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Abstract

We consider the matroid coflow scheduling problem, where each job is comprised of a set of flows

and the family of sets that can be scheduled at any time form a matroid. Our main result is a

polynomial-time algorithm that yields a 2-approximation for the objective of minimizing the weighted

completion time. This result is tight assuming P 6= NP . As a by-product we also obtain the first

(2 + ǫ)-approximation algorithm for the preemptive concurrent open shop scheduling problem.
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1 Introduction

Coflows were introduced in [5] as: “We propose coflows, a networking abstraction to express

the communication requirements of prevalent data parallel programming paradigms. Coflows

make it easier for the applications to convey their communication semantics to the network,

which in turn enables the network to better optimize common communication patterns.”

Data parallel application frameworks such as MapReduce [9] and Spark [31] have a unique

processing pattern that interleaves local computation with communication across machines.

Due to the size of the large data sets processed, communication often tends to be a bottleneck

in the performance of these platforms and the coflow model abstracts out this bottleneck.

Theoretical work on coflow scheduling has primarily focused on the switch model (also called

matching model) where the underlying network is assumed to have full-bisection bandwidth

and the set of flows that can be scheduled at any time step is restricted to be form a matching.
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While there are several reasonable formulations/models of scheduling coflows, the following

will be convenient for our purposes. The input consists of a collection J of jobs, where each

job j ∈ J is comprised of a set Uj of tasks (also called flows), a non-negative integer wj

and a release time rj . Each task e ∈ Uj has a processing requirement pe. For example,

in the setting of a network supporting MapReduce [9] computations, each job could be a

MapReduce job, and a task/flow could represent a required communication within a shuffle

phase of a job. Let U = ∪j∈JUj be the collection of all tasks. Further the input contains

a downward-closed set system M = (U, I). Here I ⊆ 2U and elements of I are called the

independent sets of M. Conceptually a collection of tasks is independent (and in I) if they

can be simultaneously scheduled by the network. A feasible output is a schedule σ that

schedules all the flows. That is for each integer time t, σ specifies a collection σt of tasks

processed/scheduled at time t. In order to be feasible, σ must satisfy the conditions that:

every task e ∈ U is scheduled for pe time steps, and

at each time t, the scheduled tasks/flows σt are in I.

A job j completes at the first time Cj such that every task in Uj has been scheduled fully.

The objective is to minimize the total weighted completion time of the jobs. That is, to

minimize
∑

j wjCj .

In this paper, we consider coflow scheduling when the set system M forms a matroid.

The starting point for our investigations is the question whether there is an algorithm to

effectively schedule coflows that involve aggregating information, stored at various locations

in a network, to a common sink location. Such gathering communication patterns were

identified as common in [5]. We model aggregation communications by assuming that for

each job j, Uj is a collection of locations in the network where the units of information

needed for job j are stored. It is natural to define the independent sets to be locations that

can simultaneously be routed to the sink without violating any capacity constraint of the

network. In this case, M is a matroid, and more specifically, a gammoid. Note that the

symmetric problem, of disseminating data from a fixed location to various locations in the

network, is also common, and essentially equivalent to the aggregation problem.

The matroid coflow scheduling problem as defined here also naturally captures a number

of well-studied scheduling problems.

Parallel Identical Machines Scheduling: Each job j has a single task. The matroid

M = (U, I) is the uniform matroid of rank m, i.e., any set of m jobs can be scheduled in

parallel.

(Preemptive) Concurrent Open Shop Scheduling: In the concurrent open shop scheduling

problem, each job j comprises of m tasks, one on each machine, i.e. Uj = {tij}m
i=1. Task

tij needs to be scheduled for time pij and the job is completed when all its tasks are

completed. To model this setting, consider Ti = {tij}n
j=1 to be set of all tasks that need

to be scheduled on machine i. M is a partition matroid that ensures that a set S of tasks

is independent if and only if |S ∩ Ti| ≤ 1 for each machine i.

1.1 Our Contributions

We first consider coflow scheduling on unit length tasks when M is a matroid. Our main

result is:

◮ Theorem 1. There is a deterministic polynomial-time algorithm for coflow scheduling with

unit length tasks, when M is a matroid, that is 2-approximate with respect to the objective of

minimizing total weighted completion time.
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We note that Theorem 1 can be extended to the case that tasks may have arbitrary

processing times, albeit at a slight loss in the approximation factor.

◮ Theorem 2. There is a deterministic polynomial-time algorithm for coflow scheduling with

arbitrary length tasks, when M is a matroid, that is (2 + ǫ)-approximate with respect to the

objective of minimizing total weighted completion time, for any constant ǫ > 0.

