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ABSTRACT
In recent work we quantified the anticipated performance
boost when a sorting algorithm is modified to leverage user-
addressable “near-memory,” which we call scratchpad. This
architectural feature is expected in the Intel Knight’s Land-
ing processors that will be used in DOE’s next large-scale
supercomputer.

This paper expands our analytical study of the scratch-
pad to consider k-means clustering, a classical data-analysis
technique that is ubiquitous in the literature and in prac-
tice. We present new theoretical results using the model
introduced in [13], which measures memory transfers and
assumes that computations are memory-bound. Our the-
oretical results indicate that scratchpad-aware versions of
k-means clustering can expect performance boosts for high-
dimensional instances with relatively few cluster centers.
These constraints may limit the practical impact of scratch-
pad for k-means acceleration, so we discuss their origins and
practical implications. We corroborate our theory with ex-
perimental runs on a system instrumented to mimic one with
scratchpad memory.

We also contribute a semi-formalization of the computa-
tional properties that are necessary and sufficient to predict
a performance boost from scratchpad-aware variants of al-
gorithms. We have observed and studied these properties in
the context of sorting, and now clustering.

We conclude with some thoughts on the application of
these properties to new areas. Specifically, we believe that
dense linear algebra has similar properties to k-means, while
sparse linear algebra and FFT computations are more sim-
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ilar to sorting. The sparse operations are more common in
scientific computing, so we expect scratchpad to have signif-
icant impact in that area.
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1. INTRODUCTION
Memory bandwidth is not increasing fast enough to ac-

commodate the increasing parallelism on the nodes of super-
computers and commodity systems. As a result, memory is
becoming ever more distant and processors are increasingly
starved for memory bandwidth.

One proposed solution to be offered by vendors is near-
memory, also called scratchpad [24, 29].1 The scratchpad is
physically bonded to a package containing processing ele-
ments rather remotely available via bus. This allows ven-
dors to devote a higher percentage of memory chip I/O to
data instead of control lines. The benefit is a much higher
bandwidth, compared with traditional DRAM, with similar
latency. The problem is that current codes will not use the
new memory efficiently without programmer intervention.

Trinity [34], the latest National Nuclear Security Adminis-
tration (NNSA) supercomputer, will use the Knight’s Land-
ing processor from Intel with Micron memory. This proces-
sor chip includes the scratchpad [24].

One potential use for on-package memory is to provide a
local cache of DRAM pages with a hardware or runtime-
assisted mechanism for migrating data. This approach
would help those applications that could take advantage of
the automated support and not require any modification.
However, the extra latencies associated with automatically
managing memory accesses are not suitable for all applica-
tions, and will inhibit the performance of some. The alterna-
tive to automated management is a user-controlled memory,
which eliminates the lookup of data locations and concen-
trates data movement into specific, user-defined sites. We
expect that the use of user-controlled memories will provide
significantly higher performance where algorithms can be
modified for such an architecture. Furthermore, we believe
that future increases in the complexity of memory hierar-
chies will make user control of at least some memories in
the system a requirement.

1The name“scratchpad”can also refer to high-speed internal
memory used for temporary calculations [11,32], a different
technology from the near-memory analyzed in this paper.
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As memory bandwidth becomes ever more scanty rela-
tive to processing power, it becomes increasingly profitable
to exploit advances such as scratchpad in high-performance
computing.

The Center of Excellence for Application Transition [29],
a collaboration between NNSA Labs (Sandia, Los Alamos,
and Lawrence Livermore), Intel, and Cray, has a mandate to
ensure that applications can use the new architecture when
it becomes available in 2015-16. As a community, however,
we are only now beginning to understand the implications
of scratchpad to this goal. Locality has been a key concept
in supercomputing for decades, yet the advent of scratch-
pad is placing further emphasis on this concept. Even the
most efficient HPC codes will not be prepared to exploit
scratchpad despite decades of focus on locality. The prob-
lem is that using scratchpad involves an explicit data copy,
the cost of which must be also amortized by adequate reuse
of that data.

For an application to benefit from a scratchpad-enhanced
memory architecture, good data locality is necessary, but it
is not sufficient. For example, consider a program that scans
a large array once. This program has great data locality.
However, running this program on a memory system with a
scratchpad will not help. Moving the data to the scratchpad
before computation is effectively just an extra copy.

