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Abstract
In this paper, we consider a variety of scheduling prob-
lems where n jobs with release times are to be sched-
uled non-preemptively on a set of m identical ma-
chines. The problems considered are machine minimiza-
tion, (weighted) throughput maximization and min-sum
objectives such as (weighted) flow time and (weighted)
tardiness.

We develop a novel quasi-polynomial time dynamic
programming framework that gives O(1)-speed O(1)-
approximation algorithms for the offline versions of ma-
chine minimization and min-sum problems. For the
weighted throughput problem, the framework gives a (1+
ε)-speed (1 − ε)-approximation algorithm. The generic
DP is based on improving a naı̈ve exponential time DP
by developing a sketching scheme that compactly and ac-
curately approximates parameters used in the DP states.
We show that the loss of information due to the sketch-
ing scheme can be offset with limited resource augmen-
tation.This framework is powerful and flexible, allowing
us to apply it to this wide range of scheduling objectives
and settings. We also provide new insight into the relative
power of speed augmentation versus machine augmen-
tation for non-preemptive scheduling problems; specifi-
cally, we give new evidence for the power and importance
of extra speed for some non-preemptive scheduling prob-
lems.

This novel DP framework leads to many new algo-
rithms with improved results that solve many open prob-
lems, albeit with quasi-polynomial running times. We
highlight our results as follows. For the problems with
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min-sum objectives, we give the first O(1)-speed O(1)-
approximation algorithms for the multiple-machine set-
ting. Even for the single machine case, we reduce both
the resource augmentation required and the approxima-
tion ratios. In particular, our approximation ratios are ei-
ther 1 or 1 + ε. Most of our algorithms use speed 1 + ε
or 2 + ε. We also resolve an open question (albeit with a
quasi-polynomial time algorithm) of whether less than 2-
speed could be used to achieve anO(1)-approximation for
flow time. New techniques are needed to address this open
question since it was proven that previous techniques are
insufficient. We answer this open question by giving an
algorithm that achieves a (1 + ε)-speed 1-approximation
for flow time and (1 + ε)-speed (1 + ε)-approximation for
weighted flow time.

For the machine minimization problem, we give the
first result using constant resource augmentation by show-
ing a (1 + ε)-speed 2-approximation, and the first re-
sult only using speed augmentation and no additional ma-
chines by showing a (2 + ε)-speed 1-approximation. We
complement our positive results for machine minimiza-
tion by considering the discrete variant of the problem
and show that no algorithm can use speed augmentation
less than 2log

1−ε n and achieve approximation less than
O(log log n) for any constant ε > 0 unless NP admits
quasi-polynomial time optimal algorithms. Thus, our re-
sults show a stark contrast between the two settings. In
one, constant speed augmentation is sufficient whereas in
the other, speed augmentation is essentially not effective.



1 Introduction
In this paper, we present a new dynamic programming
framework that provides new effective algorithms for
a wide variety of important non-preemptive scheduling
problems. For a typical problem that we study, the input
instance consists of a set of n jobs that arrive over time.
In all but the machine minimization problem, we are also
given the number m of identical machines on which we
can schedule jobs. Each job J has a release (or arrival)
time rJ , a processing time pJ and, depending on the exact
problem definition, may have a deadline dJ or a weight
wJ . In the unweighted version of a problem, all jobs have
weight 1. When a job J is scheduled, it must be scheduled
for pJ consecutive time steps after rJ on a machine. Let
CJ be the completion time of job J under some schedule.
The flow time of job J is defined to be FJ = CJ − rJ .
Using our dynamic programming framework, we develop
new algorithms and results for the following collection of
problems. If the short name of a problem starts with W,
then jobs have weights.
• Machine Minimization (MM): Jobs have deadlines

and no weights. The goal is to schedule all jobs
by their deadline using the minimum number of
machines.
• (Weighted) Throughput Maximization (WThr,

Thr): Jobs have deadlines and not all jobs need to be
scheduled. The goal is to maximize the total weight
of the jobs scheduled by their deadline.
• Total (Weighted) Flow Time (WFT, FT): Jobs have

no deadline. The objective is min
∑
J wJFJ .

• Total (Weighted) Tardiness (WTar, Tar): Jobs
have deadlines but they do not need to be com-
pleted by their deadlines. The objective is
min

∑
J wJ max{(CJ − dJ), 0}.

