,

where BK−1 (0, c) is the ball of radius c around 0 in RK−1, and B∞ (0, 1) is the ball of radius
1 around 0 in L∞

(
RK

0

)
.

The first property follows from the fact that T is linear and maps a linear vector space intoRK−1
.

This implies that the image of T is a subspace of RK−1
and if T is not onto, then ImT must be

isomorphic to a Euclidean spacewith dimension less thanK−1. Hence, a basis z1, · · · , zl ∈ RK−1

with l < K − 1 must exist such that

∀x ∈ L∞
(
RK−1

0

)
, Tx = α1z1 + · · ·+ αlzl.

If we view the matrix z = (ztr1 , · · · , ztrl ) as a linear operator that maps Rl
to RK−1

, then its rank

cannot be higher than l. This implies that there exists y ̸= 0 ∈ RK−1
such that yz = 0 ∈ RK−1

or yztr1 = yztr2 = · · · = yztrl = 0 ∈ R. Therefore,

y (Tx)tr = yztr1α1 + · · ·+ yztrl αl = 0.

Since σ ̸= 0 and measurable, there should be an open set U in RK
0 such that σ ̸= 0. Choosing

x (h) to be 1 in an arbitrarily small open ball around any ĥ ∈ U and taking limit implies that

yw
(
ĥ
)
tr

= 0. We easily rule out this possibility because wk (h)’s are quadratic with different

coefficients; we establish this formally in the Online Appendix, Section C. To show the same

property for TN , one can argue that when N is large enough, ywN

(
ĥ
)
tr

= 0 for enough of

ĥ ∈ U , and thus by continuity, ywN

(
ĥ
)
tr

= 0 for an open set of ĥ’s, leading to a similar
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contradiction.

The second property is a restatement of the open mapping theorem applied to T and TN ; see, for

example, Brezis (2011)’s Theorem 2.6 on page 35.

Step 6. For all x ∈ L∞
(
RK

0

)
, TNx →RK−1 Tx, and this convergence is uniform. That is, there

exists a function κ (N) that is decreasing for N high enough and limN→∞ κ (N) = 0 such that for
all x, ∥TNx− Tx∥RK−1 ≤ κ (N) ∥x∥∞.

The aforementioned property is an extension of the central limit theorem. To prove this,

we use a version of the Berry–Esseen theorem. While in general, variants of the Berry–Esseen

theorem provide uniform bounds on deviation of the probability distribution µN
from the stan-

dard normal, our setting has two properties that require a stronger version: First, the function

w (h) is potentially unbounded; second, we have many dimensions. The version that we use is

established in Bhattacharya (1975) (Theorem on page 818); we relax it to focus only on bounded

random variables, strengthening its statement:

Theorem 3. Let Y1, ...,Yn be a sequence of i.i.d r.v.’s in Rd, (d ≥ 2) such that

1. EYi = 0 ∈ Rd and VarYi = Id, where Id is the d-dimensional identity matrix; and

2. ifYi = (yi,1, · · · , yi,d), then |yi,j| ≤ y <∞.

Let ϕn be the probability measure associated with Sn = Y1+···+Yn√
n

∈ Rd, and ϕ be the d-dimensional
standard multivariate normal probability measure. Moreover, suppose that f : Rd → R is a Borel
measurable function, and r, a natural number that satisfies

Mr (f) = sup
x∈Rd

|f (x)|
1 + ∥x∥rd

<∞, (28)

ω (f ; ε) = sup
y∈Rd

ˆ
sup

∥z−x∥d≤ε

|f (z+ y)− f (x+ y)| dϕ (x) <∞. (29)

Then, there exist constants c1, c2, and c3 that depend only on d, r such that∣∣∣∣ˆ
Rn

f (x) d (ϕn − ϕ)

∣∣∣∣ ≤ c1Mr (f)
y√
n
+ c2ω

(
f ; c3y

log n√
n

)
.

The requirements of Theorem 3 are trivially satisfied for our setup. In our setting, each ran-

dom variable is an adjusted vector-valued categorical or multinomial distribution

Yi = (Σ2:K)
−1/2

eK−1
k −


f2
.
.
.

fK


with Pr =

fk
1− f1

, k ≥ 2,
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where Σ2:K is the matrix formed by the last K − 1 rows and columns of Σ as defined in Lemma

2, and (Σ2:K)
−1/2

is the square root of its inverse, which exists and is symmetric. We focus only

on the last K − 1 element of the multinomial random variable because the matrix Σ is singular

and thus not invertible. Given this, we have

Sn = (Σ2:K)
−1/2


h2
.
.
.

hK

 .
The other requirements of Theorem 3 are more stringent. Specifically, if f is a function with

unbounded derivatives, ω (f ; ε) is not bounded. In Section C of the Online Appendix, we show

how to modify this result to apply it to a function with unbounded derivatives. Specifically, for

any function f that satisfies (28), we define f̃ (x) = 1
[
∥x∥pd + 1 ≤ n1/3

]
f (x). We can then use

Hoeffding’s inequality to bound the deviation of

´
f̃dµN

from

´
fdµN

and apply Theorem 3 to

f̃ . Given this modification, it can be shown that

ω

(
f̃ ; c3y

log n√
n

)
≤ ĈMr (f)n

1/3−1/2 log n = ĈMr (f)n
−1/6 log n.

Since n−1/6 log n eventually becomes decreasing and converges to 0, we can use this to show that

the operator TN −T is bounded and linear, and its norm can be bounded by κ (N) , where κ (N)

has the form

κ (N) = C
(
ĉ1N

−1/3 +
(
ĉ2N

−1/2 + ĉ3N
−1/6

)
logN

)
.

Step 7. There exist c > 0 and N such that for all N ≥ N ,

BK−1 (0, ε) ⊂ T
(
1+B∞

(
0,
ε

c

))
,∀ε > 0,

TN1+BK−1 (0, ε) ⊂ TN

(
1+B∞

(
0,
ε

c

))
,∀ε > 0.

The result from Step 7 is a direct implication of the results in Steps 5 and 6. Specifically,

uniform convergence of TN ’s to T implies that we can choose cN and c in Step 6 to be above a

value c > 0. To see this, consider c > 0 given by BK−1 (0, c) ⊂ T (B∞ (0, 1)). Let x ∈ B∞ (0, 1)

such that z = Tx, with z ∈ BK−1 (0, 1). By uniform convergence, we know that for all N ,

∥TNx− Tx∥K−1 ≤ κ (N) ∥x∥L∞
≤ κ (N), where κ (N) is decreasing in N and converges to 0

as N goes to infinity. We can thus choose N so that κ (N) > c/3 for all N ≥ N . Therefore, for

all N ≥ N

∥z∥K−1 − c/3 ≤ ∥Tx∥K−1 − ∥TNx− Tx∥K−1 ≤ ∥TNx∥K−1 .

42



Since ∥z∥K−1 can get arbitrarily close to c, the above means that for N ≥ N , ∥TNx∥K−1 can get

arbitrarily close to c = 2c/3, and hence we must have that

BK−1 (0, c) ⊂ TN (B∞ (0, 1)) ,∀N ≥ N.