As with all the approximation results for coflow scheduling in the literature, our algorithm

is based on rounding a natural time-indexed linear program. Intuitively the rounding extracts

a deadline C∗
j for each job j. This time is roughly 1/λ times later than the first time when

every task in Uj has been scheduled at least to the extent λ in the solution to LP. Here

the value of λ is randomly chosen. The expected value of C∗
j is shown to be at most twice

the fractional completion time for j in the solution to LP; this “stretching” (also called

slow-motion) idea has been used in other scheduling contexts [12, 22, 27]. This can be

viewed as deriving from the LP a fractional schedule where each job j is fully completed by

time C∗
j . Then, we observe that the problem of scheduling tasks to meet the C∗

j deadlines

can be expressed as a matroid intersection problem. As the matroid intersection polytope

is integral [26], one can find an integral schedule meeting these deadlines. Finally, by

derandomizing the random choice of λ, we derive our main theorem.

The approximation guarantee in Theorem 1 is tight assuming P 6= NP . This is because

it is NP-hard to approximate the total weighted completion time for concurrent open shop

(even with unit sized tasks) within a factor of 2 − ǫ [23], and this problem is a special case of

matroid coflow scheduling, where the matroid is a partition matroid. Somewhat surprisingly,

even for the concurrent open shop scheduling with release times, the previous best known

approximation factor was 3 [10, 17]. (See also additional discussion in [2].) Thus, Theorem 2

immediately yields an improved approximation algorithm for preemptive concurrent open

shop with arbitrary release times.

◮ Corollary 3. There is a deterministic, polynomial-time (2 + ǫ) approximation algorithm

for the preemptive concurrent open shop scheduling problem when jobs have arbitrary release

times, for any constant ǫ > 0. If all the release times and processing requirements are

polynomially bounded, then the approximation guarantee improves to 2.

We believe our primary technical contribution is the high-level approach to reduce a

weighted completion time scheduling problem to a deadline-constrained scheduling problem.

Our approach to first extract a deadline for each job from the LP solution and then finding

an integer schedule that meets those deadlines can be viewed as a strict generalization of

processing jobs in increasing order of their completion time derived from the LP, which

has been a very common rounding tool in scheduling literature; e.g. [21, 28, 2]. Our

novel approach allows us to handle the matroid constraint, which we believe is natural and

quite general.

1.2 Related Results

Most of the theoretical/algorithmic work on coflows has been on matching coflows [20, 16,

15, 2, 1]. These results essentially abstract out the network by modeling the network as

an n-by-n switch, or equivalently a complete bipartite graph, and by modeling supportable

flows by matchings in the graph. This is well motivated in practice as the networks in many

data centers are hierarchical, with higher network elements having higher capacities. Thus a

matching between servers at leaves of the network is a not unreasonable approximation of

a communication supportable by the network. We note that matching coflows correspond

ICALP 2019
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to coflows in our framework when the set system M is an intersection of two partition

matroids. The first constant (16.54) approximation for coflow scheduling in this model was

given in [20]. Currently the best known approximation ratios are 5 for when jobs may have

variable release times, and 4 when all jobs arrive at time 0 [2, 29], respectively. Note that

the 2-approximation algorithms claimed in [18] and [11] are both flawed; see [2] and [11] for

the discussion of the flaws.

Jahanjou et al. [14] consider several problems where there is an underlying network with

capacities on the edges. If the tasks are paths in the network, and I consists of collections of

paths that don’t collectively violate any edge capacity, then their work gives a algorithm

for producing a fractional schedule (which is equivalent to time being continuous) that is

O(1)-approximate with respect to total weighted completion time. If the tasks are (source,

sink) pairs in the network, and I consists of collections of (source, sink) pairs that can be

simultaneously routed without violating any edge capacity, then their work gives a algorithm

for producing a fractional unsplittable schedule that is O(log E/ log log E)-approximate with

respect to total weighted completion time, together with a matching hardness result; here, E

is the number of edges. Our work is not comparable to theirs since different constraints are

addressed and our focus is on integer schedules in contrast to theirs on fractional schedules.

Coflow scheduling is a generalization of the classical concurrent open shop scheduling

problem [3, 4, 10, 17, 19, 23, 30]. Several 2-approximation algorithms were shown [4, 10, 17]

via LP rounding. Matching hardness results were shown in [3, 23]. When jobs have different

release times, the same LP relaxations yielded 3-approximations [10, 17]. Later, [19] gave a

simple greedy algorithm that matches the best approximation ratio when all jobs arrive at

time 0. Recently, [2] gave a combinatorial 3-approximation via a primal-dual analysis when

jobs have non-uniform release times.

Coflow scheduling has been actively studied within the networking community; some

examples include [5, 6, 7, 18, 32].

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we give some basic definitions and

notation. In Section 3 we give the linear programming formulation. In Section 4 we explain

how to round a solution to the linear program. In Section 5 we discuss the derandomization.

In Section 6, we discuss the extension to tasks with variable processing times.

