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ABSTRACT
We introduce a new model for cooperative agents that seek
to optimize a common goal without communication or co-
ordination. Given a universe of elements V, a set of agents,
and a set function f , we ask each agent i to select a subset
Si ⊂ V such that the size of Si is constrained (i.e., |Si| < k).
The goal is for the agents to cooperatively choose the sets
Si to maximize the function evaluated at the union of these
sets, ∪iSi; we seek max f(∪iSi). We assume the agents can
neither communicate nor coordinate how they choose their
sets. This model arises naturally in many real-world settings
such as swarms of surveillance robots and colonies of foraging
insects. Even for simple classes of set functions, there are
strong lower bounds on the achievable performance of coor-
dinating deterministic agents. We show, surprisingly, that
for the fundamental class of submodular set functions, there
exists a near-optimal distributed algorithm for this problem
that does not require communication. We demonstrate that
our algorithm performs nearly as well as recently published
algorithms that allow full coordination.

Keywords
Cooperative agents, Set function optimization, Communica-
tion, Coordination

1. INTRODUCTION
We consider the problem of designing policies for groups of

agents to jointly maximize a collective goal without commu-
nication. An archetypal example of decentralized collective
action with only sporadic or episodic communication is found
in eusocial insect colonies. Being genetically identical, these
agents behave so as to serve their collective fitness, for ex-
ample by maximising the food intake of the whole colony.
Moreover, individuals, while acting for the collective, must
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make decisions independently; [12] states that “A social in-
sect colony operates without any central control; no one is
in charge, and no colony member directs the behavior of
another.”, while [32] notes that a honeybee colony is “an
ensemble of largely independent individuals that rather in-
frequently exchange information (directly or indirectly) with
one another” (from [36]). The marginal utility of those in-
dependent choices is dependent on the decisions of others.
How can these insects act effectively as a collective without a
pre-coordinated strategy? Although the specific mechanisms
of decision-making in each species can be highly complex [36],
we should expect insect colonies to have evolved mechanisms
that provide highly effective allocations of foraging for their
typical environment. Therefore, identifying optimal proce-
dures for collective, decentralized action is likely to shed light
on the behavior of these colonies.

For a similar engineering challenge, consider swarms of
autonomous underwater vehicles (auvs). Recently, advance-
ments in this technology have lead to algorithmic studies of
these vehicles in cooperative settings to achieve tasks such as
search, surveillance, and archaeological research [3]. During
such operations, a single auv takes many thousands of im-
ages near the sea floor before surfacing and transmitting the
images for further analysis. As underwater communication
is difficult to maintain, the auvs cannot communicate with
each other during the search; each is an independent agent.
Naturally, performing operations underwater is expensive;
thus it is vital to optimize the performance of the team as
a whole. Previous work has only considered rudimentary
coordination of auvs, describing beneficial static formations
for the search task [26].

We consider an abstract generalization of this problem
that captures the above settings and others. We consider a
team of n agents cooperatively maximizing a set function
f . The agents may not communicate with each other and
are indistinguishable. Each agent has a budget k on the
number of elements they may choose. The team shares a
reward equal to the value of the union of elements selected,
as measured by f . We provide a decentralized randomized
algorithm to solve this problem. Remarkably, the algorithm
achieves a near-optimal approximation for the fundamental
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class of submodular reward functions, despite the seemingly
strong constraints on communication.

Our problem formation makes no assumption on the re-
ward function; however, optimizing an arbitrary set function
is intractable. Fortunately, many real-world reward functions
belong to the class of submodular functions, which capture a
natural notion of diminishing returns. Optimizing submod-
ular functions has been considered in both sequential and
distributed computational models. However, no previous
work has addressed the multi-agent optimization problem
considered in this paper.

One of the most well-studied problems is maximizing a
monotone submodular function subject to a cardinality con-
straint. In this problem a single agent selects a subset S,
|S| ≤ α, to maximize a submodular set function f evaluated
on S. By setting α = nk, this is precisely the problem the
agents are trying to optimize in our problem formulation (the
agents can collectively return at most nk unique elements).
This problem is np-hard even for a single agent. Further, a
simple greedy procedure achieves a (1− 1

e
)-approximation,

and this is the best possible assuming p6=np [7]. This al-
gorithm is known the have strong practical performance
[17]. Our work aims to discover how close we can come to
this best-possible efficient algorithm using a decentralized
strategy.
Contributions: In this paper, we formalize the problem
we call cooperative set function optimization without com-
munication. We show that for submodular reward functions
there is a (1− 1

e
)2-approximation algorithm. Therefore, the

“price of decentralization” is only a small constant factor
loss in the approximation guarantee. We further establish,
using experiments on real-world data, that our algorithm is
competitive with recently proposed sophisticated centralized
algorithms [24, 5].