All of these problems are NP-hard even on a single
machine [15]; NP-hardness holds for the preemptive ver-
sions of these problems when we consider multiple ma-
chines. More prior work has been done on the preemptive
versions of these problems (see [23, 19] for pointers to
some of this work) than the non-preemptive versions. One
possible reason for this is the challenge of identifying ef-
fective bounds on the value of the optimal non-preemptive
solution for these problems. Finding effective bounds on
the optimal preemptive solution for these problems, while
also difficult, is easier. One of the key contributions of
our dynamic programming framework is that we are able
to provide effective bounds that allow the development of
approximation algorithms with small approximation ra-
tios.

Here is a brief summary of prior work on these non-
preemptive problems. For FT, WFT, Tar and WTar (we
refer to these problems as the min-sum problems), there
are very strong lower bounds. Specifically, it is NP-
hard to get o(

√
n)-approximations for these problems [22]

(Tar (WTar) is harder than FT (WFT) since by setting
dJ = rJ , the Tar (WTar) problem becomes the FT (WFT)
problem). For MM, randomized rounding [24] leads to
an O(log n/ log log n)-approximation. The approxima-
tion ratio gets better as opt gets larger. This was the
best known algorithm until a breakthrough of Chuzhoy
et al. [11] that showed an O(opt)-approximation, where
opt is the optimum number of machines needed. That
is, the algorithm uses O(opt2) machines. This implies
an O(1)-approximation when opt = O(1). Combin-
ing this and the randomized rounding algorithm gives
an O(

√
log n/ log log n)-approximation. This is cur-

rently the best known result for this problem (the O(1)-
approximation result [9] is unfortunately incorrect [10]).
For Thr and WThr, several Ω(1) approximations are
known [5, 13]. (We use the convention that approxima-
tion ratios for maximization problems are at most 1.) In
particular, the best approximation ratio for both problems
is 1− 1/e− ε.

Given the strong lower bounds, particularly for the
min-sum objective problems and MM, we are forced to
relax the problem to derive practically meaningful results.
One popular method for doing this is to use resource aug-
mentation analysis where the algorithm is given more re-
sources than the optimal solution it is compared against
[21]; specifically machine augmentation (extra machines),
speed augmentation (faster machines), or both machine
and speed augmentation (extra and faster machines).
Bansal et al. [3] applied resource augmentation to most
of the above problems with m = 1 (or opt = 1 in MM,
where opt is the optimum number of machines needed).
Table 1 shows their results. For FT, WFT and Tar, they
gave 12-speed 2-approximation algorithms. For MM and
Thr, they gave 24-speed 1-approximations. Their work in-
troduced an interesting linear program for these problems
and rounded the linear program using speed augmenta-
tion. Their work, unfortunately, does not seem to gen-
eralize to the multiple machine setting even if there are
O(1) machines. We also note that their techniques cannot
be leveraged to obtain O(1)-approximations for the min-
sum objectives with less than 2-speed because their linear
program has a large integrality gap with less than 2-speed.

We are motivated by the following open problems,
some more general in nature and others problem specific.
On the general side, we have two main questions. First,
how can we develop effective lower bounds on the optimal
solution for a given non-preemptive scheduling instance?
Second, what is the relative power of speed augmen-
tation versus machine augmentation for non-preemptive
scheduling problems. On the problem specific side, we
strive to answer the following open questions. Can one
use O(1)-speed to get an O(1)-approximation (or even
1-approximation) for MM when opt > 1? For the min-
sum problems, what can be shown when m > 1? Finally,



can we achieve an O(1)-approximation for any min-sum
problem while using less than 2-speed? This is an open
question even when m = 1.

1.1 Our Contributions In this paper, we present new
results for a wide variety of non-preemptive job schedul-
ing problems. Our results follow from a novel general
dynamic programming framework for scheduling prob-
lems; we discuss the high-level ideas and novelty of our
framework in Section 1.2. Our framework is flexible
enough to give improved results, summarized in Table 1,
for the above-mentioned scheduling problems. The main
drawback of our algorithms is that they run in quasi-
polynomial time. However, our algorithms have many
merits that we highlight below.
• The speed factors and approximation ratios are

much smaller than those of prior work. We get 1-
approximation ratio for MM, Thr and FT and (1+ε)-
approximation for WThr, WFT and WTar. For MM,
Thr, WThr, FT and WFT, our speed factor is either
1 + ε or 2 + ε.
• Our algorithms work when m, the number of ma-

chines, is big (or opt is big in the MM problem).
• Our DP framework is very flexible. In Section 8,

