
Packet Forwarding Algorithms in a Line Network

Antonios Antoniadis1?, Neal Barcelo1, Daniel Cole1, Kyle Fox2??,
Benjamin Moseley3, Michael Nugent1, and Kirk Pruhs1? ? ?

1 University of Pittsburgh, Pittsburgh PA 15260, USA,
antoniosantoniadis@gmail.com; ncb30, dcc20, mnugent, kirk@cs.pitt.edu
2 University of Illinois at Urbana-Champaign, Urbana IL 61801, USA,

kylefox2@illinois.edu
3 Toyota Technological Institute at Chicago, Chicago IL 60637, USA,

moseley@ttic.edu

Abstract. We initiate a competitive analysis of packet forwarding poli-
cies for maximum and average flow in a line network. We show that the
policies Earliest Arrival and Furthest-To-Go are scalable, but not con-
stant competitive, for maximum flow. We show that there is no constant
competitive algorithm for average flow.

1 Introduction

The Internet Protocol (IP) layer of the TCP/IP suite is responsible for trans-
porting (essentially fixed-sized) datagrams/packets from a source host, through
intermediate routers, to a destination host specified by an IP address. The utiliza-
tion of any imaginable economically-sustainable network will be sufficiently high
so that routers will usually have a backlog of packets waiting to be forwarded.
Thus routers need a policy that specifies which packets to forward first in the
event of a backlog. Ideally the goal of this forwarding policy should be to provide
the best possible quality of service (QoS) to the application layer clients, although
this is a problematic goal as one consequence of the layering/encapsulation prin-
ciple of the protocol suite design is that the overlying applications are generally
hidden from the IP layer. Thus, a reasonable fallback goal for this forwarding
policy would be to provide good QoS to the packets.

The most natural QoS measure for an individual packet j is the response/flow
time Cj − rj , the duration of time between the time rj when the packet j is
injected into the IP layer at the source host, until the time Cj when the packet j is
ejected from the IP layer at the destination host. The most natural QoS measure

? With support by a fellowship within the Postdoc-Programme of the German Academic
Exchange Service (DAAD).

?? Research by this author is supported in part by the Department of Energy Office of
Science Graduate Fellowship Program (DOE SCGF), made possible in part by the
American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU
under contract no. DE-AC05-06OR23100.

? ? ? Supported in part by NSF grants CCF-1115575, CNS-1253218, and an IBM Faculty
Award.

for a collection of packets is then to take a p-norm, for p ∈ [1,∞], of the flow time
of individual packets. The ∞-norm, or maximum flow time, is usually the most
mathematically tractable norm, and is the second most commonly considered
norm in the systems literature. The 1-norm, or average flow time, is usually
the second most mathematically tractable norm, and is the most commonly
considered norm in the systems literature.

The goal of the research we report on in this paper is to initiate a competitive
analysis of packet forwarding policies for these natural QoS measures. In this
paper, we generally assume that the network topology is a line. Even for this
simplest of topologies, we find the subtlety of the algorithm analysis and design
process to be surprising.

There are three natural packet forwarding policies that play a central role in
our findings:

Furthest-To-Go (FTG): The FTG policy always forwards a packet with the
most hops left to go. It is not too difficult to see that FTG minimizes the
makespan, the time that the last packet is delivered. We actually show in
Section 5 the stronger statement that for every router i and for every time t,
FTG has forwarded the maximum number of packets possible over router i by
time t. Intuitively, this implies that FTG maximizes the amount of parallel
processing possible in the network.

Earliest Arrival (EA): The EA policy always forwards the packet that was
first injected into the network layer. For a one-edge network, it is well-
known and obvious that the policy EA is optimal for maximum flow. For
general line networks, it is obvious that EA is not optimal for maximum flow
because there are situations where the optimal algorithm needs to forward a
younger further-to-go packet. Earliest Arrival is also known in the literature
as Longest-In-System.

Shortest-To-Go (STG): Shortest-To-Go always forwards the packet that is
the fewest number of hops from its destination router. We show in Lemma 11
that STG achieves optimal average flow time if all packets are injected into the
system at the same time. We recently learned that the same result was proven
independently by Kowalski et al. and will appear in [1]. Shortest-To-Go is
also known in the literature as Nearest-To-Go.