The statement in Step 7 then follows from the fact that T and TN are linear and that T1 = 0—take

BK−1 (0, c) ⊂ TN (B∞ (0, 1)) andmultiply both sides by ε/c and shiftB∞ (0, 1) by 1 ∈ L∞
(
RK

0

)
.

Let us now show that Step 7 implies the existence of a sequence of σN ∈ L∞
(
RK

0

)
that are

positive and satisfy incentive compatibility, and σN → σ. Since we know that E [σ (h)hk/fk]−
E [σ (h)hk−1/fk−1] > 0, and that EN [σ (h)hk/fk] → E [σ (h)hk/fk], there must exist N0 such

that for N ≥ N0, we can guarantee that

EN [σ (h)hk/fk]− EN [σ (h)hk−1/fk−1] ≥
1

2
min
k≥2

E [σ (h)hk/fk]− E [σ (h)hk−1/fk−1] > 0.

Additionally, for any c > ε > 0, let Nε be such that for all N ≥ Nε, ∥TN1∥K−1 ≤ ε/2.

This implies that TN1 ∈ BK−1 (0, ε), and since 0 ∈ BK−1 (0, ε), there must exist xN,ε ∈ 1 +

B∞ (0, ε/c) such that TNxN,ε = 0. In other words,

ˆ
xN,ε (h)σ (h)wk,N (h) dµN = 0.

Since xN,ε ∈ 1+B∞ (0, ε/c), we must have that |xN,ε (h)− 1| ≤ ε/c < 1 → xN,ε (h) > 0. Now

let us set σN.ε (h) = σ (h)xN.ε (h). If we choose N ≥ max {Nε, N0}, σN,ε (h) should satisfy

EN [σN,ε (h)wN,k (h)] = 0

EN

[
σN,ε (h)

(
hk
fk

− hk−1

fk−1

)]
> 0,∀k ≥ 2

∥σN,ε (h)− σ (h)∥L∞
= ∥σ (h) (xN,ε (h)− 1)∥L∞

≤ ε

c
∥σ∥L∞

.

Therefore, σN,ε (h) is a positive function that satisfies the local incentive compatibility and thus

is incentive compatible. Since the choice of ε can be arbitrarily small, we can choose a sequence

of σN,εN (h) → σ with εN → 0. This concludes the proof.
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A.3 Proof of Theorem 2

Proof. Note that any σ (h) that is ICL satisfies

E

[
σ (h)

(
(h · t+ b)

∑
k

hktk −
∑
k

fkt
2
k

)]
= 0 ⇒ E [σ (h) ((ω (h) + b)ω (h)− Var (s))] = 0.

(30)

Now, consider the relaxed optimizationwhere the ICL requirement, (6), is replacedwith the above.

Optimality implies that any optimal mechanism σ∗
should satisfy

σ∗ (h) = 1 ⇔ ω (h) + r − α ((ω (h) + b)ω (h)− Var (s)) ≥ 0

for some Lagrange multiplier associated with the relaxed constraint (30). This condition implies

that σ∗ (h) depends only on ω (h).

Note that ifα > 0 , the above condition defines two cutoffs forω < ω that satisfy the following

quadratic equation:

ω + r + αVar (s)− α (ω + b)ω = 0. (31)

For the above to have two roots, we need to have (1− αb)2 + 4α (r + αVar (s)) ≥ 0. As we will

show in the Online Appendix, Section B.1.1, when b > r > b−
√
b2+4
2

, for any α > 0 , this is the

case. Moreover, it has to be that −b < ω < 0 < −ω < ω. Finally, there is a unique α such that

the relaxed version of ICL, (30), holds.

This implies that the optimal mechanism in the relaxed problemmust satisfy σ∗ (h) = 1when

ω = h · t ∈ [ω, ω], and σ∗ (h) = 0, otherwise. Note that when σ (h) is only a function of the

sample mean, basic properties of the normal distribution implies that E [hk|ω] = fktk
Var(s)

ω. We can

use this to show that

E
[
σ∗ (h)

(
(ω (h) + b)

hk
fk

− tk

)]
= E

[
E
[
σ∗ (h)

(
(ω (h) + b)

hk
fk

− tk

)
|ω (h) = ω

]]
= E

[
σ∗ (h)

(
(ω (h) + b)E

[
hk
fk

|ω (h) = ω

]
− tk

)]
= E

[
σ∗ (h)

(
(ω (h) + b)

tkω (h)

Var (s)
− tk

)]
=

tk
Var (s)

E [σ∗ (h) ((ω (h) + b)ω (h)− Var (s))] = 0,

where we have used the law of iterated expectations and the fact that σ∗ (h) depends only on
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ω (h). Similarly, we can write

E
[
σ∗ (h)

hk
fk

]
= E

[
σ∗ (h)E

[
hk
fk

|ω
]]

=
tk

Var (si)
E [σ∗ (h)ω] .

Since ω + ω > 0, Eσ∗ (h)ω (h) > 0 and thus the above expression is increasing in k. Therefore,

when r > b−
√
b2+4
2

, the solution of the relaxed problem is also the optimal mechanism.

In the Online Appendix, Section B.1.1, we show that α < 0 is not a possibility. Moreover,

whenever r ≤ b−
√
b2+4
2

, we must have ω = ω, and thus the solution of the relaxed problem as

well as the optimal mechanism is σ∗ ≡ 0.
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B Online Appendix

B.1 Other Proofs

B.1.1 Existence of the Multiplier in Theorem 2

Proof. Here, we show that when r >
b−
√

b2+4Var(s)

2
there is a unique α for which

ˆ
Dα

(
1− ω (ω + b)

Var (s)

)
ϕ

(
ω√

Var (s)

)
dω = 0

{ω|ψ (ω, α) = ω + r + αVar (s)− α (ω + b)ω ≥ 0} = Dα

Moreover α ∈ (0, 1/b) which implies that Dα = [ω, ω] where

−b < ω < −r < −ω < ω.

Additionally, we show that if r ≤ b−
√
b2+4
2

, then whenever the above holds, ω = ω. We do so via

a series of claims.

Claim 1. For any value of α,
´
Dα

(
1− ω(ω+b)

Var(s)

)
ϕ

(
ω√
Var(s)

)
dω is increasing in α.

To prove this claim, note that if α < 0, then either ψ (ω, α) is always positive or at most two

values of ω, ω exist such that ψ (ω, α) = ψ (ω, α) = 0 in which case Dα = R\ (ω, ω). On the

other hand, if α > 0, either Dα = [ω, ω] with ψ (ω, α) = ψ (ω, α) = 0 or Dα = ∅. Evidently, if
ψ (ω, α) does not have a zero, then the integral is 0.

