Shortest-Elapsed-Time-First on a Multiprocessor

Neal Barcelo!, Sungjin Im?, Benjamin Moseley?, and Kirk Pruhs!

! Department of Computer Science, University of Pittsburgh
ncb30,kirk@cs.pitt.edu
2 Computer Science Department, University of Illinois im3,bmosele2@illinois.edu

“I would like to call it a corollary of Moore’s Law that the number of
cores will double every 18 months.” — Anant Agarwal, founder and chief
technology officer of MIT startup Tilera

Abstract. We show that SETF, the idealized version of the uniproces-
sor scheduling algorithm used by Unix, is scalable for the objective of
fractional flow on a homogeneous multiprocessor. We also give a poten-
tial function analysis for the objective of weighted fractional flow on a
uniprocessor.

1 Introduction

At the hardware level, Moore’s law continues unabated, with the number of
transistors per chip doubling about every 1.5 to 2 years. However, we are in
the midst of a revolutionary change in the effect of Moore’s law on the software
layers of the information technology stack. Instead of an exponential increase in
processor speed over time, these layers are now expected to see an exponential
increase in the number of processors over time. MIT startup Tilera now produces
chips with up to 100 processors, and the expectation is that chips with 1000
processors will be available within the decade.

The natural research question motivating our research is whether the stan-
dard priority scheduling algorithms used for uniprocessors will be appropriate
in the multiprocessor setting. In particular, we consider scheduling algorithm
Shortest Elapsed Time First (SETF), as it is the idealized version of Unix’s
uniprocessor scheduling algorithm. (Of course the implementation in Unix has
many practical kludges/modifications, such as maintaining equivalence queues
of jobs that have been processed about the same amount so as to logarithmi-
cally bound the number of preemptions per job). For a uniprocessor using SETF
for scheduling, all jobs that have been processed the least share the processing
equally; it is useful to think of SETF giving higher priority to jobs that have
been processed less. The natural generalization of SETF to a homogeneous mul-
tiprocessor setting assigns jobs to processors in priority order (recall jobs that
have been processed less have higher priority); the = jobs of the next priority
are either assigned to x processors, or evenly share the remaining unassigned
processors if there are less than x previously unassigned processors.



Two natural quality of service measures for individual jobs are integer flow
and fractional flow. The integer flow of a job is the total time a job has to
wait to be completed. The fractional flow of a job is the integral over times
between when a job arrives and when it is completed of the fraction of the job
that is uncompleted. Integer flow is a more appropriate objective if no benefit
is gained from a job being partially completed, and fractional flow is a more
appropriate objective if some benefit is gained from partially completing a job.
The corresponding two natural scheduling objectives are the integer flow of the
schedule, which is the sum of the integer flow of the jobs, and fractional flow of
the schedule, which is the sum of the fractional flow of the jobs.

On a uniprocessor, SETF is known to be scalable, (14¢€)-speed O(1)-competitive,
for the standard objective of integer flow [1], and it is known that speed aug-
mentation is required to achieve bounded competitiveness in a general operating
system setting requiring a nonclairvoyant scheduler, that is one that does not
know the size of the jobs [2]. To the best of our knowledge, there are no results
in the literature explicitly analyzing the fractional flow for nonclairvoyant al-
gorithms on a uniprocessor (although it is possible that such results might be
derivable from results on integer flow).

The main result of this paper is to show in Section 2 that for a homogeneous
multiprocessor, SETF is universally® scalable for the objective of fractional flow.

The analysis in [1] shows that SETF is locally competitive for integer flow on
a uniprocessor, that is, at all points in time the increase for the quality of service
objective for SETF is not too much greater than the increase for an arbitrary
schedule. But it is straightforward to see that no online scheduling algorithm
can be locally competitive for either fractional or integer flow on a homogeneous
multiprocessor. Thus the next logical approach is to try to use an amortized lo-
cal competitiveness argument using the so called “standard potential function”
method for these sorts of scheduling problems (for more background, see [3]).
However, this standard approach is not immediately applicable in this setting as
this approach requires a reasonably simple algebraic expression for the online al-
gorithm’s future cost given no more job arrivals, and after some thought, one can
see that a simple algebraic expression does not exist for SETF’s future costs on a
multiprocessor. For fractional flow, we are able to surmount this difficultly by us-
ing a potential function based on an algebraic expression for SETF’s future costs
on a uniprocessor. The primary differences between our potential function and
the “standard potential function” are that it takes the difference of future costs
between the work remaining in the optimal schedule and the online algorithm
instead of the future cost of the difference in remaining work, and additionally
our potential function discounts the optimal’s future costs. These modifications
are necessary to get the running condition to hold; however, these modifications
cause the potential function to jump when jobs arrive. Fortunately, we are able
to complete the analysis by showing that the aggregate increase in these jumps