2 Definitions and Notations

We first consider the matroid coflow scheduling problem with unit length tasks. We will

discuss three types of schedules, and two types of objectives. In a discrete-time schedule,

we consider that time is divided into unit length intervals (also called time slots), and the

schedule specifies the set of jobs processed during each time slot. We let time slot t refer

to the interval of time (t − 1, t]. In an integer discrete-time schedule, at each time slot t,

an independent set in the matroid is scheduled. In a fractional discrete-time schedule, at

each time slot t, a convex combination of independent sets from the matroid are scheduled.

In other words, in such a fractional schedule, the set of tasks scheduled at time slot t

can be expressed as
∑

S∈I αS1S , where
∑

S∈I αS = 1, and 1S is the characteristic vector

corresponding to independent set S ∈ I. A valid feasible solution is restricted to be an

integer discrete-time schedule. On the other hand, during our analysis, we will also consider

continuous schedules. A continuous schedule specifies an independent set of tasks to be

scheduled at each instantaneous time τ (as opposed to during a unit-length time slot).
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The completion time Cj of a job j is the first time when all tasks in Uj have been

completed. We let qe(t) : [0, T ] → {0, 1} denote an indicator function defined for each task

e ∈ U , where qe(t) = 1 if and only if task e (more precisely an independent set including e)

is scheduled at time t in σ. We let Qe(t) =
∫ t

τ=0
qe(τ)dτ denote the extent to which task e is

scheduled by time t. Let C̃j(v) denote the first time when every task in Uj has been scheduled

by extent at least v. The fractional completion time of job j is then C̃j =
∫ ∞

v=0
C̃j(v)dv. We

will use cost(LP) to denote the optimum objective of the LP, which we will describe soon.

3 Linear Program

In this section we give a linear programming formulation LP of our matroid coflow problem

when tasks have unit lengths. Let xj,t be an indicator variable that specifies whether job j

completes at time t. For a task e ∈ Uj , let ye,t be an indicator variable that specifies whether

task e is assigned to time slot t. Let ρ(S) be the rank function of the matroid.1 Let T = |U |

be an upper bound on the time by which all tasks can be completed. The formulation of

LP is then:

LP : min
∑

j∈J

wj

∑

t∈[T ]

t · xj,t

s.t. ∀j ∈ J,
∑

t

xj,t = 1 (1)

∀j ∈ J and ∀e ∈ Uj and ∀t ∈ [T ],
∑

s≤t

ye,s ≥
∑

s≤t

xj,s (2)

∀S ⊆ U and ∀t ∈ [T ],
∑

e∈S

ye,t ≤ ρ(S) (3)

∀j ∈ J and ∀e ∈ Uj and ∀t ∈ [rj − 1], ye,t = 0 (4)

x, y ≥ 0 (5)

Constraint (1) ensures that every job is scheduled. Constraint (2) ensures that all tasks

of a job j are scheduled to at least the extent that j is completed by time t. Constraint (3)

ensures that at any time step t, the set of tasks assigned to t form an independent set in the

given matroid. Constraint (3) is the only constraint set that can potentially have a super-

polynomial size. However, for each fixed time t, the constraint is just a polymatroid, and

therefore, admits an efficient separation oracle [8, 24, 13]. In case that there are arrival/release

times, constraint (4) ensures that no tasks in Uj are processed before j’s release time rj . The

objective of LP is fractional weighted completion time.

Note that a solution to LP can be viewed as a fractional discrete schedule. We will use

Xj,t :=
∑

s≤t xj,s to denote the extent to which job j has been processed by time t, and use

Ye,t :=
∑

s≤t ye,s to denote the extent to which task e has been processed by time t.

4 Rounding

In this section, we show how to round an optimal solution to LP to obtain a 2-approximate

integral (discrete) schedule. For each job j and v ∈ (0, 1], define C̄j(v) = 1
xj,t

(v − Xj,t−1) +

(t − 1) if v ∈ (Xj,t−1, Xj,t], t ∈ [T ]. Intuitively, C̄j(v) is a linear interpolation of the discrete

1 ρ(S) is defined as maxS′⊆S:S′∈I |S′|.

ICALP 2019
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times when job j is partially completed. We set a deadline C∗
j = ⌈ 1

λ C̄j(λ)⌉ for each job j,

where λ ∈ (0, 1] is randomly drawn according to the probability density function f(v) = 2v.

A key portion of the analysis is to show that the expected value of each wjC∗
j is at most

twice the contribution of job j to the LP objective.

To analyze the expected value of C∗
j , we construct several schedules from the LP solution.

In Subsection 4.1, we will show how to convert a solution of LP to a continuous schedule σ.

In Subsection 4.2 we show how to convert σ into a stretched schedule σλ, which is another

continuous schedule parameterized by λ ∈ (0, 1]. Finally, in Subsection 4.3 we will show how

to convert this continuous schedule into (discrete-time) integer schedule with the same cost.