we show how it can handle a variety of scheduling
problems, in addition to the main problems we are
considering.
• We provide new evidence for the power of extra

speed for non-preemptive scheduling. In the pre-
emptive setting, speed dominates machine augmen-
tation, but intuitively machine augmentation could
be more useful in non-preemptive settings. Our DP
framework delivers the following information. By
using (1+ε)-speed, the scheduling problems become
much simpler. In any of our results where we require
(2 + ε)-speed, we can replace the speed augmenta-
tion with a (1+ε)-speed 2-machine algorithm1. Note
that we always require (1 + ε)-speed. Thus, other
than the (1 + ε)-speed, our results show that speed-
augmentation and machine-augmentation have simi-
lar power.
Besides these general properties, we resolve the fol-

lowing open problems, albeit with quasi-polynomial time
algorithms.
• For FT, it was open if one could get an O(1)-

approximation with speed less than 2, as previ-
ous techniques were shown not to be useful with-
out 2-speed [3]. This was open even when m =
1. Our new techniques yield a (1 + ε)-speed 1-
approximation for FT for general m, solving this

1Our speed factors for Tar and WTar are 8 + ε; however, we believe
they can be improved to 2+ε using our framework with a more involved
algorithm.

open question. For WFT, we get (1 + ε)-speed
(1 + ε)-approximation.

• For MM when opt > 1, we give the first O(1)-
approximation using O(1)-speed.
We complement our results for MM by considering

the more general discrete variant of the problem. The
previously mentioned version of the problem is called the
continuous variant. In the discrete variant, a job J has a
set of intervals IJ where the job can be feasibly scheduled
and these intervals need not be contiguous or overlapping.
For this problem, again randomized rounding can be
used to give an O(log n/ log log n)-approximation. It is
also known that there is no O(log log n)-approximation
for the problem unless NP ⊆ nO(log log logn) [12]. We
extend the work of [12] to show that speed is essentially
not helpful in this case. Specifically, we show there is
no polynomial time o(log log n)-approximation for the
problem using O(2log

1−ε n)-speed for any constant ε > 0
unless NP ⊆ npoly(logn). This result is briefly discussed
in Section 7; the complete proof will appear in the full
version of this paper. It shows a stark contrast between the
two versions of the problem as in the continuous version,
speed-augmentation is very useful.

1.2 Technical Contributions and Novelty of our Dy-
namic Programming One of the key roadblocks for any
improved result in MM is developing a provable lower
bound for the given instance. Chuzhoy et al. observed
that the standard linear programming formulation has an
Ω(log n/ log log n)-integrality gap [11]. Chuzhoy et al.
overcame this difficulty by developing a very clever recur-
sive LP solution where they round up the number of ma-
chines required to schedule jobs in a subproblem before
solving the LP for the current problem. Unfortunately, it
is not clear how to use this idea to gain a better result than
their current result.

For the problems with min-sum objectives, the chal-
lenge is that previous techniques do not seem to be useful
for scheduling on multiple machines. The work of [3]
used a linear program similar to the one used by [11].
However, the rounding procedure used crucially relies on
the linear program scheduling jobs on a single machine.
In particular, on a single machine one can optimally pack
jobs into a scheduling interval, but this creates non-trivial
challenges on multiple machines. Further, in [3], they
show their linear program has a large integrality gap with
speed less than 2. Due to these and other issues with
previous techniques, it was not clear how to show posi-
tive results for min-sum objectives on multiple machines
and how to improve the resource augmentation required
to sub-polylogarithmic in the machine minimization prob-
lem.

Our novel DP framework for the scheduling problems



Results Machine Minimization (MM) Throughput (Thr) Weighted Throughput (WThr)
[3]: m = 1 * (24, 1) (24, 1) N/A

This paper: m ≥ 1 (1 + ε, 2) and (2 + ε, 1) (1 + ε, 1− ε) and (2 + ε, 1) (1 + ε, 1− ε)

Flow Time (FT) Weighted Flow Time (WFT) Tardiness (Tar) Weighted Tardiness (WTar)
[3]: m = 1 * (12, 2) (12, 2) (12, 2) (24, 4) with 2 machines

This paper: m ≥ 1 (1 + ε, 1) (1 + ε, 1 + ε) (8 + ε, 1 + ε) (8 + ε, 1 + ε)

Table 1: Summary of our results, compared to those of [3]. In all results, the first parameter is the speed factor and the second
one is the approximation ratio. Note that for MM, the approximation ratio is the number of machines. (*) The results of [3] only
hold if opt = 1 (for MM) or m = 1 (for other problems). We note that the results of [3] require polynomial time while ours require
quasi-polynomial time.

is based on naı̈ve exponential-time recursive algorithm. In
a naı̈ve DP, each state corresponds to a possible input to
a sub-problem in the recursion. The exponential running
time comes from the exponential possibilities for the in-
puts. We address this roadblock by developing a sketch-
ing scheme that captures the input effectively. On the one
hand, the sketch of an input is short so that there are rela-
tively few possible sketches allowing our algorithm to be
efficient. On the other hand, the sketch is accurate so that
we incur only a small loss in the quality of solution by
using the sketch.