The following definitions help describe the conditions un-
der which a scratchpad-enhanced memory can help. A com-
putation is memory bound if the limiting factor in its running
time is the time to feed data to the processors. Adding more
compute power does not improve runtime in any significant
way, but delivering data faster will. A process is compute
bound if the limiting factor is the total processing power. A
compute-bound computation might run faster if given more
or faster processors, but is unlikely to benefit from faster
memory.

Intuitively, a computation can be helped by a scratchpad-
enhanced memory architecture if that computation has the
following properties.

1. (Memory boundedness) In the absence of scratch-
pad, any variant of the computation is memory bound.

2. (Scratchpad chunking is appropriate) The com-
putation can be broken into scratchpad-sized, largely
independent chunks with sufficient locality to process,
and then these chunks can be efficiently reassembled.

3. (Cache chunking is insufficiently helpful) Break-
ing the computation into cache-sized chunks is insuffi-
ciently helpful. This may be because the divide-and-
conquer overhead for breaking into subproblems and
combining sub-soluitons is expensive or simply because
larger chunks help more.

4. (Scratchpad chunk reuse) After being copied to
scratchpad, each chunk needs to be scanned sufficiently
many times to amortize the cost of the copy.

Bender et al. [13] recently proposed an algorithmic mem-
ory model for the scratchpad. Their model generalizes exist-
ing sequential and parallel external-memory models [1,5] to
account for high- and normal-bandwidth memory. Specifi-
cally, the model assumes two different block sizes, B and ρB
(with integer parameter ρ > 1) to model the bandwidths of

DRAM and the larger bandwidth of the scratchpad. The
model then analyzes the number of block transfers, a good
proxy for the running time if the computation is memory
bound. That is, moving data to and from memory has to be
the dominant part of the running time.

The algorithmic scratchpad model was first applied to the
problem of sequential and parallel sorting algorithms [13].
New, scratchpad-aware variants were tested with Sandia Na-
tional Laboratories’ Structural Simulation Toolkit (SST) ex-
tension [30] simulator, which can simulate a wide range of
architectural features, including scratchpad memory. (Ac-
tual scratchpad architectures have yet to be released, so one
cannot evaluate performance on a deployed system.)

Despite the imminent arrival of architectures with scratch-
pad, we are aware of only this one application with a pub-
lished study of scratchpad performance. In this paper we
give scratchpad-aware algorithms, in the model of [13], for
clustering, a fundamental tool of machine learning and data
mining. Clustering has applications in many fields, includ-
ing social network analysis, pattern recognition, and infor-
mation retrieval. In a typical clustering problem one is given
a set A of N d-dimensional data points and a parameter k.
The goal is to partition the data points into exactly k clus-
ters such that points in the same partition are similar, ac-
cording to some metric. In this paper we give a scratchpad
optimized algorithm for the Euclidean k-means clustering
problem which we define more formally in Section 3.

The k-means problem is perhaps the most widely used
and well studied clustering problem. It is used from areas
spanning computer vision [28] to targeted advertising [18] to
bioinformatics [35]. Although the k-means clustering prob-
lem is NP-Hard [4, 9], there are several theoretically good
approximation algorithms [2,8,17,33]. In practice, the most
widely used algorithm is Lloyd’s algorithm [27], also known
as the k-means method. Lloyd’s algorithm is a simple greedy
procedure that is fast, efficient and returns the highest qual-
ity solutions on real data [36]. In fact, Lloyd’s algorithm has
been identified as one of the top 10 most influential algo-
rithms in data mining [36]. In this paper, we adapt Lloyd’s
algorithm to the scratchpad model.

The k-means problem is quite computationally intensive.
Even heuristics like Lloyd’s algorithm require O(Ndk) op-
erations per pass. Large instances can take hours of wall-
clock time for some realistic settings of these parameters.
Scratchpad-based k-means could potentially enable cluster-
ing of much larger datasets on future systems.

External memory algorithms for k-means [22] partition
data into subsets and perform considerable work to clus-
ter each subset before moving on to the next. The cost to
reassemble partial results into a global solution is small com-
pared to the cost of processing the individual subsets. We
consider a variant of these algorithms in which traditional
DRAM is analogous to disk and scratchpad is analogous to
traditional DRAM.