In this paper, we report on the progress that we made beyond these initial
observations. Namely, we show that:

Maximum Flow on a Line: Our initial conjecture was that EA is O(1)-
competitive.
– In Section 3 we show that in fact EA is not O(1)-competitive. The lower

bound instance results from a rather intricate recursive construction
that increases the age of a packet by a fixed amount on each recursion.
Intuitively, this shows that a competitive algorithm must take into account
the path lengths of the packets.

– In Section 4 we show that EA is however scalable, that is,O(1)-competitive
with arbitrarily small speed augmentation. Intuitively, this shows that

EA should be reasonable until the network utilization is near the capacity
of the network.

– In Section 5 we show that FTG is also scalable.
Average Flow on a Line: Initially we had two competing intuitions as to

the “right” policy for average flow time. One might reasonably think that
as Shortest Remaining Processing Time is the optimal scheduling policy for
average flow for arbitrary sized jobs on a single processor, that analogously
the policy STG, which forwards a packets with the fewest hops to go, should
be a good policy for average flow. Alternatively, one might reasonably think
that FTG should be a good policy for average flow because it maximizes
parallelism.
– In Section 6 we show that there is no O(1)-competitive online algorithm.

Intuitively in our lower bound construction, if the online algorithm initially
forwards packets using STG, then there is a future in which FTG was the
right initial policy, and if instead the online algorithm initially forwards
packets using FTG, there is another future in which STG was the right
initial policy (and there is no intermediate policy that is good in both
futures). So in some sense, this shows that there is no possible resolution
to the conflicting intuitions favoring STG and FTG.

Maximum Flow on a Tree: In Section 7 we show that there is no O(1)-speed
O(1)-competitive deterministic local online algorithm. This shows that gen-
eralizing the problem to the second most simple network already makes the
problem harder.

We then conclude by stating the two open problems “discovered” by this
research that we find appealing.

1.1 Related Work

Previous work on routing algorithms under the adversarial model has, to the
best of our knowledge, revolved around two distinct models. In the first one,
stability is studied, i.e., whether the number of packets in the system will remain
bounded as the system runs for an arbitrarily long period of time. In general
this depends on the protocol studied, on the size and topology of the network
and on the maximum rate at which the adversary is allowed to inject packets
into the network. We refer to [2–13] for some representative papers under this
model. In the second model, a subset of the packets has to be dropped, due to
some restriction. For example, there might be a limit in the size of the buffer, a
maximum delay (per packet) allowed by the system, or packets may come with a
deadline. The objective is to maximize a function of the transmitted packets, for
instance their number, size, or (weighted) value. Work in this model has mostly
employed competitive analysis, see [14–25]. The problem has also been studied
when the routers have shared but limited memory [26]. Our work significantly
differs from both these models, since (1) instead of considering the stability of a
network, we use competitive analysis with respect to specific objective functions,
and (2) in our model every single packet has to be transmitted to its destination.

We would like to point out that [22] also studies the Furthest-To-Go algorithm
on line networks, but with fixed-size buffers under the objective of maximizing
the throughput. They show that for this model on a line of length k every greedy
algorithm (including Furthest-To-Go) has a competitive ratio of O(k), and also
give a matching lower bound of Ω(k) on the competitive factor of Furthest-To-
Go. Also, Angelov et al. [19] as well as Azar and Zachut [18], give centralized
online algorithms with a polylogarithmic competitive ratio for the problem of
maximizing throughput on the line. The special case of information gathering,
where all packets have a common destination, was studied on the line by Rosén
and Scalosub [25].

2 Preliminaries and Notation

We begin by introducing a formal model for the problems we consider and some
notation. In the problems we consider there are k routers labeled 1 through k
on a line network. The routers are ordered in increasing order on the line from
left to right. Over time n packets arrive. We say that a packet j arrives at time
rj . We assume arrival times are integral. Each packet is associated with a path
Pj . The path Pj consists of a set of routers that packet j must be processed
on to be completed. This corresponds to sending a packet from its source to its
destination. Since we are considering a line network, Pj will consist of a set of
adjacent routers on the line. A router can process one packet at each time unit,
which corresponds to sending this packet to the router to the right of this router
on the line. A packet can only be processed if it is on a router and a packet j
starts at the leftmost router in Pj . Note that a packet must be processed by
every router in Pj and therefore |Pj | is a lower bound on the amount of time a
packet requires to be sent to its destination.