Note that when the zeros exist, they are given by

ω =
1− bα

2α
− 1

2α

√
(1− bα)2 + 4rα + 4α2

Var (s) =
1− αb−

√
∆

2α
(32)

ω =
1− αb

2α
+

1

2α

√
(1− bα)2 + 4rα + 4α2

Var (s) =
1− αb+

√
∆

2α
(33)

We thus have that

dω

dα
= −ψα (ω, α)

ψω (ω, α)
= −Var (s)− ω (ω + b)

1− α (2ω + b)
= −

−ω+r
α

−
√
∆

= −ω + r

α
√
∆

dω

dα
= −ψα (ω, α)

ψω (ω, α)
= −Var (s)− ω (ω + b)

1− α (2ω + b)
= −

−ω+r
α√
∆

=
ω + r

α
√
∆

46



When α > 0, ω ≥ ω and we have

d

dα

ˆ
Dα

[
1− ω (ω + b)

Var (s)

]
ϕ

(
ω√

Var (s)

)
dω =

d

dα

ˆ ω

ω

[
1− ω (ω + b)

Var (s)

]
ϕ

(
ω√

Var (s)

)
dω =

ϕ

(
ω√

Var (s)

)
dω

dα

[
1− ω (ω + b)

Var (s)

]
− ϕ

(
ω√

Var (s)

)
dω

dα

[
1− ω (ω + b)

Var (s)

]
=

ϕ

(
ω√

Var (s)

)(
−ω + r

α
√
∆

)(
− ω + r

αVar (s)

)
− ϕ

(
ω√

Var (s)

)(
ω + r

α
√
∆

)(
− ω + r

αVar (s)

)
=

1√
∆Var (s)

[
ϕ

(
ω√

Var (s)

)(
ω + r

α

)2

+ ϕ

(
ω√

Var (s)

)(
ω + r

α

)2
]
> 0

where the above holds since both terms are squares multiplied by a density. Similarly when

α < 0, ω < ω and thus

ˆ
Dα

[
1− ω (ω + b)

Var (s)

]
ϕ

(
ω√

Var (s)

)
dω =

ˆ
R\(ω,ω)

[
1− ω (ω + b)

Var (s)

]
ϕ

(
ω√

Var (s)

)
dω =

ˆ ω

ω

[
1− ω (ω + b)

Var (s)

]
ϕ

(
ω√

Var (s)

)
dω

where in the above we have used the fact that the integral over the entire real line is 0. Then a

logic similar to the case of α > 0 implies that the above is increasing.

Claim 2. For all values α < 0,
´
Dα

[
1− ω(ω+b)

Var(s)

]
ϕ

(
ω√
Var(s)

)
dω < 0.

To show this, it is sufficient to show that it holds as α → 0 from below. Note that as α ↗ 0,

ω → −r and ω → −∞. Hence,

ˆ
Dα

[
1− ω (ω + b)

Var (s)

]
ϕ

(
ω√

Var (s)

)
dω =

ˆ −∞

−r

[
1− ω (ω + b)

Var (s)

]
ϕ

(
ω√

Var (s)

)
dω =

−
ˆ −r

−∞

[
1− ω (ω + b)

Var (s)

]
e−

ω2

2Var(s)

√
2π

dω = − (ω + b)
e−

ω2

2Var(s)

√
2π

∣∣∣∣∣∣
−r

−∞

= − (b− r)
e−

r2

2Var(s)

√
2π

< 0
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which proves the claim.

Claim3. If r > b−
√

b2+4Var(s)
2

, then ∃!α ∈ (0, 1/b) such that
´
Dα

[
1− ω(ω+b)

Var(s)

]
ϕ
(
ω/
√
Var (s)

)
dω =

0. At this value of α, −b < ω < −r < ω and 0 < ω + ω.
Note that asα ↘ 0, ω → −r andω → ∞. Hence and as above,

´
Dα

[
1− ω(ω+b)

Var(s)

]
ϕ
(
ω/
√
Var (s)

)
dω <

0 holds for α = 0. In contrast, at α = 1/b,

ω = − b
2

√
4r/b+ 4Var (s) /b2 = −

√
rb+ Var (s)

ω =
√
rb+ Var (s)

At these values

ˆ
Dα

[
1− ω (ω + b)

Var (s)

]
ϕ
(
ω/
√
Var (s)

)
dω =

ˆ √
rb+Var(s)

−
√

rb+Var(s)

[
1− ω (ω + b)

Var (s)

]
ϕ
(
ω/
√
Var (s)

)
dω

=
(√

rb+ Var (s) + b
) e− rb+Var(s)

2Var(s)

√
2π

−
(
b−

√
rb+ Var (s)

) e− rb+Var(s)
2Var(s)

√
2π

=2
√
rb+ Var (s)

e−
rb+Var(s)
2Var(s)

√
2π

> 0

Hence, there exists a unique α ∈ (0, 1/b) for which
´
Dα

[
1− ω(ω+b)

Var(s)

]
ϕ
(
ω/
√

Var (s)
)
dω = 0.

Since ω, ω satisfy (32) and (33), their sum is
1−αb
α

> 0. Moreover, since ∆ = (1− bα)2 + 4rα +

4α2
Var (s), we can sign ω, ω by signing ∆. The expression for ∆ is a quadratic function of α

whose discriminant is (4r − 2b)2 − 4 (b2 + 4Var (s)) = 16 (r2 − rb− Var (s)). When b > r >
b−
√

b2+4Var(s)

2
, this expression is always negative which means that for all values of α, ∆ > 0.

Since α < 1/b, we must have that ω > 0 > ω. Finally, ψ (−r, α) = α (Var (s) + rb− r2). When

b > r >
b−
√

b2+4Var(s)

2
, this expression is positive which means that ω < −r < ω.

Claim 4. If r ≤ b−
√

b2+4Var(s)
2

, then ∃α > 0 such that
´
Dα

[
1− ω(ω+b)

Var(s)

]
ϕ
(
ω/
√

Var (s)
)
dω =

0. For all such values of α, ω = ω.
The proof of this claim follows from the same argument as before together with the fact that

when r <
b−
√

b2+4Var(s)

2
, there is an 1/b > α > 0 for which∆ = (1− bα)2+4rα+4α2

Var (s) = 0.

To see this, note that the values of α for which this holds are given by

α =
b− 2r ± 2

√
r2 − rb− Var (s)

b2 + 4Var (s)
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Since r ≤ b−
√

b2+4Var(s)

2
, we must have that 2r ≤ b−

√
b2 + 4Var (s)which implies that the lower

root above is positive. Since as we have argued before,

´
Dα

[
1− ω(ω+b)

Var(s)

]
ϕ
(
ω/
√

Var (s)
)
dω is

strictly increasing in α whenever α > 0 and ω, ω are real and at the above values of α, ω = ω

and

´
Dα

[
1− ω(ω+b)

Var(s)

]
ϕ
(
ω/
√
Var (s)

)
dω = 0, this establishes the claim.

B.2 Extensions: Proofs

Heterogeneous Biases: Proof of Proposition 2

Proof. The fact that ICL is equivalent to 2 follows a similar existence proof as of that of Theorem

1. Such an extension is possible because the number of bias types and signal realizations is finite.

Hence, we can apply the same technique – consider a linear operator for all signal realization in

each bias group and show the existence of a mechanism for any finite number of senders.