3 An algorithm is said to be universally scalable if it is (1+¢)-speed O(f(¢)) competitive
for any fixed constant € > 0 and the algorithm is not parameterized by €. Here f is
a function of only e.



can be bounded by total processing times of all the jobs. Unfortunately we are
unable to make this approach work for integer flow for SETF. Although one can
resort to a technique to convert an algorithm that is fractionally scalable to an
algorithm that is integrally scalable (see [4] for details). This technique combined
with our analysis shows that a variation of SETF is scalable for integer flow.

There are two closely related results in the literature. It was known that if
newly arriving jobs were randomly assigned to a processor, and if each processor
ran SETF, that the resulting algorithm is universally scalable in expectation
for integer flow [5]. Roughly this analysis combines the fact that SETF is uni-
versally scalable on a uniprocessor, with the fact that randomly assigning jobs
roughly balances the processor loads (although the fact that there will be some
unevenness in the loads in part explains why the competitive ratio that is proved
is quite large, something like O(Z)). It is also known that the algorithm Late
Arrival Processor Sharing (LAPS) is existentially* scalable for integer flow on a
homogeneous multiprocessor [6].

There are often situations where one would like the operating system to view
some jobs as being more important than other jobs. One way to formalize this is
to assume that jobs have weights specifying their importance, and then consider
the objective of minimizing the weighted fractional or integral flow of the jobs.
WSETTF is a natural generalization of SETF, where jobs are prioritized by the
ratio of their weight to the time that jobs have been processed. It was shown
in [7] that WSETF is scalable for a uniprocessor using a local competitiveness
argument. In Section 3, we show that WSETF is scalable using an amortized
local competitiveness argument using a potential function. As in our analysis
of SETF, the starting point for the design of the potential function was an
algebraic expression for the future cost of WSETF. However, we again had to
make modifications to the “standard potential function” in order for the running
condition to hold. We believe that our analysis is at least modestly interesting
for a couple reasons. When one is analyzing algorithms in non-work-conserving
scheduling settings, there is usually no hope of using a local competitiveness
argument. In this context, a scheduling environment is said to be non-work-
conserving if at any given time two reasonable scheduling algorithms could have
completed a different amount of total work thus far. The lack of a potential
function analysis of SETF and WSETF meant that these algorithms could not
be used to design algorithms in non-work-conserving scheduling settings. For
example, the analysis of nonclairvoyant speed scaling algorithms for a speed
scalable processor in [8] considered the Late Arrival Processor Sharing Algorithm
(LAPS) instead of SETF because a potential function analysis was known for
LAPS [9]. It is our hope that our potential functions for SETF and WSETF will
be useful in other non-work-conserving scheduling settings. Although in fairness
we need to mention that we were unable to adapt our potential function analysis
of WSETF for a uniprocessor to the multiprocessor setting because we do not

% An algorithm is said to be existentially scalable if it is (1 + €)-speed O(f(€)) com-
petitive for any fixed constant ¢ > 0 and the algorithm is parameterized by e. Here
f is a function of only e.



know how to bound the aggregate increases in the potential function when jobs
arrive. But it is our hope that that one further idea would be enough to surmount
this issue, and allow the application of this potential function (or some variation
thereof) to non-work-conserving scheduling settings. Note that an existentially
scalable algorithm, Weighted Late Arrival Processor Sharing, is known for the
objective of integer flow on a homogeneous multiprocessor [10].

There is currently a debate within the architectural community as to whether
a homogeneous multiprocessor or a heterogeneous multiprocessor is a better de-
sign [11]. There are advantages to each option. [12] points out that some standard
priority scheduling algorithms, such as Highest Density First and WSETF, are
not scalable for a heterogeneous multiprocessor, and that it is not clear whether
other standard priority algorithms, such as Shortest Remaining Processing Time,
Shortest Job First, and SETF, are scalable. So while this paper certainly does
not settle the issue, taken together with [12], the results in this paper indicate
that one advantage of homogeneous multiprocessors over heterogeneous mul-
tiprocessors is that they seem to be easier to schedule, and that in fact the
standard uniprocessor scheduling algorithms should perform similarly well on a
homogeneous multiprocessor as on a uniprocessor.