2. RELATED WORK
The problem formalized in this paper is new. However,

there are several related problems that have been well studied.
In the area of cooperative game theory and multi-agent sys-
tems, cooperative coordination among agents has been widely
used for improving the performance of a task in comparison
to single-agent decisions [30, 16, 33, 38]. A considerable
amount of this literature is focused on coalition formation
processes, i.e., how the agents should be partitioned [29, 40,
15], the division of coalition payoff [40] and how to design
cooperation enforcement mechanisms [22] are some examples.

Comparatively less attention has been given to the case
that agents cannot communicate or coordinate. [11] have
considered how automated agents could use a technique called
focal points to perform coordination without communication.
A key assumption of their method is that agents are interested
in prominent objects which can be easily identified. Our
framework does not impose restrictions of this nature.

Another related topic is the formation of ad hoc teams —
agents who do not know each other but they face a situation
in which they have to cooperate [1, 2, 14, 35, 39]. These
works differ from ours because they allow communication
among the agents.

Our work is also similar in spirit with [28]. These authors
introduce and analyze the so-called joint search problem. In
joint search, the agents need to select a particular option
among several choices, and all agents may benefit from the
final outcome. Joint search differs from our problem be-

cause the agents are given disjoint search spaces, which is a
pre-coordination step. Nevertheless, in our experimental sec-
tion, we compare with a baseline called Central-Partition,
which effectively matches the joint search formulation. In-
terestingly, as we shall see, our algorithm can in some cases
outperform Central-Partition. [28] used tools from game
theory to analyze their model, whereas we cast our problem
as (multi-agent) set function optimization.

In the set function optimization literature, the maximiza-
tion of a submodular set function subject to a cardinality
constraint is well studied. For non-monotone submodular
functions there is a constant factor approximation and for
monotone submodular functions there is a better ratio, (1− 1

e
)

[8, 25, 20]. These results are for standard computational mod-
els and do not admit a näıve adaptation to the multi-agent
problem we consider.

A problem similar to our setting is the submodular welfare
problem. In this problem there are a set of agents, each
with their own value function. The objective is to maximize
the sum of the values of the set each agent receives. The
distinct difference between this setting and ours is that our
objective considers the function evaluated on the union of the
items selected (rather than summing the value of the sets).
The submodular welfare problem is designed to capture the
utility achieved where each agent has their own evaluation,
and in our setting the agents seek to optimize a common
goal. Some work on the welfare problem, such as [21], specif-
ically requires each agent’s set to be disjoint. However, this
problem is usually studied as an allocation problem, with a
centralized agent allocating items to the collective. Several
constant approximations are known [6, 9]. Unfortunately,
these results do not extend to our problem where there is
neither communication nor centralized planning.

3. PROBLEM DESCRIPTION
Here we formally define the problem we call cooperative set

function optimization without communication. Let V be an
arbitrary finite ground set with |V| = m. Let f : 2V → R be
an arbitrary set function. There exists a set of n agents, each
of whom selects a set Si ⊂ V with |Si| ≤ k, where k ≥ 1 is
given as input to the problem. The subscript i denotes that
this is the subset selected by the ith agent. The agents must
make these selections without exchanging information. The
only information available to the agents is the total number
of agents. This implies that the agents are indistinguishable.
After the selection stage, the agents share a global reward of
f(∪ni=1Si).

Unfortunately, without further assumptions, maximizing
this reward is no easier than the problem of maximizing a
set function under cardinality constraints; if we let n = 1, we
recover exactly that problem. For general functions it is easy
to see that one has to evaluate all

(
m
nk

)
possible sets if you

are only given oracle access to f and desire bounded error.
Luckily many real-world value functions are tractable. We

assume the set function is a non-negative monotone submod-
ular function; that is, f satisfies

f(X∪{x})−f(X) ≥ f(Y ∪{x})−f(Y ) ∀X ⊆ Y ⊆ V, x ∈ V

This condition implies the marginal gain in value from a
specific element to a set X cannot increase after the inclusion
of other elements in X. We do not make further assumptions
about the function f . As standard in submodular function
literature, we assume that we are given oracle access to f .
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Agent Strategies: We now formalize the types of strate-
gies for the agents that will be considered in this paper. We
consider a restricted class of mixed strategies of the following
form. Motivated by the fact that the agents are indistin-
guishable, we assume that each agent uses the same strategy.
Let π ∈ Rm be a probability distribution over V. Given π,
each agent i samples and returns a set of size at most k from
the corresponding multinomial distribution:

Si ∼MN (π, k).