We note that we construct schedules in Subsection 4.1 and 4.2 only for the sake of analysis.

That is, we can obtain a 2-approximate integral discrete schedule only using the rounding

algorithm in Subsection 4.3 with the deadlines {C∗
j }j .

4.1 Constructing the Continuous Schedule σ

We construct a continuous schedule σ from the solution to LP. For each time t, we first

decompose {ye,t}e∈U into a convex combination
∑

S∈I αS1S of independent sets.2 To create

σ this convex combination is “smeared” across all instantaneous times during (t − 1, t]. That

is, in σ each independent set S is scheduled for αi(τ2 −τ1) time units during each infinitesimal

time interval (τ1, τ2] ∈ (t − 1, t]. This is formalized in Proposition 4. In Lemma 5 we show

that the first time when a job j is scheduled to extent v in σ is at most C̄j(v). In Lemma 6

we show that the fractional weighted completion time of σ is a bit less than the objective

value of the solution to LP. This is because any processing of job j done during (t − 1, t]

has no effect until time t on the LP objective, whereas it can have effect on j’s fractional

weighted completion time of σ during (t − 1, t], before time t.

◮ Proposition 4. Consider the schedule σ. For any integer t ∈ [T ] and (τ1, τ2] ∈ (t − 1, t],

we have,
∫ τ2

τ=τ1
qe(τ)dτ = ye,t(τ2 − τ1).

◮ Lemma 5. Consider the schedule σ. For any j and v ∈ (0, 1],

C̃j(v) ≤ C̄j(v) =:
1

xj,t
(v − Xj,t−1) + (t − 1) if v ∈ (Xj,t−1, Xj,t], t ∈ [T ],

and C̃j(0) = 0.

Proof. By definition, we have C̃j(0) = 0, so let us assume that v > 0. We first show that

C̃j(Xj,t) = t. Due to constraint (2), Ye,t ≥ Xj,t for all e ∈ Uj . Thus, by construction

of σ, all tasks in Uj are processed by at least Xj,t by time t, i.e., Qe(t) ≥ Xj,t, meaning

that C̃j(Xj,t) ≤ t. We also have that C̃j(Xj,t) ≥ t since we know by the optimality of

the LP solution that Ye,t = Xj,t for some e ∈ Uj , therefore, Qe(t) = Xj,t. Thus, we have

C̃j(Xj,t) = t = C̄j(Xj,t).

Now consider an arbitrary v ∈ (0, 1]. Let t ∈ [T ] be such that v ∈ (Xj,t−1, Xj,t]. Then, it

follows that xj,t 6= 0. Thus, from the above argument, we have C̃j(Xj,t) = t. Let tv := C̄j(v)

for notational convenience. We want to show C̃j(v) ≤ tv. By Proposition 4 and construction

of σ, we know that the extend to which e is processed by time tv,

Qe(tv) = Ye,t−1 + ye,t(tv − (t − 1)) = Ye,t−1 +
ye,t

xj,t
(v − Xj,t−1)

2 This is possible because {ye,t}e lies in the polymatroid associated with the matroid rank function ρ due
to constraint (3). It is well-known that this polymatroid is equivalent to the independence set polytope
of the matroid, meaning that {ye,t}e can be expressed as a convex combination of characteristic vectors
of some independent sets. For more details, see Chapter 44 of [25].
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First, if ye,t ≥ xj,t, we immediately have Qe(tv) ≥ v + Ye,t−1 − Xj,t−1 ≥ v due to constraint

(2). Otherwise, since 1
xj,t

(v − Xj,t−1) ≤ 1, fixing the value of Ye,t = Ye,t−1 + ye,t, the

right-hand-side decreases when we increase ye,t. Therefore, we have, Qe(t) ≥ Ye,t−1 − (xj,t −

ye,t) +
xj,t

xj,t
(v − Xj,t−1) = v + Ye,t − Xe,t ≥ v, again due to constraint (2). Hence, we have

Qe(tv) ≥ v for all e ∈ Uj , which immediately yields C̃j(v) ≤ tv. ◭

◮ Lemma 6.
∑

j∈J wj

∫ 1

v=0
C̄j(v)dv = cost(LP) −

∑

j∈J wj/2

Proof. It suffices to show that
∫ 1

v=0
C̄j(v)dv =

∑

t∈[T ] t · xj,t − 1/2, since summing this

equation over all j ∈ J multiplied by their weight wj yields the lemma.