We analyze the reduction in data block movement for
scratchpad-based k-means algorithms. Our analysis finds
the values of ρ, the ratio of the scratchpad bandwidth to
DRAM bandwidth, that provide benefit for the k-means
computation using Lloyd’s algorithm. The maximum useful
value of ρ depends upon the sizes of the k-means input set
(k, d) and the size of cache and the scratchpad. That is, we
show quantifiably when the increased bandwidth will or will
not be an asymptotic benefit for memory block transfers. We
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Figure 1: The scratchpad memory model [13].

give a similar analysis for a partitioning-based algorithm for
k-means clustering using a scratchpad.

2. ALGORITHMIC SCRATCHPAD
MODEL

This section summarizes the sequential and parallel
scratchpad models of Bender et al. [13].

Scratchpad model
The scratchpad and DRAM have roughly similar access
times. In contrast, the scratchpad has higher bandwidth
than DRAM but smaller capacity. Both the DRAM and the
scratchpad are independently connected to the cache; see
Figure 1.

Data is transferred to and from the DRAM in smaller
blocks of size B and to and from the scratchpad in larger
blocks of size ρB, ρ > 1. The larger scratchpad blocks model
its higher bandwidth. The cache has size Z, the scratchpad
has size M � Z, and the DRAM is modeled as arbitrarily
large.2

The cost model is simple: the performance is measured
in terms of block transfers. Each block transfer costs 1,
regardless of whether a large block goes to the scratchpad
or a small one goes to DRAM. Computation is given for
free.3

Observe that the scratchpad block size, ρB, in the model
need not be the same as the block-transfer size in the ac-
tual hardware. But for the purpose of algorithm design,
one should program assuming a block size of ρB, so that
the latency contribution for a transfer is dominated by the
bandwidth component.

Parallel scratchpad model
The parallel scratchpad model resembles the sequential
model, except that there are p processors all occupying the
same chip. Each processor has its own cache of size Z, and
all p processors are connected to a single size-M scratchpad
and to DRAM. In DRAM the blocks have size B and in the
scratchpad ρB.

2Often it makes sense to assume a tall cache; that is,
Z > B2, or more generally, Z is at least polynomially larger
than B. This is a common assumption in external-memory
analysis, see e.g. [14–16,20,21].
3The scratchpad thus applies to memory-bound computa-
tions. If a computation is CPU bound, then the choice of
memory architecture should matter little.

In any given block-transfer step of the computation, our
model allows for up to p′ processors to perform a block trans-
fer, either from DRAM or from the scratchpad. Thus, al-
though there are p processors, bandwidth limitations reduce
the available parallelism to some smaller value p′. (In the
sequential case, p′ = 1, and in the fully parallel case, p′ = p.)

Putting models in context
The scratchpad model generalizes the external-memory
model of Aggarwal and Vitter [1] to include high- and low-
bandwidth memory. The external-memory model assumes a
two-level hierarchy comprised of a small, fast memory level
and an arbitrarily large second level. Data is transferred
between the two levels in blocks of size B.

The parallel scratchpad model generalizes the parallel
external-memory (PEM) model [5], which has p processors
each with its own cache of size M . These caches are each
able to access an arbitrarily large external memory (DRAM
in our terminology) in blocks of size B. These block transfers
are the only way that processors communicate. This model
works with CRCW, EREW, and CREW parallelism, though
most research in this model (i.e. [3, 6, 31]) uses CREW.

3. K-MEANS CLUSTERING
In this section we formally describe the k-means clustering

problem. We then give details of Lloyd’s algorithm, the
most popular k-means algorithm. Then we discuss how we
can adapt this algorithm to the scratchpad architecture and
bound it performance guarantees.

k-means clustering problem statement
Let A denote an input set of N points in Rd (d-dimensional
Euclidean space). Let v[i] denote the ith dimension of a
point v. Let Dv,v′ denote the distance between two points
v and v′.

The goal is to cluster A into k clusters, for input parame-
ter k. Intuitively, points in the same cluster are more closely
related to each other than to points in other clusters. More
precisely, we can compute the variance of the pairwise dis-
tances between elements in the set of points assigned to the
same cluster. This is a measure of how close the points are
to each other as a group. We wish to minimize the total
variance of the clustering, which is the sum of the variances
over all clusters.