Now, consider the problem of choosing σ (h1, · · · ,hM) to maximize the receiver’s payoff

E [σ (h1, · · · ,hM) (ω + r)] subject to the ICL requirements:

E
[
σ (h1, · · · ,hM)

(
hk,m
fk,m

(ω + bm)− tk,m

)]
= 0

E
[
σ (h1, · · · ,hM)

hk,m
fk,m

]
≥ E

[
σ (h1, · · · ,hM)

hk−1,m

fk−1,m

]
, k > 1

By multiplying the top condition by fk,mtk,m and summing over k for a fixed m and using the

fact that

∑
k fk,mt

2
k,m = η, we arrive at

E [σ (h1, · · · ,hM) (ωm (ω + bm)− η)] = 0 (34)

Moreover, since tk,m and E
[
σ

hk,m

fk,m

]
are both increasing in k, their covariance has to be positive.

In other words,

∑
k

fk,mtk,mE
[
σ
hk,m
fk,m

]
≥
∑
k

fk,mtk,m
∑
k

fk,mE
[
σ
hk,m
fk,m

]

The left hand side of the above is E [σωm] while the right hand side is 0. Hence, we must have

that for allm, E [σωm] ≥ 0.

In other words, if a mechanism is ICL, then it must satisfy (34) and E [σωm] ≥ 0. One can thus

focus on the relaxed problem of maximizing E [σ · (ω + r)] subject to (34) and E [σ · ωm] ≥ 0. In

this relaxed problem, all constraint only depend on (h1, · · · ,hM) via ω1, · · · , ωM which implies

that the solution should only depend on ω1, · · · , ωM . Additionally, σ∗
is a solution to this relaxed

problem if and only if multipliers λ1, · · · , λM associated with (34) and ζm ≥ 0 associated with
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E [σ · ωm] ≥ 0 exists that satisfy the conditions provided in statement of the proposition.

It therefore remains to be shown that if σ∗
solves the relaxed problem, then it is indeed ICL.

To see this, Since hm ∼ N (0,Σm) and hk,m’s are independent across different bias groups, we

must have that

E [hk,m|ω1, · · · , ωM ] = E [hk,m|ωm] =
E [hk,mωm]

E [ω2
m]

ωm =
fk,mtk,m

η
ωm

Therefore,

E
[
σ∗ ·

(
hk,m
fk,m

(ω + bm)− tk,m

)]
= E

[
E
[
σ∗ · hk,m

fk,m
(ω + bm) |ω1, · · · , ωM

]
− σ∗ · tk,m

]
= E

[
σ∗ · (ω + bm)E

[
hk,m
fk,m

|ω1, · · · , ωM

]
− σ∗ · tk,m

]
= E

[
σ∗ · (ω + bm)

tk,m
η
ωm − σ∗ · tk,m

]
=
tk,m
η

E [σ∗ · (ω + bm)ωm − ησ∗] = 0

where in the above we have used the law of iterated expectations and that σ∗
is the solution to

the relaxed problem. Similarly,

E
[
σ∗ · hk,m

fk,m

]
= E

[
σ∗ · E

[
hk,m
fk,m

|ω1, · · · , ωM

]]
=
tk,m
η

E [σ∗ · ωm]

Since σ∗
is the solution to the relaxed problem, it must satisfy E [σ∗ · ωm] which implies that the

above is increasing in k. Therefore, σ∗
is ICL.

B.2.1 General Preferences: Proof of Proposition 3

Proof. Similar to the first part of Theorem 1, we can write

UN
l,k =

∑
s−∈SN−1

PrN−1 (s−)σ
N
(
hN (s− + el)

)
us
(
hN (s− + ek)

)
(35)

where in the above ek is aK–dimensional vector whose elements are 0 except for its k-th element

which is 1

Consider a vector of realizations s− ∈ SN−1
for which hN (s− + ek) = h. In this case, the

count of si’s which are of typem is given by nm =
√
Nhm+Nfm with

√
Nhk +Nfk ≥ 1. Then
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probability of this occurring – using the multi–nomial distribution – is given by

PrN−1 (s−) =

(
N − 1

n1, · · · , nk − 1, · · · , nK

)
fn1
1 · · · fnk−1

k · · · fnK
K

=

(
N

n1, · · · , nK

)
fn1
1 · · · fnK

K

nk

fkN

= PrN (s− + ek)
hk
√
N +Nfk
fkN

Using this adjustment of the probabilities, we can write

UN
l,k =

∑
s−∈SN−1

PrN−1 (s−)σ
N
(
hN (s− + el)

)
us
(
hN (s− + ek)

)
=

∑
s−∈SN−1

PrN−1 (s−)σ
N
(
hN (s− + el)

)
us
(
hN (s− + el)

)
+

∑
s−∈SN−1

PrN−1 (s−)σ
N
(
hN (s− + el)

) [
us
(
hN (s− + ek)

)
− us

(
hN (s− + el)

)]
= UN

l,l +
∑

s−∈SN−1

PrN−1 (s−)σ
N
(
hN (s− + el)

) [
us
(
hN (s− + ek)

)
− us

(
hN (s− + el)

)]
Let µN (h) be the probability of the adjusted frequencies being equal to h. If h = hN (s), then

it must be that µN (h) = PrN (s). Let us also define HN ⊂ RK
0 to be the support of µN

. We can

thus write the above as

UN
l,k =U

N
l,l +

∑
s−∈SN−1

PrN−1 (s−)σ
N
(
hN (s− + el)

) [
us
(
hN (s− + ek)

)
− us

(
hN (s− + el)

)]
=UN

l,l +
∑

s−∈SN−1

PrN (s− + el)
hNl (s− + el)

√
N +Nfl

flN
σN
(
hN (s− + el)

)
×

[
us
(
hN (s− + ek)

)
− us

(
hN (s− + el)

)]
=UN

l,l +
∑

h∈HN ,hl≥
1−fl

√
N

N

µN (h)σN (h)
hl
√
N +Nfl
flN

[
us

(
h+

ek − el√
N

)
− us (h)

]

=UN
l,l +

∑
h∈HN ,hl≥

1−fl
√
N

N

µN (h)σN (h)
hl
√
N +Nfl
flN

[
us

(
h+

ek − el√
N

)
− us (h)

]
+

∑
h∈HN ,hl=−fl

√
N

µN (h)σN (h)
hl
√
N +Nfl
flN

[
us

(
h+

ek − el√
N

)
− us (h)

]
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If we useEN
to refer to the expectation with respect to µN

, we can write the incentive constraints

as

UN
k,k − UN

l,l ≥ EN

[
σN (h)

hl
√
N + flN

flN

(
us

(
h+

ek − el√
N

)
− us (h)

)]
(36)

As N tends to infinity,

√
N
(
us

(
h+ ek−el√

N

)
− us (h)

)
converges to

∂us

∂hk
− ∂us

∂hl
. Similar to the

specific case of section 4, we have

√
N
(
UN
k,k − UN

l,l

)
=

√
NEN

[
σ (h)