∫ 1

v=0

C̄j(v)dv =
∑

t∈[T ]

∫ Xj,t

v=Xj,t−1

C̄j(v)dv =
∑

t∈[T ]:xj,t 6=0

∫ Xj,t

v=Xj,t−1

C̄j(v)dv

=
∑

t∈[T ]:xj,t 6=0

∫ Xj,t

v=Xj,t−1

(

1

xj,t
(v − Xj,t−1) + (t − 1)

)

dv

=
∑

t∈[T ]:xj,t 6=0

[

1

2
xj,t + (t − 1)xj,t

]

= −
1

2
+

∑

t∈[T ]:xj,t 6=0

t · xj,t,

where the last equality follows from constraint (1). ◭

4.2 Constructing the Stretched Schedule σλ

To construct σλ from σ we “stretch” the schedule σ by a factor of 1/λ. More precisely, if

an independent set S is scheduled in σ during an infinitesimal interval (τ1, τ2], the same

independent set is scheduled in σλ during (τ1/λ, τ2/λ]. In Lemma 7 we show that σλ

completes job j by time C∗
j = ⌈

C̄j(λ)
λ ⌉. In Lemma 8 we upper bound the expected cost of

∑

j wjC∗
j by twice cost(LP).

◮ Lemma 7. The schedule σλ completes every job j by time C∗
j .

Proof. Lemma 5 shows that C̃j(v) ≤ C̄j(v) for all v ∈ (0, 1], meaning that every task in Uj

is completed by v units by time C̄j(v) in σ. Thus, in the stretched schedule σλ, every job j

completes by time C̄j(λ)/λ, for any value of λ ∈ (0, 1]. ◭

◮ Lemma 8. E[
∑

j∈J wjC∗
j ] ≤ 2 cost(LP).

Proof. First note that

∑

j∈J

wjE[C̄j(λ)/λ] =
∑

j∈J

wj

∫ 1

v=0

C̄j(v)/v · (2v)dv = 2
∑

j∈J

wj

∫ 1

v=0

C̄j(v)dv (6)

Thus, we have,

E

[

∑

j∈J

wjC∗
j

]

= E

[

∑

j∈J

wj⌈
1

λ
C̄j(λ)⌉

]

≤
(

E

[

∑

j

wj
1

λ
C̄j(λ)

])

+
∑

j

wj

= 2
∑

j

wj

∫ 1

v=0

C̄j(v)dv +
∑

j

wj [Eqn. (6)]

= 2
(

cost(LP) −
∑

j

wj/2
)

+
∑

j

wj [Lemma 6]

= 2 cost(LP) ◭
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4.3 Constructing a Discrete Integer Schedule

Let y∗
e,t denote how much task e is processed during time interval (t − 1, t]. In other words,

task e appears in y∗
e,t units of independents sets scheduled in σλ during the time interval.

Then, {y∗
e,t}e∈U,t∈[T ] satisfies the following:

1. For all j ∈ J and e ∈ Uj ,
∑

t∈[C∗

j
]\[rj−1] y∗

e,t = 1; and .

2. For all S ⊆ U and for all t ∈ [T ],
∑

e∈S y∗
e,t ≤ ρ(S),

where the second holds true since {y∗
e,t}e∈U can be expressed as a convex combination of

independent sets scheduled during time interval (t − 1, t], and therefore, lies in the matroid

polytope. We now interpret {y∗
e,t} as a fractional point in the intersection of two matroid

polytopes. We create the following two matroids. The new universe U ′ is defined as

U ′ := {(e, t) | t ∈ [T ], j ∈ J, e ∈ Uj s.t. rj ≤ t ≤ C∗
j }. The first matroid M1 is a partition

matroid that forces to choose at most one element out of {(e, t)}t, for each e ∈ U . Intuitively,

this ensures that no task is scheduled more than once across times. The second matroid

ensures that elements scheduled at each time t forms an independent set in I. The following

lemma formally defines the second matroid and shows that it is indeed a matroid.

◮ Lemma 9. Define I2 ⊆ 2U ′

such that S′ ⊆ U ′ is in I2 if and only if for any t ∈ [T ],

{e | (e, t) ∈ S′} ∈ I. Then, M2 = (U ′, I2) is a matroid.

Proof. Let I2 denote the family of independent sets of M2. It is straightforward to see

that I2 is downward closed. Thus, it suffices to show that for any A′, B′ ∈ I2 such

that |A′| < |B′|, there exists (e, t) ∈ B′ \ A′ such that A′ ∪ {(e, t)} ∈ I2. Let U ′
t :=

{(e, t) | j ∈ J, e ∈ Uj s.t. rj ≤ t ≤ C∗
j } denote the subset of U ′ restricted to time t. Consider

any fixed A′, B′ ∈ I2 such that |A′| < |B′|. Then, consider any fixed time t∗ such that

|A′ ∩ U ′
t∗ | < |B′ ∩ U ′

t∗ |; such a time t∗ must exist since {U ′
t}t partitions U ′. Then, for some

(e∗, t∗) ∈ (B′ ∩ U ′
t∗) \ (A′ ∩ U ′

t∗), it must be the case that {e∗} ∪ {e | (e, t∗) ∈ A′ ∩ U ′
t∗} ∈ I.