Say that the points in A are partitioned into k clusters
C1, C2, . . . Ck. Then, one can define the centroid of the
clusters. Intuitively, the centroid is the center of mass of
the cluster. In Euclidean space this is the point that is
the average of all of the other points in the set. Formally,
the centroid vi of a cluster Ci has jth dimension equal to
1

|Ci|
∑
u∈Ci

u[j]. The goal of the k-means problem is to

choose clusters such that
∑k
i=1

∑
v∈Ci

(Dvi,v)2 is minimized.
Alternatively, one can choose a set X of k points. This

naturally defines a clustering where for point v ∈ X, con-
tains all points in v′ ∈ A such that v is the closest point
in X to v′. For a set X let DX(v) = minv′∈X Dv,v′ be the
minimum distance of a point v to a point in the set X. The
goal is to choose a set X of size k such that

∑
v∈A(DX(v))2

is minimized.



Lloyd’s algorithm
We now give details of Lloyd’s algorithm. We assume that
k > B throughout the section.

1. The algorithm is initialized with a set X of k points.
This initialization can be done arbitrarily, but is usu-
ally done using a sophisticated algorithm such as k-
means++ [7, 10] or by selecting the points uniformly
at random [27].

2. The algorithm then assigns each point in A to the clos-
est of the k points in X. The points in A that are
assigned to v form cluster Cv.

3. The algorithm then computes the centroid of Cv and
replaces v in X with the centroid of Cv. Recall that
the centroid of a set of points in Euclidean space is the
point that is the average of all of the other points, that
is, the centroid’s jth dimension is 1

|Cv|
∑
u∈Cv

u[j].

4. The algorithm iterates until the clustering does not
improve, or does not improve beyond some threshold.

Optimizing Lloyd’s algorithm for cache only
We begin by analyzing Lloyd’s algorithm in an architecture
without a scratchpad. Later when analyzing the scratchpad-
optimized algorithm, we must consider if the set X fits in
the cache. Here we give a single expression of the memory
accesses irrespective whether X fits in cache or not.

Theorem 1. An iteration of Lloyd’s algorithm can be
implemented in O(dkd/Ze(Nd/B)) memory accesses on a
cache of size Z when the cache lines have size B.

Proof. The cost to scan through all N points in A once
is Θ(Nd/B). Because the formula for determining the cen-
troid is linear, if we bring the first Z/d points into cache,
scan through all the points, bring the next Z/d points, into
cache, and so forth, then we can compute the centroid using
O(dkd/Ze), scans through all the points.

2

If kd < Z, then the entire set X fits in cache and the only
cost is scanning through all of the points in A.

Corollary 1. An iteration of Lloyd’s algorithm can be
implemented using O(Nd/B) memory accesses, if kd < Z.

Implementing Lloyd’s algorithm on the
scratchpad
To take advantage of the scratchpad, Lloyd’s algorithm per-
forms the following steps in each iteration:

• Recall that the algorithm’s goal is to compute new
centroids. For each point v ∈ X let cv be initialized to
0d. This will eventually store the new centroid for the
cluster assigned to v.

• The algorithm fills the scratchpad half full of points A′

from A, i.e., O(M/d) points.

• The algorithm fills the remaining space with a set X ′

of as many points of X which can fit into the other half
of the scratchpad. The algorithm will iteratively bring
in chunks of X until scanning through all of the points

in X. For each chuck X ′, the algorithm determines for
each point in A′ its closest point X ′. After scanning
through all of X, the algorithm can determine which
point in X ′ is closest to each point A′.

• Let Cv denote the points of A′ which were closest to
v ∈ X. The algorithm sets cv = cv + 1

|Cv|
∑
v′∈Cv

v′.

• The algorithm recurses on another set A′ of points in
A until it iterates through all points in A.

Now we bound the performance guarantees of this scratch-
pad optimized algorithm.

Theorem 2. When there is a scratchpad of size M and
a cache of size Z, an iteration of Lloyd’s algorithm can
be implemented with O

(⌈
kd
M

⌉ ⌈
Nd
M

⌉
M
B

)
DRAM accesses and

O
(⌈

kd
M

⌉ ⌈
Nd
M

⌉ ⌈
M
Z

⌉ (
M
ρB

))
scratchpad accesses.

Proof. We first analyze the DRAM accesses. The
scratchpad thus has to be loaded O

(⌈
kd
M

⌉ ⌈
Nd
M

⌉)
times from

DRAM and the cost for each scratchpad load is O(M/B).
We next analyze the scratchpad accesses. For each of

the scratchpad loads, the scratchpad runs what is effectively
an iteration of Lloyd’s algorithm. Using the same proof
as in Theorem 1, since each iteration has O(M/d) points
and the block transfer size is ρB, the cost per iteration is

O
(⌈

M
Z

⌉ (
M
ρB

))
. 2

To understand the takeaway or “moral” of Theorem 2, we
separate into three cases: (1) the k points in X fit in cache
(Z ≥ kd), (2) the k points in X fit in the scratchpad but
not in cache (Z < kd ≤ M), and (3) the k points in X do
not fit in the scratchpad (M < kd).