We will consider two different objective functions, namely total (average) flow
time and maximum flow time. For some schedule, let Cj denote the time packet
j is finished being processed. The flow time of j is Cj − rj . For total flow time we
are interested in minimizing

∑
j∈[n] (Cj − rj) and for maximum flow time we are

interested in minimizing maxj∈[n]{Cj − rj}. We will be considering algorithms
that possibly use resource augmentation. If an algorithm is given s+ 1/c speed
the algorithm is allowed to send s packets every time step at a particular router
and an additional packet every c time steps. Here s and c will be assumed to
be integral. Note that we assume packets are sent only at discrete time steps.
Therefore, a packet can only move one router in a time step.

We will compare our algorithms against a fixed optimal solution for a given
objective and problem instance. We denote the optimal solution as OPT. For
an algorithm A, we let QA(t) be the packets alive at time t and QA

i (t) as the
packets available for processing on router i at time t. We let pAi (t) denote the
number of packets processed on router i by time t for A and, likewise, pOi (t) for
OPT. For a packet j and a fixed algorithm, which will be clear by the context,
Pj(t) is the remaining routers j needs to use to be completed at time t and
dj(i, t) is the distance of packet j to router i. Note that Pj(rj) = Pj . The value

of nAi (t′, t) denotes the number of packets released by time t′ that still need to
use router i at time t for A and nAi (t′)is short for nAi (t′, t′). Note that the packets
that contribute to nAi (t′, t) do not necessarily have to be in QA

i (t). Let Aj be the
total flow time for packet j for A and OPTj be total flow time for packet j in
the optimal schedule.

For an input I, let A(I) and OPT(I) denote the final objective value for
running I on A and OPT respectively. We may use A and OPT to denote the
objective when I is clear from context. Finally, we say an algorithm A is s-speed

c-competitive if A(I)
OPT(I) ≤ c for any input I when A runs at s speed and OPT

runs at unit speed.
Some proofs are ommitted due to space constraints.

3 Lower Bound for Earliest Arrival for Maximum Flow

We show that the EA policy is not constant competitive for maximum flow.

Theorem 1. There exists an n0 so that for each integer L > n0, there exists

an instance I with OPT (I) = Θ(L) and EA(I)
OPT (I) ≥ OPT (I). Furthermore, there

exist instances In,k with n packets and k routers so that
EA(In,k)
OPT (In,k)

≥ n1/3, and
EA(In,k)
OPT (In,k)

≥ k1/2.

Let K and C be sufficiently large even integers such that C < K/2 − 3. Set
an input with C · K2 − C + 3 routers. We designate two sets of routers, the
stream-routers and the gap-routers. The routers are defined as follows:

– There is a stream-router with index RS(0, 0) = 1. At time TS(0, 0) = 0 there
are K/2 short stream-packets released to RS(0, 0) with destination 1 and K/2
long stream-packets released to RS(0, 0) with destination K/2.

– For each p and q with 1 ≤ p ≤ C and 0 ≤ q ≤ p− 1 there is a stream-router
with index RS(p, q) = p · K2 − 2p + 2 + q. At time TS(p, q) = p(K − 1) +
K
2

(
p(p+1)

2 − 1
)
− (p− 1)

(
K
2 + 1

)
+ q

(
K
2 + 1

)
there are K/2 short stream-

packets released to RS(p, q) with destination p · K2 − 2p+ 2 + q and K/2 long

stream-packets released to RS(p, q) with destination (p+ 1) · K2 − p+ 1.
– For each p with 1 ≤ p ≤ C there is a gap-router with index RG(p, 0) =

p · K2 − p+ 2. At time TG(p, 0) = p(K − 1) + K
2

(
p(p+1)

2

)
+ 1 there are K/2

short gap-packets released to RG(p, 0) with destination p · K2 − p+ 2 and K/2

long gap-packets released to RG(p, 0) with destination (p+ 1) · K2 − p+ 1.

Note that the instance created above consists of k = Θ(K2) routers assum-
ing C = Ω(K). Further, n = Ω(K3). We have the following observation.