1.1 Basic Definitions

The input consists of n jobs. We let r; denote the release time of job 4, p; denote
the size of job i, and in some instances, w; denote the weight of job i. An online
scheduler does not learn about job i until time r;. At time r;, a nonclairvoyant
scheduler learns the weight w; but not the size p;. For each time ¢, the online
algorithm must choose some job ¢ to run such that r; > t. We assume that the
processor has unit speed, so a job of size p;, takes p; units of time to complete.
If C; is the completion time for job 4, then ft r, Wi dt is the weighted integer
flow for job i. The integer flow of a schedule is ‘the sum over the jobs of the
integer flow of each job. The weighted fractional flow of job i, is ft ry Wit pl(t) dt,
where p; (t) represents the remaining processing time of job ¢. The fractlonal flow
of a schedule is the sum over the jobs of the fractional flow of each job. If the
schedule is not obvious from context, we superscript a variable with the name
of the schedule that is referred to.
An algorithm A is s-speed c-competitive if

maXAgi(I) <c
T opTi(1) = ©

where As(I) denotes the cost of algorithm A on input I with a speed s processor,
OPT,(I) denotes the cost of the optimal schedule with a speed 1 processor, and
the maximum is taken over all possible inputs. A class {A(14¢) } of algorithms is
existentially scalable if for all € > 0, A1 is (14 €)-speed O(f(e))-competitive
for some function f that only depends on €. An algorithm A is universally scalable
if for all € > 0, A is (1 + ¢)-speed O(f(€))-competitive for some function f.



To show that an algorithm A is (¢ + d)-competitive using a locally amortized
competitiveness argument, one finds a potential function @ such that the follow-
ing conditions hold [3]:

Boundary condition: @ is initially 0 and finally non-negative.

Completion condition: ¢ does not increase due to completion of jobs by A or
OPT.

Arrival condition: ¢ does not increase by more than d - OPT due to arrival
of jobs.

Running condition: At all times ¢ when no job arrives or is completed, we
have,

d d d
— A+ —&(t) <c—OPT
at T @t g
Here %A denotes the increase in the objective in A’s schedule, while %OPT
denotes the increase in the objective in OPT’s schedule. (¢+ d)-competitiveness

follows by integrating these conditions over time.

2 SETF on a Homogeneous Multiprocessor

As our first result, we show in Theorem 1 that SETF is universally scalable
on a homogeneous multiprocessor for the objective of fractional flow using an
amortized local competitiveness argument.

Theorem 1. SETF is (1+¢)-speed (1+ 2)-competitive on a homogeneous mul-
tiprocessor for the objective of fractional flow.

Proof. We use A to denote SETF. Let m denote the number of homogeneous
mutliprocessors. We let q;-“(t) denote the amount of job j that has been processed
up to time ¢. Note that qf(t) —l—pj‘(t) = p;. Let, ()T return x when x is positive,
and 0 otherwise. Then, define pf}j(t) = (min(p;, pj) — qf (t))*. This represents
the amount of time job ¢ must wait on job j assuming no more jobs arrive. Note
that it is possible that ¢ = j. Similarly for OPT, p{;(t) := (min(p;, p;) — ¢ (t)) "
We let Q4(t) and Qo(t) denote the algorithm A’s queue and OPT’s queue, at
time ¢ respectively. Finally, let Z{'(t) := 3 e, 1) Piy(t). Similarly, ZO(t) :=
2 icQo) p?j (t). We use an amortized local competitiveness argument. We define
the potential function @(t) as follows.

o)=L 3 2O (200 i) - 20(0)

= — = (X minip) — g0 +mpl (0
i€Qal(t) JEQa()

= > (mingpi,py) — g7 (1))

JE€EQo(t)



Boundary condition: The boundary condition is trivially satisfied, as there
are no jobs contributing to @ at ¢ = 0 or when all jobs have been finished.

Job completion: Fix some job i € Q4(t). Consider first when A completes job
i. Note that at this time, p/*(t) = 0 and therefore there is no change in @ from
removing this term from the sum. Next, consider when A completes some job
j # i. Since, qj‘(t) = pj, pf}j (t) = 0, so there is no change in @ from removing
this term. Similarly, the completion of a job by OPT does not change ®.