We will use the shorthand notation Si ∼ π to indicate draw-
ing from this distribution. Si might have cardinality less
than k because we sample the elements independently with
replacement.1 All agents use the same strategy and do not
need to communicate with one another. Further, each agent
may select no more than k elements. A strategy which takes
this form clearly obeys the constraints of the problem. The
goal is to determine a suitable probability distribution π over
the elements in V.

4. ALGORITHMS
In this section, we give our algorithms for determining π

and show that it is near optimal. We begin by describing
a simple sampling procedure and later we will show how to
improve on this solution using local optimization methods.

4.1 Sampling from the greedy solution
As mentioned, there is a simple greedy procedure for op-

timizing a monotone submodular function subject to a car-
dinality constraint. Our algorithm for each agent is de-
signed to closely mimic this greedy algorithm. To begin,
we define the standard greedy procedure. Say that α ele-
ments in total are to be chosen from V to form some set
S. A greedy algorithm for solving this problem is as fol-
lows. We begin by initializing S ← ∅. Then we sequentially
find the element x ∈ V \ S with the largest marginal gain,
i∗ = arg maxi∈V\S f

(
S ∪ {i}

)
− f(S), and add this element

to S, setting S ← S ∪ {i∗}. We continue in this manner
until α elements have been selected. We refer to this simple
algorithm as greedy(V, f, α).

Note that this algorithm is completely deterministic. Per-
haps the most natural (and unfortunately bad) strategy
for our distributed setting would be for all agents to run
greedy(V, f, k) and return the resulting set. This gives a
poor solution because every agent will select the same ele-
ments, receiving a shared reward of f(∪ni=1Si) = f(S), under
the constraint |S| = k, which can be a factor n smaller than
the best-possible solution.

An ideal solution would be to coordinate the agents such
that the union of their outputs is equal to greedy(V, f, nk).
That is, each agent selects k distinct elements correspond-
ing to running the greedy algorithm with α = nk. This
ideal is impossible to achieve without coordination. We
present a simple randomized algorithm designed to simulate
greedy(V, f, nk). First, each agent runs greedy to iden-
tify nk elements and then samples these elements uniformly
at random k times. This strategy will be called greedy-
sampling(V, f, nk).

More precisely, let G be the set returned from running
greedy(V, f, nk). The greedy-sampling(V, f, nk) strategy

1Sampling without replacement is also possible, but for anal-
ysis we assume we sample with replacement.

sets the following probability distribution over all elements i
in V:

πi =

{
1
nk

i ∈ G;

0 i /∈ G.

Note that this strategy belongs to the class of mixed strategies
we are studying since it creates a probability distribution π
from which an agent samples k times.

Theorem 1. For any function f that is nonnegative, mono-
tonic, and submodular the, greedy-sampling procedure has
an approximation guarantee of (1− 1

e
)2.

Proof of [Theorem 1] Let opt denote the value of the best
possible solution

opt = max
S⊆V,|S|≤nk

f(S).

Our goal is to show that

ESi∼π

[
f

( n⋃
i=1

Si

)]
≥
(

1− 1

e

)2

opt.

As before, let G be the set returned by greedy(V, f, nk).
Let the elements of G be ordered e1, e2, . . . enk in the order
selected by the greedy algorithm. Let Gi = ∪1≤j≤i{ei}
be the first i elements that Greedy would choose. Let
wi = f

(
Gi−1 ∪ {ei}

)
− f(Gi−1) be the incremental value

that element ei gives to the greedy solution. We begin by
bounding the probability that element ei is included in the
final solution. The probability that an individual agent j
includes ei is k

nk
= 1

n
and therefore, the probability that

an element ei is not in Sj is 1 − 1
n

. The probability that

ei is not chosen by any agent is then (1 − 1
n

)n ≤ 1
e

(this
inequality holds for all n). Thus, the probability that some
agent choose ei is at least 1− 1

e
.

Now we will show that f(∪iSi) ≥
∑
ej∈∪iSi

wj ; in par-

ticular, we show that for any X ⊆ G, f(X) ≥
∑
ej∈X wj .