Note 2. The set of stream-routers and the set of gap-routers are disjoint. Further,
for any two stream- or gap-routers i1, i2 with i1 < i2, the packets on router i1
are released earlier than the packets for i2.

We now compare the performance of the optimal schedule to EA for minimizing
maximum flow time.

Lemma 3. The maximum flow time for the optimal schedule is at most K + C
for the given instance.

Lemma 4. EA has total flow time of at least (C + 1) · K2 on the given instance.

We can finally prove Theorem 1.

Proof. By setting C = K
2 − 4, we have that on the above instance, OPT =

Θ(K), EA = Θ(K2), and again, the number of routers is k = Θ(K2) and the
number of packets n = Ω(k3). This proves the theorem. ut

4 Analysis of EA for Maximum Flow

We show that EA is scalable for maximum flow.

Theorem 5. EA is (1 + ε)-speed 4/ε-competitive for any ε > 0.

We first prove a useful fact for the algorithm Earliest Arrival First. This
fact is useful because it will give us an upper bound on how long it takes
at time t for a packet j to be completed assuming no more packets arrive.
We know that |Pj(t)| is the remaining path length for packet j and we know
packet j will need to wait at least this long to be completed. Further, nAi (rj , t)
is the total number of packets with strictly higher priority than j that need
to use router i. Thus, j may have to wait on all these packets and therefore
j may need to wait maxi∈Pj(t){nAi (rj , t)} time. Intuitively, we would like to

show that in fact j waits at most |Pj(t)| + maxi∈Pj(t){nAi (rj , t)} time to be
completed assuming no more packets arrive. To do this, we would like to show
that |Pj(t)| + maxi∈Pj(t){nAi (rj , t)} decreases each time step. Knowing that if
this expression reaches 0 then j has reached its destination (|Pj(t)| = 0), this
would show that j waits at most this much time. We will not be able to show
this directly, but rather will show a slightly more involved expression decreases
in a similar manner. Fix an input I.

Lemma 6. Let A be any algorithm (possibly with speedup). Let j be any packet
alive at time t and suppose A processes the min{s,QA

i (t)} packets with earliest
release time on each router i at time t. Then for any constant c ≥ s

max
i∈Pj(t+1)

{nAi (rj , t+ 1)− c · dj(i, t+ 1)}+ c|Pj(t+ 1)|

≤ max
i∈Pj(t)

{nAi (rj , t)− c · dj(i, t)}+ c|Pj(t)| − s.

We can now prove Theorem 5.

Proof. Assume the theorem is false for a contradiction. Let t be the earliest
time such that there is some packet j with flow time greater than 4

εOPT so
that t − rj > 4

εOPT. By Lemma 6, maxi∈Pj(t){nAi (rj , t) − 2dj(i, t)} + 2|Pj(t)|
decreases by 1 every time step except for every 1/ε time steps where it decreases
by 2. Further, it does not reach 0 until j’s completion. Therefore,

max
i∈Pj

nAi (rj) + 2|Pj | ≥ max
i∈Pj(t)

{nAi (rj , rj)− 2dj(i, rj)}+ 2|Pj(rj)|

>
4

ε
OPT + 4OPT− 1.

Let i be a router in Pj that maximizes the value nAi (rj). As |Pj | ≤ OPT
and OPT ≥ 1, we have

nAi (rj) >

(
4

ε
+ 1

)
OPT. (1)

Packet j is the first packet with flow greater than 4
εOPT, so any packets

contributing to nAi (rj) have age at most 4
εOPT at time rj . These packets have

arrival time between rj − 4
εOPT and rj . Further, the optimal schedule must

complete them by time rj + OPT, so the total amount of time the optimal
schedule can process them is rj + OPT − (rj − 4

εOPT) = (4
ε + 1)OPT. The

optimal schedule can only process one of these packets at a time on router i, so
we observe nAi (rj) ≤ (4

ε + 1)OPT. Finally, we combine the previous expression
with (1) to yield (

4

ε
+ 1

)
OPT >

(
4

ε
+ 1

)
OPT,

a contradiction based on our assumption that the theorem is false. ut

5 Analysis of FTG for Maximum Flow

We show that FTG is scalable for maximum flow.

Theorem 7. FTG is (1 + ε)-speed 3/ε-competitive for any ε > 0.