Let’s focus on MM to illustrate another novelty of
our framework. Our dynamic programming goes through
Θ(log n)-levels. If we measure the loss of quality directly
by the number of machines, then we will need Θ(log n)
additional machines. This is due to the rounding issue:
any loss in the quality will result in using one additional
machine at each level. When the optimal number of
machines is small, we would only obtain an O(log n)-
approximation. We address this issue by using a “smooth”
measure of quality. In a feasible scheduling, there is a
perfect matching between the set J of jobs and the set
T of intervals scheduling them (we call T a signature).
During the course of our dynamic programming, we relax
the perfect matching requirement: we allow an interval
in T to be used c times, for some real number c. Then,
we measure our loss by the parameter c, which we call
congestion parameter. This congestion parameter will be
useful in many other problems.

In sum, we develop a sketching scheme that increases
the congestion by a small factor, say 1 + O(1/ log n).
Then in our O(log n)-level dynamic programming, we
lose a factor of 2 in the congestion. By the integrality
of matching, we obtain a feasible schedule by either
doubling the speed or the number of machines. This
explains our previous statement that extra speed and extra
machines have similar power.

We note that using sketching schemes coupled with
dynamic programs that divide the time horizon into sub-
problems is not a new idea in scheduling theory. Sev-
eral scheduling papers such as [7, 18] use similar tech-
niques. The main novelty of our technique is in the type
of sketches we create that allow our algorithm to be useful

for a variety of problems and objectives.

Organization: To illustrate our dynamic programming
framework, we first showcase in Section 2 and 3 how to
get (1 + ε, 1 − ε)-approximation for WThr. The results
for Thr and MM will follow from the same framework
modulo small modifications. In these sections, we only
consider the case when N and W are polynomial in n.
In Section 4, we show how to deal with large N and W .
We give algorithms for FT and WFT in Section 5, and
algorithms for Tar and WTar in Section 6. In Section 7,
we give our Ω(log log n)-hardness result for the discrete
version of MM with O(2log

1−ε n)-speed. Finally we
show how our algorithms apply to some other variants of
scheduling problems, and we discuss some open problems
and the limitations of our framework in Section 8.

2 Algorithms for (Weighted) Throughput and
Machine Minimization: Useful Definitions and
Naive Recursive Algorithm

In this section, we consider the problems MM, Thr and
WThr. We define some useful concepts and give the naive
algorithm which our dynamic programming is based on.
The dynamic programming is given in Section 3. For
convenience, we only focus on the problem WThr. With
slight modifications that are described at the beginning
of Section 3, we get the results for Thr and MM as
well. The input to WThr consists of the set J of n
jobs to be scheduled and m identical machines. Each
job J ∈ J has release time rJ , deadline dJ , processing
time/size pJ , and weight wJ . We assume all parameters
are non-negative integers. The task is to schedule jobs J
within their window (rJ , dJ) on one of the m machines
non-preemptively, with the goal of maximizing the total
weight of jobs scheduled. The time horizon we need to
consider is (0, N) where N := maxJ∈J dJ . Let W =
maxJ∈J wJ denote the maximum job weight. In this and
the next section, we assume N and W are polynomial in
n. The general case is handled in Section 4. Throughout
the proof, let 0 < ε ≤ 1 be some fixed constant.

2.1 Preprocessing We use two standard preprocessing
steps to simplify the instance.
Rounding job weights. Round each weight wJ down to



the nearest integer of the form
⌈
(1 + ε/3)i

⌉
, i ∈ Z with

only a (1 + ε/3)-factor loss in the approximation ratio.
The resulting z = O(logW/ε) different jobs weights are
indexed from 1 to z. We will refer to these z weights
as weight types. If jobs are unweighted, this step is
unnecessary, so we have no loss in the approximation
factor.
Rounding job sizes and regularly aligning jobs. We
require each job to be of some type i, specified by two
integers si and gi. Integer si is the size of type-i jobs
while integer gi defines permissible starting times for
scheduling type-i jobs. More specifically, we constrain
type-i jobs to start at integer multiples of gi. We call
an interval of length si starting at some integer multiple
of gi an aligned interval of type-i. We call a schedule
an aligned schedule if all intervals used in this schedule
are aligned intervals. The following lemma states the
outcome of this step.