Fix any set X and let e′1, e
′
2, . . . e

′
|X| be the ordering of the

elements in X in the same order these elements appear in
the ordering of G. Let Xi denote the first i elements in the
order and for notational convenience set X0 = ∅. Finally, set
ρ(i) be the index of e′i in the ordering of the elements in G.
We see that,

f(X) = f(∅) +

|X|∑
i=1

f(Xi)− f(Xi−1)

≥ f(∅) +

|X|∑
i=1

f(Gρ(i))− f(Gρ(i−1)) [Submodularity]

= f(∅) +
∑
ei∈X

wi

≥
∑
ei∈X

wi [f is positive]

We may now complete the proof. Let Ii be an indicator
random variable that is 1 if ei is in the final solution and 0
otherwise. From the arguments above, Pr[Ii = 1] ≥ 1− 1

e
.
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Thus,

E
[
f(∪iSi)

]
≥ E

 ∑
ej∈∪iSi

wjIj

 [Above arguments]

≥
∑

ej∈∪iSi

wjE[Ij ] [Linearity]

≥
(

1− 1

e

) ∑
ej∈∪iSi

wj [Pr[Ii = 1] ≥ 1− 1
e
]

Thus, we our solution has value within (1− 1
e
)f(Gnk). We

know that f(Gnk) ≥ (1− 1
e
)opt by the known performance

of greedy. Thus, we conclude the result. 2

We also show that the algorithm achieves a better approx-
imation ratio if the function is modular,2 and that this is the
best approximation guarantee possible in general.

Corrolary 1. Assume f is nonnegative and modular.
Then this procedure has an approximation guarantee of (1− 1

e
).

This is the best possible.

Proof of [Corollary 1] As before, let G be the solution
produced by greedy(V, f, nk). It is not difficult to see that
f(G) = opt in the case of modularity. In this case, the
distribution π as analyzed in the previous theorem implies
that each element is selected with probability at least 1− 1

e
.

Thus the expected reward is (1− 1
e
)f(G) = (1− 1

e
)opt.

To see that this is the best possible bound in general,
consider the case k = 1, n = m > 1 and define the following
modular set function:

f
(
{e}
)

= 1,∀e ∈ V.

The optimal value in this case is that the agents select distinct
elements (covering the entire universe), giving opt = n.

Any symmetric mixed strategy for this problem is com-
pletely specified by a probability vector π over the elements
of V. Given an arbitrary selection distribution π, we may
calculate the expected reward as

E
[
f(∪iSi)

]
=
∑
i

1− (1− πi)n = n−
∑
i

(1− πi)n.

From the above analysis, we note that the uniform probability
distribution πi = 1

n
gives expected reward (1 − 1

e
)opt =

(1 − 1
e
)n. We show that the uniform vector is in fact the

optimal distribution for this problem.
Suppose there were a symmetric mixed strategy with

nonuniform selection distribution π′ with expected value
greater than that given by π. Let i, j be any two indices of
π′ with π′i 6= π′j , and define π̄ to be their arithmetic mean.
By the strict concavity of (1− π)n in π, we have

2(1− π̄)n < (1− π′i)n + (1− π′j)n,

thus we may strictly improve the expected value by replacing
any nonequal probabilities in π′ with their (equal) arithmetic
means. This contradicts the optimality of π′ and we conclude
that the optimal π is uniform. 2

4.2 Adapting the marginal probabilities
Although greedy-sampling(V, f, nk) achieves a strong

approximation ratio, it may be possible to improve on the

2A modular function satisfies f(X) =
∑
e∈X f

(
{e}
)
.

solution obtained. In particular, note that although the
agents may not communicate, they can assume that all agents
are using the same strategy. Therefore given π, assuming that
an agent knows the number of agents n, she may compute
the expected global reward, under the assumption that all
other agents operate under the same strategy:

φ(π) = ESi∼π
[
f(∪ni=1Si)

]
.

The agent may then maximize the expected reward as a
function of the π; that is, each agent seeks

π∗ = arg maxπ φ(π) (1)

Finally after this maximization process, each agent samples
their Si ∼ π∗.

The main question is how to find π∗. We have already
shown one approach to give an approximately optimal π in
greedy-sampling(V, f, nk), but it is possible in some cases
to do better taking the following approach. We assume that
π must be a probability distribution over the elements, each
value πi must be positive and the entries must sum to 1. It
can be useful to relax the latter condition and instead insist
that

∑
i πi ≤ 1, the remaining mass reflecting “no element

selected.”
Here we introduce some notation for convenience. Con-

sider a point x in the unit cube [0, 1]m. We define a function
g(x; f) : [0, 1]m → R from f in the following way. Let S ⊆ V
be a random set, where we include element ei in S indepen-
dently with probability xi: Pr(ei ∈ S | x) = xi. We will
abuse notation and write S ∼ x to indicate this generative
process defined by x. We define

g(x; f) = ES∼x
[
f(S)

]
.