We begin by proving a fact for the algorithm FTG that will prove useful
later and is interesting in its own right. Fix an input I. The following lemma
essentially states that this algorithm gets the maximum amount of ‘parallelism’
possible by showing that for this algorithm at any point in time each router will
have processed the most number of packets possible.

Lemma 8. Let A be any algorithm (possibly with speedup) for which each router i
processes a packet with furthest final destination at least once every time step if
any are available. We have pAi (t) ≥ pOi (t) at all routers i and times t.

In order to prove Theorem 7, we need to formalize how efficiently routers are
processing packets with extra speed. We say router i fully processes a set J of
packets at time t if router i processes as many packets from J at time t as the
speedup allows. We have the following lemma.

Lemma 9. Run FTG with speed 1+ε on input I. Let j be a packet and let i ∈ Pj .
Let t be any time step strictly before router i processes packet j. If t ≥ rj +
dj(i, rj) + 1, then router i processes at least one packet at time t with destination
at least as far as packet j’s. Further, if t ≥ rj + (dj(i, rj) + 1)/ε, then router i
fully processes packets with destination at least as far as j’s at time t.

We may now prove Theorem 7.

Proof. Assume the theorem is false for a contradiction. Let OPT be the maximum
flow in the optimal schedule. Run FTG with speed 1 + ε and let t be the earliest
time such that there is some packet j with flow time greater than 3

εOPT. Let i
be the router upon which j is queued (or being processed) at time t. Let t0
be the earliest time such that FTG always processes at least one packet every
step of the interval [t0, t). Let J be the set of packets processed by i during the
interval [t0, t).

Each packet arrives at most distance OPT−1 from its destination. Therefore,
every packet in J arrives no earlier than t0 −OPT. Otherwise, Lemma 9 implies
router i processes a packet at time t0 − 1. Further, every packet in J is released
strictly before time t and completed by the optimal algorithm by time t+ OPT.
Therefore, the optimal algorithm spends strictly less than t− t0 + 2OPT time
steps processing all packets in J on router i.

By assumption, t > rj + 3
εOPT = rj + OPT

ε + 2
εOPT. Therefore, router i

has fully processed packets over 2
εOPT consecutive time steps by Lemma 9.

Over this time period, there are at least 2OPT time steps where i processes 2
packets instead of 1. As i processes at least one packet every time step since t0,
we have |J | ≥ t− t0 + 2OPT. The optimal algorithm spends strictly less than |J |
time steps to process every packet in J on router i, a contradiction. ut

6 Average Flow on a Line

We now show that there is no constant competitive algorithm for average flow
on a line.

Theorem 10. Any randomized algorithm for packet routing on a line is Ω(k)
competitive for average flow in the oblivious adversary model.

Proof. We prove the theorem for any deterministic algorithm. The proof can
be easily generalized to randomized algorithms. Let A be any deterministic
algorithm for packet routing on a line. Consider the following input. For each i ∈
{1, . . . , k/2}, we have k short packets arrive at time 0 with source i and destina-
tion i. In addition, k long packets arrive at time 0 with source 1 and destination k.
The rest of the input is determined by A’s behavior.

Suppose A processes fewer than k/4 packets on router k/2 at time k. Then
there are at least 3k/4 long packets that still need processing on router k/2.
Assume they all wait at router k/2. At each time step from 2k − 1 to some
sufficiently large T , a packet arrives with source k and destination k. Algorithm A
will still have k/4 long packets remaining at time 2k−1, so it will always have k/4

packets alive with destination k and total flow time Ω(kT). However, consider
FTG which finishes all long packets by time 2k − 1 and has only one packet
pending at each time step after 3k − 1. The optimal total flow time is O(T), and
the competitive ratio of A is Ω(k).

Now, suppose A processes at least k/4 packets on router k/2 at time k. Then
each router i ∈ {1, . . . , k/2} has at least k/4 short packets remaining, for a total
of k2/8 short packets remaining. For each time step from k to some sufficiently
large T and for each router i ∈ {1, . . . , k}, a packet with source i and destination i
arrives (so k packets in total arrive at each time step). Algorithm A has at
least k2/8 + k packets alive at each time step, so it has total flow time Ω(k2T).
However, consider the algorithm that always schedules a packet with nearest
destination. This algorithm finishes all the short packets by time k, so it has 2k
packets remaining at each time step after k. The optimal flow time is O(kT),
and the competitive ratio of A is Ω(k). ut

We show that STG achieves optimal average flow time if all packets are
injected into the system at the same time.