LEMMA 2.1. With (1+ε/3)-speed augmentation, we can
assume there are at most q = O(logN/ε) job types
(s1, g1), (s2, g2), · · · , (sq, gq), and our goal is to find the
optimum aligned schedule. Moreover, each job type i
satisfies si/gi = O(1/ε).

Proof. We create the set Q of types as follows. Given
ε > 0, we first define ε′ = ε/3. Let k = O(1/ε) be an
integer such that (1+1/k)/(1−1/k) ≤ 1+ε′ = 1+ε/3.
If a job J ∈ J has size p in the original instance such
that (1 + 1/k)i ≤ p < (1 + 1/k)i+1 for some integer
i, we let p′ :=

⌈
(1 + 1/k)i

⌉
. If p′ < 2k, we add

(s, g) := (p′, 1) to Q. Otherwise, we add (s, g) :=
(p′−bp′/kc+1, bp′/kc) toQ. The type of job J is defined
by parameters s and g.

We first prove that there are not many types of
jobs. Since the original size of a job J is an integer
between 1 and N , there are at most O(log1+1/kN) =

O(k logN) = O( 1
ε logN) different values of p′. The

proposition follows since each value of p′ defines exactly
1 job type.

We next show that any schedule of the original in-
stance using m machines can be converted to a new
(1 + ε′)-speed schedule using the same number m of ma-
chines, in which every job J is scheduled on a permissi-
ble interval. Consider each fixed job J in the given in-
stance. Suppose J was scheduled in (a, a + p) in the
given schedule. We now obtain a sub-interval of (a, a+p)
which is a permissible interval for J . Say the original size
p of J satisfies (1 + 1/k)i ≤ p < (1 + 1/k)i+1 and
p′ =

⌈
(1 + 1/k)i

⌉
≤ p. We first trim the scheduling in-

terval from (a, a + p) to (a, a + p′). If p′ < 2k, then
job J is already scheduled on a permissible interval, since
(a, a+p′) is an interval of length s = p′ and a is a multiple
of g = 1. If p′ ≥ 2k, then g = bp′/kc and s = p′− g+ 1.

Let a′ ≥ a be the smallest integer that is a multiple of g.
Then, a′ ≤ a+ g − 1. Then, (a′, a+ p′) is an interval of
length at least s and a′ is an integer multiple of g. We trim
the interval (a′, a+p′) from the right to obtain an interval
of length exactly s.

We compare p and s. Since p < (1 + 1/k)i+1 and
p′ ≥ (1 + 1/k)i, we have p′ ≥ p/(1 + 1/k). Then,
p/s ≤ 1 + 1/k if p′ < 2k. If p′ ≥ 2k, s = p′ − bp′/kc+
1 ≥ p′ − p′/k = (1 − 1/k)p′ ≥ (1 − 1/k)p/(1 + 1/k).
Thus p/s ≤ (1+1/k)/(1−1/k), this is at most 1+ ε′ for
some sufficiently large k = O(1/ε). Thus, scheduling J
using the permissible scheduling intervals only requires
(1 + ε′)-speed which is (1 + ε/3)-speed.

With the property that si/gi = O(1/ε), the following
corollary is immediate.

COROLLARY 2.1. For any i ∈ [q] and any integer time t
in the time horizon (0, N), the number of different aligned
intervals of type-i containing t is O(1/ε).

DEFINITION 2.2. (permissible interval) For each job J
of type-i, we say that an interval (aJ , bJ) is a permissible
interval for J if (aJ , bJ) is an aligned interval of type-i
and rJ ≤ aJ < bJ ≤ dJ .

For weighted jobs, we overload notation and say that
a type-i job J with weight type j is a type-(i, j) job where
i ∈ [q] and j ∈ [z].

2.2 Signature Whereas our ultimate goal is an actual
schedule consisting of an assignment of jobs to machines
at specified times, we observe that the following signature
is sufficient for our purposes.

DEFINITION 2.3. (signature) A signature is a multi-set of
aligned intervals.

The following proposition emphasizes why our signature
T is sufficient for our purposes.