The function g, defined by taking the expected value of
f(S), allowing S to be generated randomly according to the
probabilities in x, is called the multilinear extension of f .
Note that if we set x to a binary vector, then the value of g is
exactly equal to the set function evaluated on a corresponding
set. For example g

(
[1, 0, 0, . . . ]>; f

)
= f

(
{e1}

)
. The function

g therefore “extends” the set function f from the corners of
the unit cube (binary vectors, exact set function values) to
the entire unit cube by allowing “fuzzy” set membership.

Consider again our multi-agent problem, and define the
random variable S = ∪iSi. Given a per-agent probability
vector π, we define the vector x(π) by

x(π;n, k)i = Pr(ei ∈ S | π, n, k) = (1− (1− πi)nk).

The vector x(π;n, k) now gives the element-wise probability
that each element e ∈ V is in S, the union of the agents’
choices, assuming the agents each select k elements indepen-
dently according to π. Note that x is in fact a function of π,
n, and k, but we will ignore the dependence on n and k for
brevity as all agents are assumed to know this information.

Now, given π, n, k, and f , each agent may use the mul-
tilinear extension to compute the expected global reward
shared by the agents, if each were to use the vector π:

φ(π) = ESi∼π
[
f(∪ni=1Si)

]
= ES∼x(π)[f(S)

]
= g
(
x(π); f

)
.

Our problem is to find

arg maxπ φ(π) = arg maxπ g
(
x(π); f

)
,

subject to the constraints on π. To facilitate this optimiza-
tion, we may compute the gradient of our objective with

1112



(a) Greedy-nk (b) Adaptive-Sampling

Figure 1: Social insect log dpp example, n = 100, k = 1. A collection of agents must jointly maximize the pdf of an induced
determinantal point process as a function of which direction to forage. The blue shaded region shows a probability distribution
over angles, indicating the distribution of food; the black lines show selected foraging directions. The decentralized agents can
provide results nearly as good as a centralized planner.

respect to π. Applying the chain rule, we have

∂g((x(π); f)

∂π
=
∂g((x(π); f)

∂x

∂x

∂π
.

The derivative of x with respect to π is simple to compute:

∂x
∂πi

= nk(1− πi)nk−1.

Computing the gradient of g with respect to x is a little more
complicated. By considering the definition of the multilinear
extension again, and writing out the expectation as a sum
over all 2m possible sets S, we may compute the gradient as
follows:

∂g
∂xi

∣∣∣
x

= ES∼x
[
f
(
S ∪ {ei}

)
− f

(
f \ {ei}

)]
.

Define the following abuses of notation:

S + i = S ∪ {ei}; S − i = S \ {ei};

then,

∂g
∂xi

∣∣∣
x

= ES∼x
[
f(S + i)− f(S − i)

]
.

Note that the sets S+i and S−i differ by exactly one element.
We may interpret this gradient as giving the instantaneous
benefit from increasing each entry in the element-wise prob-
ability vector x.

Unfortunately, computing this gradient in closed form re-
quires summing over all 2m possible values of S. However,
we may make a Monte Carlo estimate of the gradient by
repeatedly sampling S element-wise according to x and aver-
aging the contributions above. Theoretically, a polynomial
number of samples are needed to estimate the gradient with
high probability [10]. Throughout this text, we refer to this
strategy as Adaptive-Sampling.

5. DEMONSTRATIONS
In this section, we show how we can apply the proposed

algorithms to solve different tasks: foraging in insect colonies,
sensor placement to detect contamination, and maximum
coverage of Wikipedia pages. Our goal is to provide intuition
about the algorithms’ choices; we leave the quantitative
results for the next section.

5.1 Simulation of social insects
We first demonstrate our algorithm with a simulation of

social insects. Imagine that a collection of n = 100 insects
(we will call them bees) have a shared belief about in which
directions away from the hive food can be found. In bees, this
knowledge is shared and communicated via the so-called“wag-
gle dance.” We consider a collective optimization problem
wherein each bee must now independently select a direction
to forage in. There is a natural incentive for the bees to
induce diversity in their foraging coverage to maximize total
food collected and also to potentially locate new sources of
food to be communicated to the hive, improving the shared
knowledge. We model the quality vs. diversity trade off in
foraging directions via a set function that is the log prob-
ability of an associated determinantal point process (dpp)
over sets of angles [19]. This function is both submodular
and also encourages simultaneous quality and diversity in
the chosen directions. Note the function is not monotone,
but we may nonetheless run our algorithms in this setting.
Figure 2(a) shows the directions that would be allocated to
the bees using an inaccessible centralized greedy plan. Fig-
ure 2(b) shows sample directions chosen by the agents using
the Adaptive-Sampling algorithm. Without planning the
bees independently select foraging directions that benefit the
collective.