Lemma 11. STG is optimal for the objective of average flow if all packets are
released at time 0.

7 Maximum Flow on Trees

We briefly explore extending our ideas to work with networks of routers that
do not necessarily lie on a directed line. It turns out the problem of minimizing
maximum flow time becomes much more difficult in this setting, unless we allow
routers some way to communicate with one another.

To make the idea of communication concrete, define a local algorithm to be
one where each router i processes packets based only on the existence of the
packets currently queued at router i, their arrival times, and their distance to
their destination. Define a router network as a directed graph G = ({1, . . . ,m}, E)
with arbitrary edge set. An input for a router network G can only move a packet
from router i1 to router i2 in one processing step if i1i2 is an edge in G. A tree
network is a router network where the undirected edges form a spanning tree.
We have the following theorem.

Theorem 12. No deterministic local algorithm for packet routing on a tree
network is s-speed c-competitive for any constants s and c.

Proof. Fix a deterministic local algorithm A and let k be a sufficiently large
integer multiple of s. We define a tree network and associated input for every L ∈
{0, . . . , k − 1} recursively as follows. The construction is based on identifying
routers of one or more paths of length k, where the routers within a single path
are indexed 1 through k. We maintain the invariant that algorithm A queues
a packet on the L + 1st router of some path P in network L at time kL/s
when L < k, and A completes a packet at time kL/s when L = k. If L < k, then
we refer to the router mentioned in the invariant as a shared router.

For L = 0, we use one path P of length k. At time 0, we have 1 packet arrive
with a source of the first router in P and a destination of the kth router in P .
The invariant trivially holds.

For L > 0, we create k copies of network L − 1 and its associated input.
As A is deterministic and local, we know which path P maintains the invariant
for L−1 in each of these copies. Identify the k shared routers that are guaranteed
by the invariant. It takes k/s time steps for A to process the k packets on the
now common shared router, so either the L+ 1st router in some path receives a
packet at time kL/s or A completes a packet at time kL/s.

We see immediately that the maximum flow time for A in network k is k2/s.
However, an optimal schedule will always give precedence to the one packet at
each router that will later need processing on a shared router as described above.
There are never more than k packets that need to use a single router, and all
but one will will not go to another shared router, so that optimal maximum flow

time is 2k − 1 for a competitive ratio of Ω(k
2

ks). Setting k sufficiently high proves
the lemma. ut

8 Conclusions

We initially found it surprising that there was no prior literature on the packet
forwarding problems considered in this paper as they seem quite natural. Part of
the explanation may be that even for a line network, the problems are surprisingly
challenging. The two most natural open problems “discovered” by our research
are:

– Is there an O(1)-competitive algorithm for maximum flow on a line? The
authors are in disagreement amongst themselves about which answer is most
likely, and there is a modest wager on the outcome. As evidence that there
might be an ω(1) lower bound, even finding a reasonable candidate policy
seems challenging. We are able to show that all of the following policies are
not O(1)-competitive:
• c-EA/FTG - Forward using EA every c steps, and FTG the rest of the

time, where c > 0 is any constant.
• c-OPT/FTG Threshold - If we know OPT, the value of the optimal

solution, forward the furthest-to-go packet that has age at least c ·OPT,
otherwise send the furthest-to-go packet, where c > 0 is any constant.

• 1
c -Local [Global] FTG Threshold - Forward the furthest-to-go packet with
age at least 1/c of the maximum age of any packet at the current router
[or in the network], where c > 0 is any constant.

– Is there an O(1)-speed O(1)-competitive (or even scalable) policy for average
flow on a line? In this case, the authors all conjecture that the answer is yes,
for the traditional reason that we were not able to prove otherwise. Here
candidate policies are abundant, but it is not clear how to do the analysis.
STG is a good algorithm when all release times are the same, which suggests
that it is a good candidate for an O(1)-speed O(1)-competitive algorithm,

as processor-sharing is for one processor [27]. Also running STG and FTG
simultaneously is another obvious candidate algorithm. The main issue with
the analysis is that neither the standard potential function approach [28] nor
the standard application of linear programming duality seem to work.