Job arrival: We first show the following lemma.

Lemma 1. Consider any job i € Qa(t) and time t. Then it is the case that
Z{(t) — ZP(t) < mpi.

Proof. Fix time t. Let J(t) denote the set of all jobs in A’s queue that have
been processed less than job i’s total processing time. More formally, we have
J(t) ={j € Qa(t) | ¢i*(t) < pi}. If [J(t)| < m, then there are at most m terms
contributing to Z(t) each of which have value at most p; and so the desired
result holds. So suppose |J(t)| > m. Consider the earliest time #’ < ¢ such that
at any time 7 € [t',t], |J(7)| > m. By definition of ¢/, at time ¢ — §, there are at
most m jobs that have elapsed processing times at most p;. Now consider all jobs,
denoted by S, which arrive during [t’, t]. Note that for any time 7 € [/, ¢], for any
job j that is run, ¢;'(7) < p; since |J(7)| > m. Therefore, J(t) C J(t' — &) U S.
Consider J(t)’s contribution to ZA(t) — Z9(t) at time t. Let t" = #' — 6.

> (min(ps, py) — ¢ (6) " — (min(ps, p;) — ¢F (1)
JEJI()

< Y (min(p;, pj) — ¢ () — (min(pi, p;) — ¢ (t)) (1)
JEJI(t)

= > @®-q'®)

JEJ ()

Y@ —a N+ Y (@) - e (") — (') — g ("))
eI jerw)
+> (@) — ¢ (1)) (2)
jes
< mp; (3)

IN

Inequality (1) holds as based on the definition of J(¢) the first term in the sum
will always be positive. (2) holds by noting that J(¢) = J(t') US and rearranging
terms while letting 6 — 0. Finally, (3) is true because the first sum is less than
mp; as there are at most m terms of value p;. Further, 3. ;) (¢ () =g ")+
> jes qu(t) represents the total work that SETF did during this interval and
Ejej(t,,)(qjo(t) —q9(t")) +2jes ¢ () cannot be more than the work that OPT
did during this interval, therefore their difference is non-positive.



Given this lemma, note that when job i arrives, ¢ increases by at most %pi and
so summing over all arrivals, the increase is at most %OPT since p;/2 is a lower
bound for job i’s fractional flow time in any schedule.

40PT =

A
Running Condition: First note that %A = ZiEQA(t) 2i) - Also, =

Pi
(e}
Zier(t) pipft). We now bound the change in @ at some time ¢ when no jobs

arrive or complete. We have that,

d 1 dp?(t)

—P(t) = — Pi_ (ZA(t Aty -zt

~() meg%(ﬁ (Z20) +mp () = 20 (1)
1€EQ A

pi(t)  d(Z(t) + mpf(t) — Z2 (1))

A
First consider the change of p"'p—(_t). This occurs only when job 7 is being processed

A
by SETF. Since SETF runs at speed (1 + €), pip—@ is decreasing at a rate of
(1+ e)i. To bound the overall rate of increase in @ this can have, we ignore the
positive terms Z7(t) and mp{ (t) and consider only —Z9 (t). Then, the rate of

A
increase in @ due to change in p"'p—@ is bounded by

1 1 .
— (46— Y (min(p;,p;) — 5 ()"
me pi

JEQo(t)

To bound this sum, there are two cases to consider. First, consider all jobs j
such that p; < p;. Then, we have that

ps(t)
pj

%mMmm%wﬂm+=iﬁ@<

; <
For all jobs j such that p; > p;, we have that

%(min(pi,p]’) - )t = (pi—qf(t)>+ _ (1 _ ‘Ijo(t)>+ < pjo('t)

7 Pi

So, in total we have that

Lavor S (min(p) — 01"

me ;
Piicaom

i(l+e) 3 LA

JE€EQo(t) Pi

IN

_lredopr
me dt




Since there are at most m such jobs as ¢ running, the total rate of increase in @
due to change in % is bounded by (1 + %)%OPT.