(
hk
√
N + fkN

fkN
− hl

√
N + flN

flN

)
us (h)

]

= EN

[
σ (h)

(
hk
fk

− hl
fl

)
us (h)

]
Now taking a limit in (36) gives us

E
[
σ (h)us (h)

(
hk
fk

− hl
fl

)]
≥ E

[
σ (h)

(
∂us (h)

∂hk
− ∂us (h)

∂hl

)]
Since this has to hold for all k, l, it should hold with equality and thus

E
[
σ (h)

(
us (h)

hk
fk

− ∂us (h)

∂hk

)]
= U

Similar to before, we also need that when k > l,

EN

[
σN (h)

(
hk

fk
√
N

+ 1

)(
us (h)− us

(
h+

el − ek√
N

))]
≥

EN

[
σN (h)

(
hl

fl
√
N

+ 1

)(
us

(
h+

ek − el√
N

)
− us (h)

)]
Using Taylor’s formula, we can write

us

(
h+

el − ek√
N

)
− us (h) =

el − ek√
N

∇us (h)tr +
1

2

el − ek√
N

∇2us (h)
etrl − etrk√

N
+O

(
1

N
√
N

)
us

(
h+

ek − el√
N

)
− us (h) =

ek − el√
N

∇us (h)tr +
1

2

ek − el√
N

∇2us (h)
etrk − etrl√

N
+O

(
1

N
√
N

)
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Thus the above inequality becomes

EN

[
σN (h)

(
hk

fk
√
N

+ 1

)(
ek − el√

N
∇us (h)tr −

1

2

ek − el√
N

∇2us (h)
etrk − etrl√

N
+O

(
1

N
√
N

))]
≥

EN

[
σN (h)

(
hl

fl
√
N

+ 1

)(
ek − el√

N
∇us (h)tr +

1

2

ek − el√
N

∇2us (h)
etrk − etrl√

N
+O

(
1

N
√
N

))]
We thus have

1

N
EN

[
σN (h)

(
hk
fk

(ek − el)∇us (h)tr −
1

2
(ek − el)∇2us (h) (e

tr

k − etrl )

)]
+O

(
1

N
√
N

)
≥

1

N
EN

[
σN (h)

(
hl
fl

(ek − el)∇us (h)tr +
1

2
(ek − el)∇2us (h) (e

tr

k − etrl )

)]
+O

(
1

N
√
N

)
Hence, as N converges to infinity, the above multiplied by N converges to

E
[
σ (h)

(
hk
fk

− hl
fl

)(
∂us (h)

∂hk
− ∂us (h)

∂hl

)]
≥

E
[
σ (h)

(
∂2us (h)

∂h2k
+
∂2us (h)

∂h2l
− 2

∂2us (h)

∂hl∂hk

)]
The only if proof follows closely that of Theorem 1. Specifically, we use the power bound from

Assumption 1 and apply Lemma (3) to show the uniform convergence used in proof of Theorem

2. This concludes the proof.

B.3 Proof of Proposition 5

Proof. If we apply the characterization result of Proposition 3 to this setup, it implies that a mech-

anism σ (h) is ICL if and only if it satisfies

E
[
σ (h)

(
ts · h

hk
fk

− ts,k

)]
= U,∀k (37)

E
[
σ (h)

hk
fk

]
≥ E

[
σ (h)

hl
fl

]
,∀k > l (38)

The fact that

∑
k fkts,k = 0 implies that U = 0.

The rest of the proof closely follows that of Proposition 2. Namely, if σ is ICL, i.e., satisfies

(37) and (38), then by multiplying (37) by fkts,k and summing over k, we arrive at

E
[
σ (h)

(
ω2
s − 1

)]
= 0 (39)
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where ωs = ts · h. Similarly, by repeating this for fktr,k , we arrive at

E [σ (h) (ωsωr − γ)] = 0 (40)

Finally, note that properties of the normal distribution implies that

E [hk|ωs, ωr] =
[
ωs ωr

] [ E [ω2
s ] E [ωsωr]

E [ωsωr] E [ω2
r ]

]−1 [
E [ωshk]

E [ωrhk]

]

where

E
[
ω2
s

]
=
∑
k,l

E [ts,kts,lhkhl] =
∑
k,l

ts,kts,lfk (1 [k = l]− fl)

=
∑
k

fkt
2
s,k = 1

E
[
ω2
r

]
= 1,E [ωrωs] =

∑
k

fktr,kts,k = γ

E [ωshk] = fkts,k,E [ωrhk] = fktr,k

and hence

E [hk|ωs, ωr] = fk

[
ωs ωr

] [ 1 γ

γ 1

]−1 [
ts,k

tr,k

]

=
fk

1− γ2

[
ωs ωr

] [ 1 −γ
−γ 1

][
ts,k

tr,k

]
=

fk
1− γ2

[(ts,k − γtr,k)ωs + (tr,k − γts,k)ωr]

Replacing the above in the (38) leads to

E [σ (h) ((ts,k − γtr,k)ωs + (tr,k − γts,k)ωr)] : increasing in k (41)

Hence, similar to the proof of Proposition 2, we can focus on a relaxed problem where instead

of ICL we impose (39), (40), and (41). The solution of the relaxed problem should then satisfy

the conditions provided in proposition 5. Finally, we must show that the solution of the relaxed

problem is indeed ICL. This follows steps similar to those in proof of Proposition 2.
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C Proof of Uniform Convergence in Theorem 1

Proof. In this section, we provide a detailed proof of Step 6 in the proof of Theorem 1. Let us first

show the following lemma:

Lemma 3. Let f : Rd → R be a continuously differentiable function (except possibly for a measure
zero set of values) and suppose that p ≥ 1 exists such that f (x) = O (∥x∥pd) and

∂f
∂xj

(x) = O (∥x∥pd)
for all j = 1, · · · , d. Moreover, let ϕn and ϕ be constructed as in Theorem 3. Then, there exists a
function κ (n) which is strictly decreasing for high enough values of n, it is independent of f , and
limn→∞ κ (n) = 0 such that

∣∣∣∣ˆ f (x) d (ϕn − ϕ)

∣∣∣∣ ≤ κ (n)max

{
Mp (f) ,

{
Mp

(
∂f

∂xj

)}d

j=1

}
<∞.

Proof. Note that f and∇f are continuous functions (almost surely everywhere). Thus the func-

tions |f (x)| / (1 + ∥x∥pd) and |∇f (x)| / (1 + ∥x∥pd) have the same property. This implies they

are bounded in a ball around the origin. Moreover, since f,∇f both satisfy O (∥x∥pd), there must

exist C > 0 such that

|f (x)| ,
∣∣∣∣ ∂∂xj f (x)

∣∣∣∣ ≤ C (1 + ∥x∥pd) ,∀x ∈ Rd

Obviously, we can set C = max

{
Mp (f) ,

{
Mp

(
∂f
∂xj

)}d

j=1

}
.