This is because B′ has more elements than A′ that are paired up with the fixed time t∗, and

therefore, the set of elements appearing in A′ ∩ U ′
t∗ remains independent with some e∗ added.

Further, for any other time t, the elements appearing in the pairs of A′ associated with t

remain unchanged, and therefore, is in I. ◭

Then, it is easy to see that {y∗
e,t} is a point that lies in the intersection of the polymatroids

that are defined by M1 and M2. Further, {y∗
e,t} belongs to the base polymatroid of M1; so

we have
∑

(e,t)∈U ′ y∗
e,t = |U |. Since the matroid intersection polytope is well-known to be

integral [26], meaning that every vertex is an integer point, a maximum independent set in

the intersection of M1 and M2 must have |U | elements. Further, we can find such a maximum

independent set in polynomial time. To recap, we have found S′ ∈ U ′ that is a base of M1

and is independent in M2. This set S′ immediately gives the desired integer schedule where

{e | (e, t) ∈ S′} is scheduled at each time t. Indeed, due to S′ being a base of M1, every task

in Uj is scheduled exactly once during time interval [rj , C∗
j ]. Further, S′ being independent

in M2 ensures that the set of tasks scheduled at each time forms an independent set in I.

5 Derandomization

In this section, we discuss how to derandomize the choice of λ ∈ (0, 1], which was used to

compute the deadlines for the jobs. This will complete the proof of Theorem 1. Let us first

define step values. We say that v ∈ (0, 1] is a step value if
∑

s≤t xj,s = v for some j ∈ J

and integer t ∈ [T ] – in other words, exactly v fraction of some job j is completed by some

integer time in the LP solution. Let V denote the set of all step values; 1 ∈ V by definition.

Note that that |V | is polynomially bounded in the input size, as the number of variables xj,t

we consider in LP is at most |J | · |U |.
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Recall that in Lemma 8 we showed E[
∑

j wjC∗
j ] ≤ 2 cost(LP) when C∗

j := ⌈ 1
λ C̄j(λ)⌉. This

implies there exists a certain value of λ ∈ (0, 1] such that
∑

j wjC∗
j ≤ 2cost(LP). For the pur-

pose of derandomization, it suffices to find λ such that
∑

j wjC̄j(λ)/λ ≤ 2
∑

j wj

∫ 1

v=0
C̄j(v)dv;

the equality is shown in equation (6) in expectation.

Towards this end, we aim to find λ ∈ (0, 1] that minimizes
∑

j wjC̄j(λ)/λ. Suppose λ

was set to a value v ∈ (v1, v2], where v1 and v2 are two adjacent step values in V . Consider

any fixed job j. Let t ∈ [T ] be such that v ∈ (Xj,t−1, Xj,t]. By definition of step values, we

have (v1, v2] ⊆ (Xj,t−1, Xj,t]. Thus, we have C̄j(v)/v = 1
xj,t

(1 −
Xj,t−1

v ) + t−1
v . This becomes

a linear function in z over [1/v2, 1/v1) if we set z = 1/v. Therefore, we get a piece-wise linear

function g(z) by summing over all jobs multiplied by their weight and considering all pairs

of two adjacent step values in V . We set λ to the the inverse of z’s value that achieves the

global minimum, which can be found in polynomial time.

6 Arbitrary Processing Times

In this section we show how to extend Theorem 1 to allow tasks with arbitrary processing

times with a loss of (1 + ǫ) factor in the approximation ratio for any arbitrary constant

ǫ > 0. In this setting, each task e has an arbitrary integer size pe and the task e completes

when pe independent sets including e are scheduled. As before, at each time we can schedule

a set of tasks that is independent in the given matroid and a job completes when all its

tasks complete.

6.1 Compact Linear Program

We first describe our new compact LP relaxation. Let T :=
∑

e pe + maxj rj , which is clearly

an upper bound on the maximum time we need to consider. We define a set of times T

that consists of polynomially many time steps. First, let T include every job’s arrival time.

Next, let T include all times appearing in {⌊(1 + ǫ)i⌋}0≤i≤⌈log1+ǫ T ⌉+1. In words, T includes

exponentially increasing time steps by a factor of (1 + ǫ) starting from 1 but includes no

times greater than (1 + ǫ)2T . Let t1 = 1, t2, . . . , tk, . . . , tK+1 denote the (integer) times in T

in increasing order. Let Ii := [ti, ti+1) where i ∈ [K]. The idea is to rewrite LP compactly as

follows by replacing time-indexed variables with interval-indexed variables.

min
∑

j∈J

wj

∑

i∈[K]

(ti+1 − 1) · xj,i

s.t. ∀e ∈ U,
∑

i∈[K]

(ti+1 − ti)ye,i = pe (7)

∀j ∈ J ∀e ∈ Uj ∀i ∈ [K],
∑

i′≤i

ye,i′/pe ≥
∑

i′≤i

xj,i′ (8)