5.2 Environmental monitoring
We consider decentralized aquatic robots monitoring water

quality. We use a dataset representing water pH measured at
m = 86 discrete locations along a ∼ 60 m transect of Lake
Merced near San Fransisco. Previous work has considered
the problem of estimating pH along this transect using a
Gaussian process (gp) estimator. A custom Gaussian process
model was built from measurements in [34]; we use this model
here. Given a set of measurements, the information gained
about the entire random function in the gp setting may be
computed in closed form as the entropy of a multivariate
Gaussian distribution. Further, considering the set of discrete
sampling locations to be a universe V and defining the set
function f(S) to be the information gain associated with
measuring the function at the locations in S, we have that f
is nonnegative, monotone, and submodular [18].

We illustrate our algorithm in action in this setting using
the information gain value function f , and setting n = k =

1113
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(a) Greedy-Sampling. Expected value: 7.2. Expected number
of elements selected: 15.8
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(b) Adaptive-Sampling. Expected value: 7.4. Expected
number of elements selected: 17.6.

Figure 2: Lake Merced transect Gaussian process entropy maximization example, n = k = 5. The marginal probability of
including each element in the union is indicated by size and color.

5. Figure 2(a) shows the sensors selected by running our
Greedy-Sampling algorithm on this problem. The size and
color of the circles correspond to the marginal probability that
each sensing location is selected by the collective using the
marginal selection probability vector π that each algorithm
returns. We see that the agents choose randomly from a set of
locations that cover the sensing region well. Notice that the
pH function showed significant nonstationarity in the region
corresponding to 30–60 m along the transect, hence the denser
sampling in that region. In Figure 2(b), we see what happens
if we allow these marginal probabilities to be optimized by
performing gradient ascent on the multilinear extension of
f . We see that the solution returned by our Adaptive-
Sampling algorithm is similar to the solution returned by
Greedy-Sampling, although the selection vector π now has
support on more than nk elements. Intuitively, allowing
the probabilities to be optimized shifted some probability
mass from the greedy solution to points that are “nearly as
good,” especially in the region 30–60 m along the transect.
The result of this is an increase in the expected shared value
(information gain of 7.4 nats versus 7.2 nats for Greedy-
Sampling), and a larger expected cardinality of the union
(17.6 versus 15.8 ≈ nk(1− 1

e
)).

5.3 Wikipedia maximum coverage

Table 2: Marginal probabilities found on some Wikipedia
Country pages

Wikipedia page πgs πas # links

British Empire 0.025 0.041 133
Axis Powers 0.025 0.035 106
Russian ssr 0.025 0.025 56
Confederation of the Rhine 0.025 0.024 53
Chu (state) 0.025 0.024 27
Somalia 0.025 0.024 62

World government 0 0.007 84
Russia 0 0 60
European Union 0 0 52

The maximum coverage problem is a fundamental algorith-
mic problem widely used in several applications [4, 13, 37].
In social network analysis, for instance, this problem could

be used to find the most influential individuals of a particular
group [27]. This is an interesting question to marketing cam-
paign designers who want to focus on particular users and
reach a target audience. Given several sets S1, S2, . . . , Sm
and a number k, k < m, the maximum coverage problem
asks to find k sets that contain the largest number of different
items, i.e., the union of the selected sets has maximal size.
Mapping this problem to our framework is simple; we just
need to define the set function as the cardinality function
f(A) = |A|, which is submodular.

In our experiments, we studied the coverage of Wikipedia
pages, because it represents a rich and free available source
of data. Specifically, we used the DBpedia3 knowledge base
to access structured content from Wikipedia. From the 2014
DBpedia dataset, we constructed a graph whose nodes are
Wikipedia pages and whose edges represent links between
pages. In this section, we restricted the domain of pages
to those which are in the category of country, according
to the DBpedia ontology. We pose the following question:
which Wikipedia pages from the class country can cover
the most number of pages of the same class with its set of
outgoing links?