Now, let us consider the following function

f̃ (x) =

f (x) ∥x∥d ≤ n
1
3p

0 ∥x∥d > n
1
3p

We can use the triangle inequality and write∣∣∣∣ˆ f (x) d (ϕn − ϕ)

∣∣∣∣ =
∣∣∣∣∣
ˆ
f̃ (x) d (ϕn − ϕ) +

ˆ
∥x∥d>n1/(3p)

f (x) d (ϕn − ϕ)

∣∣∣∣∣
≤
∣∣∣∣ˆ f̃ (x) d (ϕn − ϕ)

∣∣∣∣+
∣∣∣∣∣
ˆ
∥x∥d>n1/(3p)

f (x) dϕn

∣∣∣∣∣+
∣∣∣∣∣
ˆ
∥x∥d>n1/(3p)

f (x) dϕ

∣∣∣∣∣
(42)

The above expression is consisted of the three integrals which we will bound next. By applying
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the intermediate value theorem to the function g (t) = f (t (z− x) + x+ y) we have that

∃t1 ∈ [0, 1] , f (z+ y)− f (x+ y) = (z− x)T ∇f (y + t1x+ (1− t1) z)

Now, if ∥x− z∥d ≤ ε, we must have that

|f (x+ y)− f (z+ y)| ≤ Cε (1 + (∥x+ y∥+ ε)p) ,∀x,y

Therefore, for f̃ , we have

ω
(
f̃ ; ε
)
= sup

y∈Rd

ˆ
Rd

sup
z:∥x−z∥d≤ε

∣∣∣f̃ (x+ y)− f̃ (z+ y)
∣∣∣ dϕ (x)

≤ sup
∥y∥d≤n1/(3p)+ε

ˆ
∥x+y∥d≤n1/3p+ε

sup
z:∥x−z∥d≤ε

|f (x+ y)− f (z+ y)| dϕ

≤ sup
∥y∥d≤n1/(3p)+ε

ˆ
∥x+y∥d≤n1/3p+ε

Cε (1 + (∥x+ y∥+ ε)p) dϕ

≤ Cε
(
1 +

(
n1/(3p) + 2ε

)p)
This implies that f̃ satisfies the requirements of Theorem 3 for f . Hence, we can write∣∣∣∣ˆ f̃d (ϕn − ϕ)

∣∣∣∣ ≤ c1Mr

(
f̃
) y√

n
+ c2ω

(
f̃ ; c3y

log n√
n

)
Now, let n satisfy c3y

logn√
n

= 1/2 which is guaranteed to exist since log n/
√
n is decreasing for

values of n ≥ e2. Therefore, for values of n ≥ n, we have

ω

(
f̃ ; c3y

log n√
n

)
≤ Cc3y

log n√
n

(
1 +

(
n1/(3p) + 1

)p)
≤ Cc3y

log n√
n

(
1 + 2pn1/3

)
= Cc3y

(
n−1/2 + 2pn−1/6

)
log n

As a result, we can write∣∣∣∣ˆ f̃d (ϕn − ϕ)

∣∣∣∣ ≤ Cy
(
c1n

−1/2 + c2c3
(
n−1/2 + 2pn−1/6

)
log n

)
= C

(
ĉ1n

−1/3 + ĉ2n
−1/2 log n+ ĉ3n

−1/6 log n
)

where in the above ĉ1, ĉ2, ĉ3 are only functions of y, d and p.

Additionally, since each yi,j is bounded above and below by y and −y, we can apply a multi-
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dimensional Hoffding’s inequality to it and write

Pr

(
|
∑

i yi,j|√
n

≥ t

)
≤ 2e

− t2

2y2

We can also write

Pr (∥Sn∥d ≥ t) ≤ Pr

(
max

j
|Sn,j| ≥

t√
d

)
≤

d∑
j=1

Pr

(
|
∑

i yi,j|√
n

≥ t√
d

)
≤ 2de

− t2

2dy2 (43)

where the first inequality follows from the fact that ∥x∥d ≤
√
dmaxj |xj|. We can then write∣∣∣∣∣

ˆ
∥x∥d≥n

1
3p

f (x) dϕn

∣∣∣∣∣ ≤
ˆ
∥x∥d≥n

1
3p

|f (x)| dϕn

≤ C

ˆ
∥x∥d≥n

1
3p

(1 + ∥x∥pd) dϕn

By applying Fubini’s theorem, we can write the last integral as

ˆ
∥x∥d≥n

1
3p

(1 + ∥x∥pd) dϕn =
(
n

1
3 + 1

)
ϕn

({
x|1 + ∥x∥pd ≥ n

1
3 + 1

})
+

ˆ ∞

n
1
3+1

ϕn ({x|1 + ∥x∥pd ≥ t}) dt

We can apply the inequality (43) to the above and have∣∣∣∣∣
ˆ
∥x∥d≥n

1
3p

f (x) dϕn

∣∣∣∣∣ ≤C
ˆ ∞

n
1
3+1

ϕn ({x|1 + ∥x∥pd ≥ t}) dt+

C
(
n

1
3 + 1

)
ϕn

({
x|1 + ∥x∥pd ≥ n

1
3 + 1

})
=C

ˆ ∞

n
1
3p

pzp−1ϕn ({x| ∥x∥d ≥ z}) dz+

C
(
n

1
3 + 1

)
ϕn

({
x| ∥x∥d ≥ n

1
3p

})
≤2dC

ˆ ∞

n
1
3p

pzp−1e
− z2

2dy2 dz + 2dC
(
n

1
3 + 1

)
e
− n

2
3p

2dy2

≤2dC
(
2pdy2

)p
e−pn−1/3 + 4dC

(
2pdy2

)p
e−p2n− 1

3

Where the first term in the last inequality follows from realizing that the function xpe−x
is maxi-

mized at x = p and has a maximum value of ppe−p.23 The second term comes from a similar logic

23
This implies that e−x ≤ ppe−px−p

for all values of x. We can then write the last integral as

´∞
n1/3 e

− x2/p

2dy2 dx ≤
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applied to

(
n1/3 + 1

)
e−n2/(3p)/(2dy2)

realizing that since n ≥ 1, n1/3 + 1 ≤ 2n1/3
. We can write

the last term in the inequality above as Cĉ4n
−1/3

where ĉ4 only depends on d, p and y.