∀S ⊆ U ∀i ∈ [K],
∑

e∈S

ye,i ≤ ρ(S) (9)

∀j ∈ J ∀e ∈ Uj ∀i ∈ [K] s.t. ti+1 ≤ rj , ye,i = 0 (10)

x, y ≥ 0 (11)

Here, variable xj,i can be viewed as the average fraction of job j that completes per

unit time during Ii; so, when the job j completes during Ii for the first time, we have
∑

i′≤i xj,i′ = 1. Likewise, ye,i has an analogous meaning for each task e but it denotes the
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average unit of task e that is processed per unit time during Ii. Constraint (7) ensures that

all tasks complete eventually. Constraint (9) ensures that the average vector representing how

much each task is processed per unit time during It lies in the polymatroid. Constraint (10)

enforces that no tasks in Uj are processed before j’s arrival time; this is possible since T

includes all jobs arrival times. Before explaining constraint (8), we explain the objective. If

all intervals, {Ii} were of unit length, the objective would be exactly the fractional total

weighted completion time. However, to make the LP compact, when job j completes by

xj,i fraction during interval Ii, we pretend that the fraction completes at the end of Ii,

i.e., ti+1 − 1. Thus, we overestimate the fractional objective; but since times in Ii differ

by at most (1 + ǫ) factor, our overestimate is by a factor of at most (1 + ǫ). Finally, we

discuss constraint (8), which caps each job’s (cumulative) processed fraction at the analogous

quantity of each task of the job, which is measured as how much the task has been processed

divided by its processing time. We also note that this compact LP admits the same separation

oracle as the one for LP.

6.2 Rounding

As before, we seek to round the optimal LP solution. Recall that we first obtained C∗
j :=

⌈ 1
λ C̄j⌉ and found an integer schedule that completes every job j before C∗

j . We observe that

the first procedure is no issue. This is because we can interpret the solution to our compact

LP as a solution to LP. To see this, when a task e is processed by δ amount, pretend that

there exist pe different tasks of unit size and they are processed equally by δ/pe amount.

Thus, we can compute C̄j(v) efficiently for any value of v ∈ (0, 1]. The derandomization can

be done similarly.

6.3 Finding An Integer Schedule

It now remains to find an integer schedule meeting the discovered deadlines, {C∗
j }j∈J . We

use essentially the same idea of reducing the problem to finding an integer solution to the

intersection of two matroids. However, this reduction requires some careful modifications to

be implemented in polynomial time. Also, we will aim to complete every job j by (1+O(ǫ))C∗
j

meeting the deadline slightly loosely.

The main idea is to use the fact that the continuous schedule σλ meeting the deadlines {C∗
j }

only changes polynomially many times. This is because the continuous schedule σ before the

stretching is identical at all times during each of the intervals (0, t1−1], (t1−1, t2], . . . , (tK−1−

1, tK ] – these intervals are stretched into (0, (t1 − 1)/λ], ((t1 − 1)/λ, t2/λ], . . . , ((tK−1 −

1)/λ, tK/λ], respectively. We split the interval including the time T ′ = |U |2/ǫ2 into two, the

left one ending at |U |2/ǫ2 and the right one starting at |U |2/ǫ2. Here, assume that 1/ǫ is

an integer. We also add time C̄j(λ)/λ for every j ∈ J and split the intervals accordingly.

To simplify the notation, we recycle the notations Ii. By reindexing the resulting intervals

and merging some initial intervals, we have I0 := (0, T ′], I1, I2, ..., IK′ . We say that an

interval is small if its starting time or ending time is not a power of (1 + ǫ) divided by λ;

more precisely, ((ti−1 − 1)/λ, ti/λ] is small if ti−1 or ti is not a power of (1 + ǫ) divided by λ.

Note that there are at most 4|J | + 4 ≤ 8|J | ≤ 8|U | small intervals since each job’s arrival

time and deadline together can create at most 4 small intervals; the extra four come from

time 0, the final time, and T ′.

For each interval Ii, let Qe(Ii) denote the amount of task e processed during Ii, which

can be easily computed in polynomial time. For each interval, we will construct an integer

schedule that schedules each task as much as the continuous schedule σλ does without using
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too many time steps compared to the interval’s length; more precisely, the integer schedule

will process at least ⌈Qe(Ii)⌉ units of task e. We categorize the intervals into three groups.

Depending on the category where each interval belongs, we construct an integer schedule

differently or give a different upper bound on the length of the integer schedule. At the end,

we will concatenate the constructed integer intervals in increasing order of times. In the

following, |I| denotes I’s length.