We fixed the number of agents to n = 8 and let each agent
select up to k = 5 items. We then ran both the Greedy-
Sampling and Adaptive-Sampling strategies, computing
the expected reward using a total of 10 000 samples from
the multilinear extension. The expected reward for the
set returned by Greedy-Sampling was 824, whereas the
expected reward for the set returned by Adaptive-Sampling
was 878. This shows that Adaptive-Sampling succeeded
in improving upon Greedy-Sampling. We further explore
this result by taking a closer look to the selection made by
these algorithms.

Table 2 presents several Wikipedia pages from the class
country. The first group of pages are ordered according to
their marginal probability of inclusion in the union ∪Si found
by the Adaptive-Sampling strategy πas. For Greedy-
Sampling, some pages have marginal probability of 1

nk
, and

others have probability zero; this defines the πgs distribution.
The second group is ranked by their number of outgoing
links.

The values on πas assigned to these pages exemplify great

3http://wiki.dbpedia.org/
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Figure 3: Performance of all methods on the datasets country, tennis player and work. The first row shows results for
increasing number of agents n with a fixed number of elements k = 20; the second row shows results for a fixed number
of agents n = 10 and increasing k. The vertical axis shows the expected reward in thousands. For better visualization we
deliberately omit some results for the baseline Random since its performance was much worst than the other methods.

Table 1: Comparison of the expected reward for multiple instances. The number of elements is fixed at k = 20. The
results are normalized against Greedy-nk for that particular instance. The displayed methods are Greedy-nk (G-nk),
Central-Partition (cp), Adaptive-Sampling (as), Greedy-Sampling (gs), Random-Partition (rp) and Random. The
best performance among the decentralized methods are displayed in bold.

Dataset n
centralized decentralized

G-nk cp as gs rp Random

book
5 1.00 0.93 (0.01) 0.75 0.66 0.68 (0.08) 0.15 (0.01)
20 1.00 0.82 (0.00) 0.73 0.66 0.61 (0.02) 0.26 (0.00)
80 1.00 0.75 (0.00) 0.74 0.67 0.58 (0.01) 0.44 (0.02)

country
5 1.00 0.88 (0.01) 0.79 0.75 0.77 (0.03) 0.37 (0.04)
20 1.00 0.85 (0.00) 0.84 0.80 0.75 (0.02) 0.57 (0.01)
80 1.00 0.94 (0.00) 0.97 0.88 0.87 (0.01) 0.83 (0.01)

game
5 1.00 0.89 (0.01) 0.73 0.69 0.72 (0.02) 0.38 (0.03)
20 1.00 0.86 (0.00) 0.83 0.72 0.70 (0.03) 0.59 (0.02)
80 1.00 1.00 (0.00) 0.96 0.80 0.80 (0.02) 0.93 (0.01)

tennis player
5 1.00 0.89 (0.01) 0.86 0.82 0.83 (0.02) 0.48 (0.02)
20 1.00 0.84 (0.00) 0.87 0.87 0.78 (0.01) 0.69 (0.02)
80 1.00 0.93 (0.00) 0.99 0.91 0.89 (0.00) 0.89 (0.00)

species
5 1.00 0.98 (0.00) 0.69 0.64 0.70 (0.06) 0.01 (0.00)
20 1.00 0.95 (0.00) 0.70 0.64 0.64 (0.01) 0.03 (0.00)
80 1.00 0.92 (0.00) 0.72 0.64 0.63 (0.02) 0.05 (0.00)

soccer player
5 1.00 0.90 (0.01) 0.73 0.67 0.70 (0.03) 0.13 (0.01)
20 1.00 0.83 (0.00) 0.74 0.68 0.64 (0.01) 0.22 (0.01)
80 1.00 0.78 (0.00) 0.74 0.69 0.61 (0.01) 0.36 (0.01)

work
5 1.00 0.95 (0.01) 0.71 0.66 0.71 (0.03) 0.03 (0.00)
20 1.00 0.89 (0.00) 0.72 0.67 0.66 (0.02) 0.05 (0.00)
80 1.00 0.83 (0.00) 0.68 0.68 0.62 (0.01) 0.09 (0.01)
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submodularity. The pages in the second group of rows in Ta-
ble 2 all cover more pages than some pages in the first group,
but have trivial inclusion probability. On the other hand,
pages such as Chu State, which has less than 30 links and
Somalia have links to certain pages that are only reachable
from these pages. Somalia, for example, links to Majeer-
teen Sultanate, Sultanate of Hobyo, Galmudug, and Ajuran
Empire, among others. These pages would be difficult to
otherwise cover. Adaptive-Sampling also boosts the prob-
abilities of some pages presumably considered more relevant
to the maximum coverage (such as British Empire and Axis
Powers). By adapting the distribution π to increase the
chances of selecting valuable elements, Adaptive-Sampling
surpasses the performance of Greedy-Sampling.