Finally, the last term in (42) satisfies∣∣∣∣∣
ˆ
∥x∥d>n1/(3p)

f (x) dϕ

∣∣∣∣∣ ≤
ˆ
∥x∥d>n1/(3p)

|f (x)| dϕ

≤ C

ˆ
∥x∥d>n1/(3p)

(1 + ∥x∥pd) dϕ

We can use the spherical coordinates and rewrite the above integral as

C

ˆ
∥x∥d>n1/(3p)

(1 + ∥x∥pd) dϕ =

C

ˆ ∞

n
1
3p

(1 + rp) rd−1 e−
r2

2

(2π)d/2
dr

ˆ
[0,π]n−2×[0,2π]

sinn−2 φ1 · · · sinφn−2dφ1 · · · dφn−1 =

C

ˆ ∞

n
1
3p

(1 + rp) rd−1 e−
r2

2

(2π)d/2
dr

2πd/2

Γ (d/2)
≤

2C

ˆ ∞

n
1
3p

rp+d−1e−
r2

2 dr
21−d/2

Γ (d/2)

where in the above we have used the fact that if r ≥ 1, then rp + 1 ≤ 2rp and Γ (·) is Eu-
ler’s Gamma function. Using the fact that xd+2pe−x2/2

is maximized at
d+2p
2

and that the highest

possible value it takes is (d+ 2p)
d+2p

2 e−(d+2p)2/4
, we can show that∣∣∣∣∣

ˆ
∥x∥d>n1/(3p)

f (x) dϕ

∣∣∣∣∣ ≤ 2C (d+ 2p)
d+2p

2 e−(d+2p)2/4n−1/3 21−d/2

pΓ (d/2)
= Cĉ5n

−1/3

where in the above ĉ5 only depends on d and p. Replacing all of these bounds into (42) we have∣∣∣∣ˆ f (x) d (ϕn − ϕ)

∣∣∣∣ ≤C (ĉ1n−1/3 +
(
ĉ2n

−1/2 + ĉ3n
−1/6

)
log n

)
+

C (ĉ4 + ĉ5)n
−1/3 = Cκ (n)

To see that κ (n) is eventually decreasing, notice that in the above,

(
ĉ2n

−1/2 + ĉ3n
−1/6

)
log n is

the only term that can be decreasing. Since the function n−α log n is maximized at n = e1/α, for

all values of n ≥ e6, κ (n) is guaranteed to be decreasing. Moreover, using a similar reasoning

we see that limn→∞ κ (n) = 0. This establishes the claim.

ppe−p
´∞
n1/3 (2dy)

2
x−2dx which implies the inequality.
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To establish the claim that TN − T is a bounded linear operator, recall that TN − T is given

by

(TN − T )x =

ˆ
σ (h)x (h)wN (h) dµN −

ˆ
σ (h)x (h)w (h) dµ

=

ˆ
σ (h)x (h)

(
w (h)− 1√

N
(t2:K − t1:K−1) � h1:K−1 � f1:K−1

)
dµN

−
ˆ
σ (h)x (h)w (h) dµ

=

ˆ
σ (h)x (h)w (h) d

(
µN − µ

)
− (t2:K − t1:K−1)√

N
�
ˆ
σ (h)x (h)h1:K−1 � f1:K−1dµ

N

where in the above � is the Hadamard (pointwise) vector multiplication and � is the Hadamard

division. Moreover, h1:K−1 is consisted of the first K − 1 entries of h. Note that for the last

integral above we have∣∣∣∣(t2:K − t1:K−1)√
N

�
ˆ
σ (h)x (h)h1:K−1 � f1:K−1dµ

N

∣∣∣∣ ≤
(t2:K − t1:K−1)√

N
�
ˆ

|σ (h)| |x (h)| |h1:K−1 � f1:K−1| dµN ≤

(t2:K − t1:K−1)√
N

�
ˆ

|σ (h)| |h1:K−1 � f1:K−1| dµN ∥x∥L∞

where the inequalities above are element wise, i.e., each side is a member ofRK−1
. By the Central

Limit Theorem,

ˆ
|σ (h)| |h1:K−1 � f1:K−1| dµN →

ˆ
|σ (h)| |h1:K−1 � f1:K−1| dµ

Thus for N large enough, we have that∣∣∣∣(t2:K − t1:K−1)√
N

�
ˆ
σ (h)x (h)h1:K−1 � f1:K−1dµ

N

∣∣∣∣ ≤
(1 + ε)

(t2:K − t1:K−1)√
N

�
ˆ

|σ (h)| |h1:K−1 � f1:K−1| dµ ∥x∥L∞
= a (σ)

∥x∥L∞√
N

(44)

Let us now focus on the first term

´
σ (h)x (h)w (h) d

(
µN − µ

)
and refer to it as T̃Nx where

T̃N is a linear operator that maps L∞
(
RK

0

)
to RK−1

. Consider the definition of T̃N ’s norm as an
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operator over L∞:∥∥∥T̃N∥∥∥
∞

= sup
x∈L∞(RK

0 ),∥x∥L∞≤1

ˆ
x (h)σ (h)w (h) d

(
µN − µ

)
= sup

z∈L∞(RK
0 ),∥z∥L∞≤∥σ∥L∞

ˆ
z (h)w (h) d

(
µN − µ

)
We can thus in the above view w (h) d

(
µN − µ

)
as a signed measure and thus, the optimum

value in the above should assign z (h) = ∥σ∥L∞
to a maximal set of w (h) d

(
µN − µ

)
, i.e., sets

A ⊂ RK
0 where

´
A
w (h) d

(
µN − µ

)
is maximized (such a set and all of its subsets should have

non-negative measure) and z (h) = −∥σ∥L∞
for its compliment. Therefore,

∥∥∥T̃N∥∥∥
∞

= sup
A⊂RK

0 ,A:Borel

∥σ∥L∞

ˆ
A

w (h) d
(
µN − µ

)
− ∥σ∥L∞

ˆ
Ac

w (h) d
(
µN − µ

)
= 2 ∥σ∥L∞

sup
A⊂RK

0 ,A:Borel

ˆ
A

w (h) d
(
µN − µ

)
+ ∥σ∥L∞

ˆ
w (h) d

(
µN − µ

)
(45)

Now consider the function v (h) = 1 [h ∈ A]w (h). Sincew (h) is a quadratic form, this function

must satisfyM2 (v) ≤ M2 (w) < ∞. Moreover, since w (h) is continuously differentiable, v (h)

is also continuously differentiable accept at the boundary of A. Since A is a Borel subset of RK
0 ,

its boundary must have a zero measure. So v (h) is almost surely continuously differentiable and

its derivative also satisfies M2 (∂v/∂hk) ≤ M2 (∂w/∂hk) < ∞ (since it is linear). This implies

that we can use Lemma 3 (apply it to both terms in (45)) and thus have that∥∥∥T̃N∥∥∥
∞

≤ 3 ∥σ∥∞ κ (N)max
{
M2 (w) , {M2 (∂w/∂hk)}K−1

k=1

}
and thus using, the Holder inequality implies that∥∥∥T̃Nx∥∥∥

K−1
≤
∥∥∥T̃N∥∥∥

∞
∥x∥∞ ≤ 3 ∥σ∥∞ ∥x∥∞Aκ (N)

for some A > 0. This together with inequality (44) implies that

∥(TN − T )x∥K−1 ≤
∥∥∥T̃Nx∥∥∥

K−1
+ ∥a (σ)∥K−1

∥x∥L∞√
N

≤ ∥x∥∞
(
3 ∥σ∥∞Aκ (N) + ∥a (σ)∥K−1 /

√
N
)

which is the desired result.
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C.1 Surjectivity of the operator T