The following three corollaries explain the benefit of the
scratchpad for each of these three cases.

We being stating that the scratchpad does not give any
additional speed-up when all points in X fit into the cache.

Corollary 2. If the k points in X fit in cache (Z ≥ kd),
then the scratchpad delivers no asymptotic benefit. With or
without scratchpad, Lloyd’s algorithm can be implemented
so that the dominant memory-access cost comes from the
DRAM accesses; it is O(Nd/B), the cost of a linear scan.

Now we consider the case where X is too large to fit into
the cache, but fits into the scratchpad. In this case, we ex-
pect speed-up using the increased bandwidth of the scratch-
pad.

Corollary 3. If the k points in X fit in scratchpad but
not cache (Z < kd ≤M), then the scratchpad can accelerate
Lloyd’s algorithm by a factor of up to min{ρ, kd/Z}. There
is no more asymptotic benefit once ρ ≥ kd/Z.

Proof. By Theorem 2, with a scratchpad there are
O(Nd/B) DRAM accesses and by Theorem 1, without a
scratchpad, there are O((kd/Z)(Nd/B)) DRAM accesses.

There are O((kd/Z)(Nd/(ρB))) scratchpad accesses,
which means that the scratchpad accesses are not dominant
if ρ > kd/Z, so increasing ρ does not help asymptotically.

2

Finally, we consider the case where X is too large to fit
into the cache and also the scratchpad. In this case, we ex-
pect speed-up using the increased bandwidth of the scratch-
pad.



Corollary 4. If the k points in X do not fit in the
scratchpad (kd > M), then the scratchpad can accelerate
Lloyd’s algorithm by a factor of up to min{ρ,M/Z}. There
is no more asymptotic benefit once ρ ≥M/Z.

Proof. Reason: by Theorem 2, with a scratchpad there
are O(kNd2/(MB)) DRAM accesses and by Theorem 1,
without a scratchpad, there are O(kNd2/(ZB)) DRAM ac-
cesses.

There are O(kNd2/(ρZB)) scratchpad accesses, which is
not the dominant term as long as ρ > M/Z, so increasing ρ
beyond this value does not help. 2

Analyzing the algorithms with parallel proces-
sors
Now we generalize these theorems to multiple processor. Re-
call, that in the model considered there are p processors and
up to p′ ≤ p processors can simultaneously access the mem-
ory. Since Lloyd’s algorithm linearly scans through the data,
the process is fully parallelizable. In this case, the following
theorem immediately follows from Theorem 1 for an archi-
tecture without a scratchpad.

Theorem 3. An iteration of Lloyd’s algorithm can be im-
plemented in O(dkd/Ze(Nd/(Bp′))) memory accesses on a
cache of size Z when the cache lines have size B and p pro-
cessors can access p′ memory locations in parallel.

From Theorem 2, we have the following.

Theorem 4. When there is a scratchpad of size M and
a cache of size Z, and p processors can access p′ memory
locations in parallel, an iteration of Lloyd’s algorithm can

be implemented with O
(⌈

kd
M

⌉ ⌈
Nd
M

⌉
M

(p′B)

)
DRAM accesses

and O
(⌈

kd
M

⌉ ⌈
Nd
M

⌉ ⌈
M
Z

⌉ (
M
p′ρB

))
scratchpad accesses.

These theorems give rise to the following corollary.

Corollary 5. On a parallel process the speed-up pro-
duced by the scratchpad is the following.

• If kd ≤ Z then the scratchpad delivers no asymptotic
benefit.

• If Z < kd ≤ M the scratchpad can accelerate Lloyd’s
algorithm by a factor of min{ρ, kd

Z
}.

• If M ≤ kd the scratchpad can accelerate Lloyd’s algo-
rithm by a factor of min{ρ,M/Z}.

4. PARTITIONING FOR K-MEANS CLUS-
TERING

In this section we give the asymptotic analysis for a ver-
sion of the partitioning algorithm [19,22,23] for solving the
k-means clustering problem.