References

1. Kowalski, D., Nussbaum, E., Segal, M., Milyeykovsky, V.: Scheduling problems in
transportation networks of line topology. Optimization Letters, to appear (2013)

2. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Adaptive packet routing for
bursty adversarial traffic. J. Comput. Syst. Sci. 60(3) (2000) 482–509

3. Andrews, M., Awerbuch, B., Fernández, A., Leighton, F.T., Liu, Z., Kleinberg, J.M.:
Universal-stability results and performance bounds for greedy contention-resolution
protocols. J. ACM 48(1) (2001) 39–69

4. Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily
small network loads. ACM Transactions on Algorithms 5(3) (2009)

5. Andrews, M., Zhang, L.: The effects of temporary sessions on network performance.
SIAM J. Comput. 33(3) (2004) 659–673

6. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. J. ACM 48(1) (2001) 13–38

7. Broder, A.Z., Frieze, A.M., Upfal, E.: A general approach to dynamic packet routing
with bounded buffers. J. ACM 48(2) (2001) 324–349

8. Leighton, F.T., Maggs, B.M., Rao, S.: Packet routing and job-shop scheduling in
O(Congestion + Dilation) steps. Combinatorica 14(2) (1994) 167–186

9. Ostrovsky, R., Rabani, Y.: Universal O(Congestion + Dilation + log1+epsilonN)
local control packet switching algorithms. In: STOC. (1997) 644–653

10. Rabani, Y., Tardos, É.: Distributed packet switching in arbitrary networks. In:
STOC. (1996) 366–375

11. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple
access channel. ACM Transactions on Algorithms 8(1) (2012) 5

12. Gamarnik, D.: Stability of adaptive and nonadaptive packet routing policies in
adversarial queueing networks. SIAM J. Comput. 32(2) (2003) 371–385

13. Dı́az, J., Koukopoulos, D., Nikoletseas, S.E., Serna, M.J., Spirakis, P.G., Thilikos,
D.M.: Stability and non-stability of the FIFO protocol. In: SPAA. (2001) 48–52

14. Srinivasan, A., Teo, C.P.: A constant-factor approximation algorithm for packet
routing and balancing local vs. global criteria. SIAM J. Comput. 30(6) (2000)
2051–2068

15. Awerbuch, B., Azar, Y., Plotkin, S.A.: Throughput-competitive on-line routing. In:
FOCS. (1993) 32–40

16. Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive guarantees for
QoS buffering. Algorithmica 43(1-2) (2005) 63–80

17. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing policies for QoS
switches. In: SODA. (2003) 761–770

18. Azar, Y., Zachut, R.: Packet routing and information gathering in lines, rings and
trees. In: ESA. (2005) 484–495

19. Angelov, S., Khanna, S., Kunal, K.: The network as a storage device: Dynamic
routing with bounded buffers. Algorithmica 55(1) (2009) 71–94

20. Adler, M., Rosenberg, A.L., Sitaraman, R.K., Unger, W.: Scheduling time-
constrained communication in linear networks. Theory Comput. Syst. 35(6) (2002)
599–623

21. Gordon, E., Rosén, A.: Competitive weighted throughput analysis of greedy
protocols on DAGs. ACM Transactions on Algorithms 6(3) (2010)

22. Aiello, W., Ostrovsky, R., Kushilevitz, E., Rosén, A.: Dynamic routing on networks
with fixed-size buffers. In: SODA. (2003) 771–780

23. Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Sgall, J., Tichý, T.: Online
competitive algorithms for maximizing weighted throughput of unit jobs. J. Discrete
Algorithms 4(2) (2006) 255–276

24. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM J. Comput. 33(3) (2004)
563–583

25. Rosén, A., Scalosub, G.: Rate vs. buffer size-greedy information gathering on the
line. ACM Transactions on Algorithms 7(3) (2011) 32

26. Kesselman, A., Mansour, Y.: Harmonic buffer management policy for shared
memory switches. Theor. Comput. Sci. 324(2-3) (2004) 161–182

27. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup
curves. ACM Transactions on Algorithms 8(3) (2012) 28

28. Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in
online scheduling. SIGACT News 42(2) (2011) 83–97