Proof. The only remaining part of the proof of Theorem 1 is to show surjectivity of T . As we

have shown in the proof of Theorem 1, if T is not surjective, then there must exists an open set

of values of h, U , in RK
0 together with a non-zero vector y ∈ RK−1

such that yw (h)tr = 0. In

other words,

K∑
k=2

ykwk (h) = 0,∀h ∈ U

Recall that wk (h) = (h · t+ b)
(

hk

fk
− hk−1

fk−1

)
− (tk − tk−1). Since the above has to hold in an

open set, we should also have that

K∑
k=2

yk
∂2

∂h2l
wk (h) = 0

where by taking derivatives, we take into account the fact that in RK
0 a change in hk, k ≥ 2,

should decrease h1 by the same amount. We have

∂2

∂h2l
wk (h) = 1 [k = l]

tk
fk

− 1 [k − 1 = l]
tk−1

fk−1

+ 1 [k = 2]
tl
f1

Therefore,

K∑
k=2

yk
∂2

∂h2l
wk (h) = 0

K∑
k=2

yk

(
1 [k = l]

tk
fk

− 1 [k − 1 = l]
tk−1

fk−1

+ 1 [k = 2]
tl
f1

)
=

yl
tl
fl

− yl+1
tl
fl

+ y2
tl
f1

= 0, l ≤ K − 1

yK
tK
fK

+ y2
tK
f1

= 0

In other words,

yl − yl+1

fl
+
y2
f1

= 0, l ≤ K − 1,
yK
fK

+
y2
f1

= 0

Multiplying the l-th equation by fl and summing over them we have

y2 +
∑
l

fl
y2
f1

= 0 → y2 = 0 → yK = 0 → yl = 0, ∀l

which is a contradiction.
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C.2 A Cheap-Talk Two Sender Example

In this section we explore how the mechanisms change if we revert to traditional cheap-talk

a la Crawford and Sobel (1982), where two senders get signals si ∼ U [−1, 1] , i = 1, 2 and

in which they independently and simultaneously make one report each. In this case, senders

cannot achieve the sender best allocation as it requires them to report their signal truthfully in

which the receiver will not obey the sender-preferred mechanism. One can show that the pure

strategy cheap talk equilibria must be monotone partitional. For instance, there are two types of

partitional equilibria that divide [−1, 1] into two sub-intervals. Their associated allocations are:

σ1 (s) =

1 s1, s2 ≥ −1+2
√
2b

3

0 otherwise

, σ2 (s) =

0 s1, s2 ≤ 1−2
√
2b

3

1 otherwise

.

Considering σ1 and σ2 as direct mechanisms the cutoffs are chosen so that the cutoff type is

indifferent between truth-telling and lying. This is depicted in Figure 6.

s1

s2

1-1

1

-1−1+2
√
2b

3

−1+2
√
2b

3

√
2b

s1

s2

1-1

1

-1
1−2

√
2b

3

1−2
√
2b

3

√
2b

Figure 6: Recommendation mechanisms associated with simultaneous-move cheap talk. The

mechanisms recommend a = 1 for high report by both sender (left) or either of the senders

(right).

As can be observed from Figure 6, equilibria of the simultaneous-move cheap talk game add

some areas (recommends a = 1) to the south-west of the sender-preferred area (depicted by the

dashed red line in Figure 6) while removing some areas from this area.
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C.3 Intuition of Proposition 1

In this section, we formalize the perturbation reported in section 3. Consider the hypercubes

introduced in that section and take the limit when the length of hypercubes dx, goes to zero. We

may evaluate the receiver’s marginal payoff from such a perturbation. Indeed, for a type xm at

the border of hypercube BN
m = (xm−1, xm]

N
, incentive compatibility requires that the costs of

the distortions εm and εm+1 associated with reporting xm and xm+1, respectively, are equal:

(
xm√
N

+ b

)
(εm − εm+1) +

(N − 1)√
N

(
xm + xm−1

2
εm − xm + xm+1

2
εm+1

)
= 0.

Equivalently,

(√
Nxm + b

)
(εm − εm+1)− dx

(N − 1)√
N

(
εm + εm+1

2

)
= 0. (46)

The first term on the left side of (46) is a marginal benefit from over-reporting, and reducing the

probability of distortion by εm − εm+1.
24

The second term is a marginal cost associated with

suffering distortion when all other types are higher. For dx small, the difference equation (46) is

approximated by the differential equation

d ln ε

dω
= −N − 1

N
× 1

ω + b
, (47)

for ω > −b, where we have used the substitution ω =
√
Nx along the line s1 = · · · = sN =

x. Equation (47) is solved by ε(ω) =
(

1√
N(ω+b)

)−N−1
N
. Having characterized the distortions

themselves, the marginal payoff to the receiver’ is simply

−
∑ ωm−1 + ωm

2
εm

1

2N
dxN ≈ −dxN

√
Nˆ

−b

ω

(
1√

N (ω + b)

)−N−1
N

dω ∝
√
N

N + 1
(b
√
N − 1),

where ωm =
√
Nxm. Thus, this perturbation beats the sender-preferred allocation precisely

when Assumption 1 is violated. That is, Assumption 1 is tight in the uniform case.

The above exercise also provides intuition for the role played by b and N in Proposition

1. As we have seen, reducing acceptance in the disagreement region must be accompanied by

distortions in the agreement region to preserve incentives. When b increases, the distortions

apply to a greater extent over a region for which the receiver benefits. WhenN increases, the cost

24
Indeed, it is easy to see from (46) that indifference requires εm > εm+1 – since ω is everywhere greater inBN

m+1

than in BN
m , the probability of distortion must decrease in m.
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b− r

N

r ≥ 0

r < 0

Figure 7: Set of N and b− r that satisfy Assumption 1 when si ∼ U [−1, 1]

of punishment becomes larger relative to a marginal upward report (see, for instance, equation

(46)), because that punishment occurs when many other senders also have higher types. For

this reason, the distortions diminish more rapidly in ω while preserving incentives (equation

(47)). Since these distortions are actually good for the receiver at low values of ω, the benefits

of the distortion become large relative to its costs. By contrast, small b and N drive towards the

optimality of the sender-preferred allocation.

Generally speaking, one can fix the distribution f (s) and preference parameter of the re-

ceiver, r, and consider the set of biases b− r and the number of senders that satisfy Assumption

1. As depicted in Figure 7, as the degree of bias increases the maximum number of senders

that satisfies Assumption 1 goes down. Moreover, the relevant statistic of the distribution is

maxs∈S 1 − (maxS−s)f ′(s)
f(s)

. A higher number for this statistic leads to a smaller set of possible

values for (b− r,N).

D Numerical Solution of Small Economy with Large Bias

The problem of finding the optimal mechanism, (P), is a linear program. Here we plot the numer-

ical solution of this linear program when N = 2, b = 0.6
√
2, si ∼ U [−1, 1], and r = 0. For the

numerical solution, we discretize [−1, 1] into 200 subintervals and solve for optimal σ for each

square generated by all such subintervals, i.e., we solve for a vector of 40000 values. We use the

linprog function in MATLAB to solve this linear program. Figure 8 depicts the solution. The
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Figure 8: Numerical simulation of the optimal mechanism

yellow area represents the values for which σ = 1 and the blue area is associated with σ = 0.
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