Partitioning algorithm
The partitioning algorithm works as long as kd < M . The
high level idea behind the partitioning algorithm is to re-
duce the size of the input by clustering portions of it and
then reducing each cluster into a single representative point.
Then the algorithm clusters these representative points to
get a clustering of the original input. This algorithm gives

an additional benefit over the previous algorithm in memory
accesses when the number of iterations of Lloyd’s algorithm
is large.

The partitioning algorithm divides the input A into
|A|d/M partitions containing M/d points of size M . For
each partition, the algorithm clusters them into k clusters.
Each of these clusters will be reduced to a single weighted
point. For each of the constructed clusters, it creates a new
point located at the centroid of the cluster and weights this
points with a weight equal to the number of points in the
cluster. Afterwards, the algorithm then takes each of these
weighted points and clusters them.

We now describe the algorithm which is adapted from [22].
When we describe the algorithm, we note that any arbitrary
clustering algorithm can be used when clustering the parti-
tions and we will denote this algorithm by A. We will later
discuss the performance guarantees when A is Lloyd’s.

1. The partitioning algorithm arbitrarily partitions
the input set of points A into Nd/M sets,
S1, S2, . . . , SNd/M sets, each containing M/d points.

2. Let A denote any algorithm that clusters M/d data
points inside the scratchpad. The algorithm sequen-
tially brings each set Si and clusters them separately
using A to get k clusters Ci,1, Ci,2, . . . Ci,k. For each
cluster Ci,j , the algorithm computes the centroid ci,j
and gives this centroid weight wi,j = |Ci,j |.

3. At the end of the algorithm, there are k · Nd/M dif-
ferent centroids.

4. Finally the algorithm clusters the k ·Nd/M centroids
using the algorithms from Section 3 where the algo-
rithm treats the weights as if there are wi,j points lo-
cated at ci,j . If there are too many centroids to fit into
the scratchpad, the algorithm can recurse.

Using the analysis of [22], this algorithm has the following
theoretical guarantee. We note that Lloyd’s has no approx-
imation guarantee, but, intuitively, the following theorem
states that the quality of the solution should not be too
different between using Lloyd’s or the partitioning based al-
gorithm.

Theorem 5 ( [22]). This algorithm is a O(α2)-
approximation algorithm where α is the approximation of
the procedure A.

Let T denote the number of iterations of Lloyd’s algorithm
if it were run on the entire dataset. Let T ′ be the maximum
number of iterations Lloyd’s algorithm takes if it were used
as the algorithm A in the partition based algorithm anytime
it is invoked. If A is set to be Lloyd’s algorithm, the par-
titioning algorithm gives rise to the following performance
guarantees when run on a single processor machine.

Theorem 6. When kd < M , the total number of
DRAM accesses by the partitioning algorithm where A is
Lloyd’s algorithm (including all iterations of Lloyd’s) is
O
(⌈
Nd
M

⌉
M
B

)
and the total number of scratchpad accesses is

O
(
T ′ ⌈Nd

M

⌉ ⌈
kd
Z

⌉ (
M
ρB

))
.

Proof. First we consider the DRAM accesses. The dom-
inate factor is clustering the partitions in the first step.



Whenever we use Lloyd’s algorithm, the set of k centers al-
ways fits in the scratchpad since we have assumed kd < M
and therefore they do not need to be placed in the scratch-
pad as in the previous section. There are Nd

M
partitions to

be clustered. We only load each partition once into the
scratchpad and loading each partition requires M/B ac-
cesses from DRAM. Thus, the total number of accesses is
(Nd/M)(M/B).

Now we consider the scratchpad memory accesses. For
any partition, Lloyd’s algorithm runs for at most T ′ itera-
tions. Further, a single iteration of Lloyd’s algorithm scans
through all the points in M for each set of dkd/Ze centroids.
There are dNd/Me partitions that are considered, so the to-

tal number of accesses is O
(
T ′ ⌈Nd

M

⌉ ⌈
kd
Z

⌉ (
M
ρB

))
. 2

We note that the previous two bounds can be scaled by p′

if there are p processors that can access p′ memory locations
in parallel, since the algorithms can be fully parallelized as
before.

The number of iterations of Lloyd’s algorithm cannot be
bounded. However, when the partitioning algorithm is used,
we have observed that usually T ′ ≤ T . Assuming this, we
have the following corollary when comparing against the
standard Lloyd’s algorithm. This corollary shows that the
speed-up scales with ρ up to T ′kd/Z, allowing for a larger
increase in speed-up by a factor of T ′ over just simulating
Lloyd’s using the scratchpad when kd < M . Further, in
this case we achieve speed-up even in the case that kd < Z,
which was not possible for the scratchpad implementation
of Lloyd’s algorithm.