We now turn our attention to the change of (Z(t) +mpf(t)— Z2(t)) for any
job i € Q4(t). Note that p2A(t) > 0, i.e. ¢*(t) < p;. If SETF is working on job i,
then mp? () decreases at a rate of m(1 + ¢). Otherwise, if SETF does not work
on i at time ¢, then there must exist m jobs j such that qf (t) < p; that SETF
is working on. In either case, Z/(t) +mp{ () decreases at a rate of m(1+¢). On
the other hand, Z9(t) can increase at a rate of at most m. Therefore, the rate
of change of @ due to change in (Z(t) + mp{(t) — Z9(t)) is bounded by,

— 3 pl m(l 4 ¢) +m) = p’ :——A
ZGQA(t ZEQA(t)

So, in total, we have that

d d 1 1\ d
< — — - — — ] —
TAT TP < th+ (1+ 6) Z0OPT th (1+ 6) OPT

We note that one can achieve an existentially scalable nonclairvoyant algo-
rithm for integer flow by maintaining the invariant that each job is either done
or has processed (1 + €) times as much as SETF would have processed it on
(1 + ¢) slower processors.

3 WSETF on a Uniprocessor

We now show that WSETF is scalable on a single processor for the objective of
weighted fractional flow. Recall the WSETF shares the processor equally among
all jobs that have maximal ratio between weight and the amount that the job
has been processed.

Theorem 2. WSETF is (1+¢)-speed (1+ 2)-competitive on a uniprocessor for
the objective of weighted fractional flow.

Proof. We use A to denote the algorithm WSETF'. Let q;-“ (t) denote the amount
of job j that has been processed up to time t. Let p{}j(t) = (rmn( p,,pj)
qj‘(t))"r and pgj (t) == (min(%pi,pj) - qjo (t))*. We again use an amortized local
competitiveness argument. Consider the following potential function $(t).

sy =1 Y WP agy A - 20

6Z’EQA(t) bi
1 w; - pi(t . Wy

=1 >t B POCS Gnin(S ) - g} 0)F +0
i€Qa(t) ! JEQA(t) ’

= X (min(lpip) —af (1))

JE€EQo(t)



s nA
It is worth noting that >, , ) s z? () (ZA(t) + pA(t)) represents the approxi-

mate future cost of WSETF assuming no more jobs arrive. We now verify that
all four conditions hold.

Boundary condition: The boundary condition is trivially satisfied, as there
are no jobs contributing to @ at ¢ = 0 or when all jobs have been finished.

Job completion: Consider first when A completes job i. Note that at this time,
p(t) = 0 and therefore there is no change in @ from removing this term from
the sum. Next, consider when A completes job j. Since, qf(t) = pj, pf}j (t) =0,
so there is no change in @ from removing this term. Similarly, the completion of
job i or job j by OPT does not change &.

Job arrival: We first show the following lemma.

Lemma 2. Consider any job i € A(t) and time t. Then it is the case that
ZHt) - ZP(H) < 0.

Proof. Fix time t. Consider the earliest time ¢’ < ¢ such that at any time 7 €
[t',t] = I, WSETF works only on jobs j such that g¢;(7) < %pz By definition of
t', at time ' — ¢, all unfinished jobs have elapsed processing times at least %pi,

which thus contribute zero to Z(t), so we can ignore those jobs. Now consider
all jobs, denoted by S, which arrive during [¢',t]. Consider S’s contribution to
ZA(t) — Z2(t) at time t,

D (min(pipy) = g (6) — (min( Lpi,py) — af (1)

JjeS

<Zmnpm>ﬁm—mﬁ%wrﬁw (4)
jeS ¢

=> ¢ft) - gt (5)
JES

Note that (4) holds as based on the definition of S and I, for any job j € S,
qu(t) < Zip;. Now consider the term in (5), > jes qjo (t)— qJA(t). First note that
>jes q;'(t) captures the total work that WSETF did during the interval, and

farther 37, ¢ qjo (t) cannot exceed the amount of work that OPT did during the
same interval. Therefore, this term is non-positive.

Given this lemma, note that when job 4 arrives, @ increases by at most %(wi “Di)-
So, summing over all arrivals, @ increases by at most %Zz w; - P < %OPT as
desired.