6. EXPERIMENTS
We provide quantitative results for the performance of

both proposed algorithms, compared to several baselines.
We focused on the Wikipedia maximum coverage setting
illustrated in Section 5.3, using subgraphs corresponding to
a larger range of ontology classes with a range of properties.
We also consider four additional benchmark methods and
compare the algorithms’ performance.
Datasets. Besides country (see Subsection 5.3), we con-
sidered five more graphs created from Wikipedia: book,
game, tennis player, species, soccer player, and work.
They have a wide range of sizes, densities, and numbers of
connected components (see Table 3).

Table 3: Some statistics for the datasets extracted from
Wikipedia. “k” indicates thousands.

dataset # nodes # edges mean degree

book 31k 37k 1.24
country 3k 31k 10.88
game 1k 2k 1.64
tennis player 4k 81k 20.29
species 252k 1644k 6.85
soccer player 96k 64k 0.67
work 411k 1819k 4.50

Methods. In order to evaluate the performance of the
proposed algorithms Greedy-Sampling and Adaptive-
Sampling, we implemented several benchmarks:

1. Greedy-nk: runs greedy(V, f, nk);

2. Central-Partition: divides the elements of V into
n disjoint parts Vi ⊂ V and runs greedy(Vi, f, k) on
each partition

3. Random-Partition: randomly constructs a set V ′i ⊂ V
with |V|

n
elements, and runs greedy(V ′i, f, k)

4. Random: randomly selects k items from V for each
agent.

Recall that the first two strategies assume that the agents
can either communicate or are not indistinguishable. Further,
Central-partition is the same strategy proposed by [24]
in the context of distributed submodular maximization.
Implementation details. We will release reusable code in
conjunction with this manuscript to ease implementation, but
here we highlight some important aspects. For implement-
ing Greedy we considered the classical accelerated greedy

[23] (or lazy greedy) algorithm, which allows a faster com-
putation. Adaptive-Sampling was implemented using an
off-the-shelf projected quasi-Newton optimizer to optimize
the objective on the simplex of valid probability distributions
[31]. We started the optimization from the π vector provided
by greedy-sampling(V, f, nk).
Results. For the methods Greedy-Sampling, Adaptive-
Sampling, we computed the expected reward considering a
total of 10 000 samples. For the others randomized algorithms
we repeated the experiments five times. The standard error
across repetitions is too small to be seen on this graphical
representation. We also present more results in Table 1,
considering all datasets, for varying n. We normalize the
results by dividing by the Greedy-nk value of that particular
instance (an upper bound on our performance).
Discussion. As expected, Greedy-nk outperforms all other
methods since it is the only method to always return ex-
actly nk elements. It, of course, blatantly violates the con-
straints of the problem. However, the interesting result is
that, in some cases, one or both of Greedy-Sampling and
Adaptive-Sampling outperforms the centralized algorithm
Central-Partition. In particular, for tennis player,
Greedy-Sampling is comparable to Central-Partition;
further, Adaptive-Sampling performs better than the cen-
tralized approach for most of the considered values of n and
k. A possible explanation is that by partitioning the elements
of V, rather than reasoning about all of them jointly, the
agents can choose items that locally are valuable but when
combined with the other agent’s outputs become worthless.
Of the decentralized methods, Adaptive-Sampling shows
the best performance. For small values of k and n, it is only
slightly better (sometimes tied), but as these values increase,
it outperforms the other methods by up to 10 percent.

7. CONCLUSION
We introduced a novel framework for cooperative set func-

tion optimization in which the agents cannot communicate
and we presented two strategies for solving this problem:
Greedy-Sampling and Adaptive-Sampling. For Greedy-
Sampling we give an approximation bound of (1− 1

e
)2; we

then demonstrated how we can improve upon this strategy
by using Adaptive-Sampling. We showed how these algo-
rithms could be used by agents in natural systems to perform
effective decentralised, collective foraging tasks. Then, we
provided an empirical evaluation of these techniques, compar-
ing their performances with other benchmark algorithms. In
particular, we even compare our methods with strategies that
violate the problem’s constraints. Adaptive-Sampling was
shown to outperform all benchmarks which do not assume
communication among the agents and, in some cases, it was
even comparable to strategies that allow prior coordination.
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