Corollary 6. The partitioning algorithm when A is set
to be Lloyd’s algorithm, Z < kd < M and T ′ ≤ T achieves a
speed up of min{ρ, T ′kd/Z}. This algorithm achieves speed
up up to a factor of min{ρ, T ′} when T ′ ≤ T and kd < Z.

5. EXPERIMENTS TO CORROBORATE
THE THEORY

We now describe our experiments running the partitioned
version of Lloyd’s algorithm described in Section 4. Re-
call that a major step in this algorithm is to run classical
Lloyd’s algorithm from the scratchpad using a scratchpad-
sized chunk of the larger input data. We discuss the con-
ditions under which Corollary 3 of Theorem 2 applies. We
show that the partitioned k-means algorithm for our data
sets run on our specific machine satisfies each of the four
properties introduced in Section 1 along with a k-means-
specific property. We describe our experimental design and
results.

Our experimental platform is an 8-core NUMA node with
approximately 21MB of cache, 32GB of DRAM, a standard
memory bandwidth of approximately 25GB/s, and a pro-
cessing capability of roughly 166 GFLOPS. This is roughly
representative of the Trinity nodes that motivate this work.
The system has been modified to mimic two-level memory
via a different socket at 12GB/s to mimic the far memory.
The programmer controls which data gets gets stored in near
and far memory.

We ran experiments on the “ElectricityLoadDia-
grams20112014” dataset from the Machine Learning
Repository [26]. This dataset has 140,256 dimensions and
370 points. Our code was based on an open-source OpenMP

code from Northwestern University [25]. We implemented
the scratchpad-aware partition algorithm for k-means and
used the code from Northwestern to implement the k-means
algorithm for a subproblem in scratchpad. That is, the
Northwestern code is Algorithm A in step 2 of the partition
algorithm in Section 4.

5.1 Required Properties

Property 0: The k working centers do not all fit in
cache.

This follows directly from Corollary 2. We call it out here
because it is important for the other properties.

Property 1: Memory boundedness.
Before implementing a scratchpad-aware algorithm we

must ensure that the algorithm is memory bound if run with
no scratchpad available.

Once more, let N be the number of points, each with d di-
mensions. Let k be the number of centers. Each iteration of
Lloyd’s algorithm for k-means requires O(Nkd) operations.
In the code used, there are 3NKd operations. The amount
of memory transfer during a Lloyd’s iteration (not counting
reuse) is (N + k)d. A simple calculation shows a regime
where the computation will be memory bandwidth-bound.

3Nkd

x
<

(N + k)d

y

where, x is the processing rate in GFLOPS and y is the
memory bandwidth in double precision values per second.
Given our system parameters, we have:

3Nkd

166
<

(N + k)d

1.5
.

We drop the kd/1.5 term on the right side since satisfying
this inequality with a smaller righthand side makes memory-
boundedness even more likely. Rearranging, we find that the
N ’s and d’s cancel, leaving us with an approximate upper
bound on k, the number of centers: k < 36. Intuitively,
we have just formalized the notion that k-means with large
numbers of centers provides a large amount of computation
per memory transfer, making it compute-bound.

Computing on scratchpad-resident data imposes yet a
tighter constraint. Recall that ρ is the scratchpad band-
width expansion parameter. In our case, ρ = 2. To remain
memory-bandwidth bound during scratchpad computation
(and hence to benefit from increases in ρ), we must have:

3Nkd

x
<

(N + k)d

ρy

and hence k < 18.

Property 2: Scratchpad chunking is appropriate.
Our scratchpad-aware Lloyd’s iteration is an implemen-

tation of the partitioning algorithm of [22]. This breaks
the problem into scratchpad-appropriate chunks that can
be processed independently. Running Lloyd’s algorithm
on the scratchpad-resident subproblem reduces a (large)
scratchpad-sized chunk of data into a data set of size O(kd).
This is the size of the centers for the subproblem. These
centers of the subproblem, taken over all subproblems, then
form a final k-means problem that determines the solution.



Table 1: Predicted reductions in far DRAM access
and observed runtime improvements

k Speedup Predicted Drop in
Far Memory Accesses

10 1.33 1.02
14 1.34 1.42
18 1.36 2.0

Thus the “reassembly” of the subproblems into a final solu-
tion is efficient compared to the overall computation.