Running Condition: First note that th ZzeQA (1) Wi E ) . Also, ;tOPT =
O
p'i

Eier(t) w; - . We now bound the change in @ at some time ¢ when no job



arrives or is completed. We have that,

dwip?(t)

Com =2 Y (TE— @0 i) - 200)
i€Qal(t)
N wiz;gj(t) d(Z () +p§t(t) - zP (t))> (©)

A
First consider the change of M This occurs only when job ¢ is being

processed by A. We assume without Toss of generality that A works on a single
P . A
job at each time t. Then, since WSETF runs at speed (1+€), %i(t) is decreasing

i

at a rate of (14 e)%. To bound the overall rate of increase in @ this can have,
we ignore the positive terms Z7*(¢) and p{'(t) and consider only —Z (t). Then,

A
the rate of increase in @ due to change in M is bounded above by

oz = (1+ )% S (winZrun) - 0))

¢ /P oo ’

To bound this sum, we again consider two cases. First, consider all jobs j such
that % > 2’— Then,
j i

. Wy fo) + W; o ij(t)
(min(—p;, pj) —q; (1) = —(p; —q; (t)) Sw; - ——
W; Di Dy

Wy
Di

Now, for all jobs j such that % < 3+, we have that
j 4

(]
wi L W) Oyt — Wi Wi 0+ _ Wi 00\t Py (1)
— (min(—=p;, p;)—q; (t = —(—pi—q; (¢ = (wj——q; (¢ < wj-
pi( (5, PinPi) =05 (1)) pi(wipz g5 ()" = (w; P (t)) i

Combining these, we have that

1\ w; w; + 1\ d
1+-) = in(—pi,p;)—¢@#)) <(1+-)-—0OPT
(1+1)2 5 (w2 -20) <(1+1) 4
JEQo(t)
We now turn our attention to the change of (Z(t) 4+ p(t) — Z2(t)) for any job
i € Qa(t). Note that p£(t) > 0, i.e. ¢/*(t) < p;. Thus if WSETF does not work
A
on ¢ at time ¢, then there must exist a job j such that %T(jt) < 5}— that WSETF

is working on. In either case, Z{}(t) + pi(t) decreases at a rate of 1 +e. On the
other hand, Z(t) can increase at a rate of at most 1. Therefore, the rate of
change in @ due to change in (ZA(t) + p{(t) — Z9(t)) is bounded above by

1 wipA(t) wipA(t) d

-y PP H=- i _ %y

€ Di (Fl+eo+1) ‘ Di dt
7,EQA(t) 1EQA(t)



So, in total, we have that

d . d d 1\ d d 1\ d
_ - < — )= _ A= il
A+ () < th+(1+ 6) SOPT — 24 (1+ 6) S OPT

Our analysis of WSETF does not extend to a homogeneous multiprocessor be-
cause we do not know how to bound the jumps in the potential function when
jobs arrive, in part because when a job i arrives the increase in the potential
involves terms of the form p;w;. We are able to surmount this difficulty in our
analysis of SETF because all jobs have equal weight, and the sum of the pro-
cessing times is a lower bound to optimal.

Acknowledgment

Supported in part by an IBM Faculty Award, and NSF grants CCF-1016684,
CCF-0830558, CCF-1115575, CNS-1012070, CNS-1115575, and CNS-1253218

References

1.

2.

10.

11.
12.

Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4) (2000) 617-643

Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theor. Comput.
Sci. 130(1) (1994) 17-47

Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in
online scheduling. SIGACT News 42(2) (June 2011) 83-97

Chadha, J.S., Garg, N., Kumar, A., Muralidhara, V.N.: A competitive algorithm
for minimizing weighted flow time on unrelated machines with speed augmentation.
In: Proceedings of the 41st annual ACM symposium on Theory of computing.
STOC ’09 (2009) 679-684

Chekuri, C., Khanna, S.; et a 1., Goel, A.: Multi-processor scheduling to mini-
mize flow time with resource augmentation. In: In Proc. 36th Symp. Theory of
Computing (STOC), ACM (2004) 363372

. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup

curves. In: SODA. (2009) 685-692

Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Algo-
rithms 3(4) (November 2007)

Chan, H.L., Edmonds, J., Lam, T.W., Lee, L. K., Marchetti-Spaccamela, A., Pruhs,
K.: Nonclairvoyant speed scaling for flow and energy. Algorithmica 61(3) (2011)
507-517

Chan, H.L., Edmonds, J., Pruhs, K.: Speed scaling of processes with arbitrary
speedup curves on a multiprocessor. Theory Comput. Syst. 49(4) (2011) 817-833
Bansal, N., Krishnaswamy, R., Nagarajan, V.: Better scalable algorithms for broad-
cast scheduling. In: ICALP (1). (2010) 324-335

Merrit, R.: Cpu designers debate multi-core future. EE Times (February 2010)
Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling hetero-
geneous processors isn’t as easy as you think. In: Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’12, STAM (2012)
1242-1253