The first interval, I0 = (0, T ′]. Using the same idea we used for handling unit-sized tasks,

we find an integer schedule that processes at least ⌊Qe(Ii)⌋, meeting all job deadlines no

greater than T ′. Note that I0 has a polynomial length; thus, the desired integer schedule

can be computed in polynomial time. Then, we can greedily schedule each task e per unit

time such that Qe(Ii) is not an integer. Note that such a task e hasn’t completed by time

T ′, so the task (more precisely, the job to which the task belongs) has deadline at least T ′.

Therefore, we will be able to charge the extra delay of at most |U | to the corresponding job’s

deadline directly.

Ii that is not small, for i ≥ 1. We seek to construct an integer schedule of length

(1 + O(ǫ))|Ii|. Towards this end, we do the following. Suppose we divide the interval into

⌈ |Ii|
|U |/ǫ ⌉ subintervals of length |U |/ǫ; there can be at most one subinterval of a smaller length

and we will handle it later. Next, for each subinterval of length |U |/ǫ, we try to schedule

⌈ |U |/ǫ
|Ii| Qe(Ii)⌉ units of each task e. Since the length is polynomial in |U |, we can find an

integer schedule of length |U |/ǫ + 1 that schedules ⌊ |U |/ǫ
|Ii| Qe(Ii)⌋ units of each task e. By

scheduling one task per unit time, we can schedule ⌈ |U |/ǫ
|Ii| Qe(Ii)⌉ units of each task e for

|U |/ǫ + 1 + |U | ≤ (|U |/ǫ) · (1 + 2ǫ) time steps. Here, our integer schedule’s length is at

most (1 + 2ǫ) times the subinterval’s length, |U |/ǫ. This integer schedule is repeated ⌊ |Ii|
|U |/ǫ ⌋

times. We now handle the smaller subinterval of length less than |U |/ǫ. Using a similar

argument, we can process more units of each task than the continuous schedule, using at

most |U |/ǫ + 1 + |U | ≤ 2|U |/ǫ time steps. Here we use the fact that Ii has length significantly

greater than |U |. To see this, suppose we had not added jobs arrival times, deadlines or T ′

in the process of creating the intervals. Then the intervals preceding Ii have exponentially

decreasing lengths by a factor of (1 + ǫ). Using this observation, we can argue that Ii’s length

is at least ǫ/2 times Ii’s starting time. Since Ii’s starting time is greater than T ′, we have

that Ii’s length is at least (ǫ/2) · T ′ = (ǫ/2) · (|U |2/ǫ2) = |U |2/(2ǫ). So, we can charge the

number of time steps spent to handle the smaller subinterval, which is at most 2|U |/ǫ, to the

length of Ii. From all these arguments, we can construct an integer schedule of length at

most (1 + 6ǫ)|Ii|.

Ii that is small, for i ≥ 1. We seek to construct an integer schedule of length (1+O(ǫ))|Ii|+

2|U |/ǫ. The whole idea is the same for the intervals that are not small. The only difference

is that we cannot charge the extra time steps we spend to handle the smaller subinterval,

which is at most 2|U |/ǫ, to the length of Ii. Thus, we just use the upper bound on the length

of our integer schedule.

As mentioned before, we concatenate the integer schedules originating from I0, I1, . . . , IK

in this order to obtain the final schedule. It now remains to show that each job completes by

time (1 + O(ǫ))C∗
j . We already showed that our integer schedule completes every job j before

its deadline C∗
j if it is smaller than T ′. For any other job j, it must be the case that C̄j(λ)/λ

is greater than T ′. Let Ii be the interval including C̄j(λ)/λ. Due to the way the intervals are
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constructed, C̄j(λ)/λ must be equal to Ii’s finish time. Our goal is to show that we complete

j not too late compared to Ii’s finish time. That is, we want to show that the total length of

the integer schedules originating from I0, I1, . . . , Ii is at most (1 + O(ǫ))
∑

i′≤i |Ii′ |. Indeed,

the total length is at most,

|I0| + |U | +
∑

i′=[i]:Ii′ is small

((1 + O(ǫ))|Ii| + 2|U |/ǫ) +
∑

i′=[i]:Ii′ is not small

(1 + O(ǫ))|Ii|

≤

i
∑

i′=0

(1 + O(ǫ))|Ii′ | + |U | + (2|U |/ǫ) · (8|U |) ≤
i

∑

i′=0

(1 + O(ǫ))|Ii′ | + O(ǫ)|I0|

Here, the first inequality follows from the fact that there are at most 8|U | small intervals, as

argued above. The second inequality is immediate from |I0| = T ′ = |U |2/ǫ2. Therefore, we

have shown that each job completes by time (1 + O(ǫ))C∗
j , which establishes that our final

schedule’s objective is at most (1 + O(ǫ)) times the compact LP’s optimum. Since we showed

the compact LP lower bounds the optimum times (1 + ǫ), we obtain a 2(1 + ǫ)-approximate

schedule for arbitrary ǫ > 0 by scaling ǫ appropriately.
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