Property 3: Cache chunking is insufficiently helpful.
Because of Property 0 (from Corollary 2), for scratchpad

to have benefit for k-means, we assume that the working set
of k centers cannot fit into cache. That is, the cache size
is less than kd. As described in the discussion of Property
2, in the partitioned algorithm, each subproblem is reduced
to size kd. Even the output of the sub-computation cannot
fit into cache. In this setting, with no scratchpad, there is
no benefit to running a partitioned algorithm. It is impos-
sible to keep the data set cache resident. One would just
run regular Lloyd’s algorithm. Under these circumstances,
the partitioned algorithm will likely get a lower quality clus-
tering and there is no reason to believe it will have fewer
DRAM block transfers.

Property 4: Scratchpad chunk reuse.
Large k-means instances tend to require at least several

passes before convergence. Thus, we expect to amortize the
cost of copying a partition to scratchpad via sufficient num-
bers of passes through the data.

It’s possible cache-friendly computation from scratchpad
becomes compute bound. The added bandwidth is enough
to reduce memory access time below compute-time require-
ments. If the computation without scratchpad is memory
bound, then there is still benefit for using scratchpad, but
no increased benefit with larger bandwidth ratio ρ.

From Property 0, for a Lloyd’s iteration, the set of cluster
centers does not fit into cache. If it did, there would be
no intuitive or theoretical need for scratchpad. In our case,
that means enforcing the inequality kd > 21MB. Given our
existing upper bound k < 18, and the fact that our instance
uses double precision values, we must have d > 152, 917.

5.2 Experimental design
There are two fundamental problems with these con-

straints. The first is that our regime of expected per-
formance boost invokes the “curse of dimensionality” [12],
which consists of several properties that characterize high-
dimensional Euclidean spaces and question the usability of
distances in that context. However, recent work [37] sug-
gests that this might not be a conclusive statement, and is
at least an open research area. Variants of clustering the
full space may hold promise, and scratchpad-aware versions
of them might eventually help explore this research area.

The second and more immediate problem is that our lower
bound on d exceeds the number of dimensions in our test
problem, so we do not expect a benefit from scratchpad.
Running the instance, we actually do see a small perfor-
mance boost. However, in order to evaluate our theory, we

have modified the problem by duplicating each dimension.
The resulting 280, 512-dimensional problem allows the fol-
lowing experiments.

With our synthetically-doubled dataset, we find that
cache will be flooded by roughly nine centers. Combining
this with our bound k < 18, we can test an experimental
range of 9 ≤ k ≤ 18. Selecting k = 10, 14, 18, Corollary 3
leads us to predict relative speedups of 1.02, 1.42, and 2.0 for
these experiments, assuming a direct relationship between
reduced far-DRAM block transfers and runtime.

5.3 Experimental results
In our experiments, we find that the penalty in objective

value is far less severe than that of the theoretical approxi-
mation bound.

Table 1 shows the results of our sweep through the center
counts that both flood cache and keep the problem memory
bound. We do observe increasing runtime speedups with
increasing numbers of centers. However, we did not col-
lect true DRAM access counts. Although the 30% runtime
speedups do not match the predicted DRAM access reduc-
tions, we note that many runs with parameter settings out-
side of this regime of predicted benefit showed no runtime
performance gain at all.

6. CONCLUSIONS
Through careful study of the most popular algorithm for

k-means and future supercomputing resources with two-
level memory, we have designed, analyzed, and evaluated
a scratchpad-aware variant that achieves 30% speedup on a
customized machine. We find that the regime of expected
speedup is limited to high-dimensional problems with small
numbers of cluster centers. The curse of dimensionality may
therefore limit the practical impact of our algorithm. How-
ever, there has been recent interest in techniques for cluster-
ing points in high-dimensional space without first perform-
ing dimensionality reduction. Our work could contribute to
and/or benefit from such research.

Further work is needed to explore scratchpad-aware vari-
ants of many more algorithms. We think that dense linear
algebra is likely to share some properties of the k-means in-
stances we have studied, and that sparse linear algebra and
FFT will behave like the sorting problems we studied before.
However, these are but conjectures that must be verified.

Although we have now thoroughly explored both sorting
and k-means problems, our methodology is still develop-
ing. On-package, near-memory, or scratchpad, is imminent.
However, applications are not ready to exploit it fully. Ad-
dressing this situation is an acute need for the supercom-
puting community.
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