PROPOSITION 2.1. Let T be the multi-set of aligned
intervals used in the optimum aligned schedule. Given
T , one can construct a feasible schedule as good as the
optimal schedule.

Proof. We first greedily allocate the set T of intervals
to m machines. Hence we only need to allocate some
jobs in J to T . To this end, we solve a maximum-
weight bipartite matching problem for the bipartite graph
between J and T where there is an edge between J ∈ J
and T ∈ T if T is a permissible interval for J . Each job
J ∈ J has weight wJ .

The advantage of considering signatures is the fol-
lowing. Due to information loss in our dynamic program-
ming solution, the signature T we find may not lead to an



optimal schedule. However, if we allow each interval in
T to be used c times, for some real number c > 1, we can
obtain a solution that is as good as the optimum schedule.
As will be discussed later, we use each interval c times
with a small amount of resource augmentation; namely
by using dce times more speed/machine augmentation, or
by simply discarding c − 1 fraction of throughput. Thus
it is convenient not to associate an interval with a specific
job.

2.3 A Naı̈ve Dynamic Programming Algorithm Our
algorithm is based on improving the following naı̈ve
recursive algorithm for WThr. Initially, we are given a set
J of jobs and a block (0, N). Our goal is to maximize the
total weight of jobs scheduled. We recurse by reducing
the instance on (0, N) to two sub-instances on (0, C) and
(C,N) where C = bN/2c. Focus on a job J ∈ J . We
have three choices for job J . First, we may decide to
schedule J completely in (0, C) or (C,N). In this case,
we pass J to the first or second sub-instance. Second, we
decide to schedule J on a permissible interval (aJ , bJ)
for J satisfying aJ < C < bJ . In this case, we pass
the scheduling interval (aJ , bJ) to both sub-instances and
tell the sub-instances that the interval is already reserved.
Third, we may choose to discard J .

In some intermediate level of the recursion, an in-
stance is the following. We are given a block (A,B) with
A < B, a set J ′ of jobs that need to be scheduled in this
block and a set T ′ of reserved intervals. We shall find a
signature T ′′ in (A,B) such that T ′′ ] T ′ can be allo-
cated in m machines and schedule some jobs in J ′ using
T ′′. The goal is to maximize the total weight of sched-
uled jobs. If B − A ≥ 2, we let C = b(A+B)/2c and
reduce the instance into two sub-instances on the two sub-
blocks (A,C) and (C,B), by making choices for jobs in
J ′. The two sub-instances can be solved independently
and recursively. We reach the base case when B−A = 1.
The recursion defines a binary tree of blocks where the
root is (0, N) and the leaves are blocks of unit length. For
convenience, we call this tree the recursion tree.

We can naturally transform this recursive algorithm
to a naı̈ve DP where each state corresponds to a possible
input to a sub-instance. This naı̈ve DP runs in exponential
time since the number of valid decisions and the number
of states are both exponential. As discussed in the intro-
duction, we shall reduce the number of states by develop-
ing a compact sketching scheme, leading to our efficient
DP.

3 Algorithms for (Weighted) Throughput and
Machine Minimization: Efficient Dynamic
Programming

In this section we give our efficient dynamic programming
for MM, Thr and WThr. To state our main lemma, we

shall use the following maximum weighted matching with
congestion problem.

DEFINITION 3.1. (fractional matching and congestion)
Given a set J ′ of jobs and a signature T ′, construct a
graphG = (J ′, T ′, E) where there is an edge (J, T ) ∈ E
if and only if T is a permissible interval for job J . Let
c ≥ 1 be a congestion parameter. Consider the following
maximum weighted fractional matching problem: Find a
fractional matching {xe}e∈E such that every job J ∈ J ′
is matched to an extent at most 1 and every interval
T ∈ T ′ is matched to an extent at most c with the goal
of maximizing the total weight of matched jobs in J ′,
i.e,
∑
J∈J ′ wJ

∑
T :(J,T )∈E x(J,T ). Let MWM(J ′, T ′, c)

denote the maximum value of the problem.

Given a fractional matching {xe}e∈E , the extent
to which job J is matched refers to the quantity∑
T :(J,T )∈E x(J,T ). The main Lemma given by the DP

is the following.

LEMMA 3.2. If there is an aligned schedule which sched-
ules opt total weight of jobs in J on m machines, then
we can find in 2poly(logn,1/ε)-time a signature T that can
be allocated in m machines such that MWM(J , T , 1 +
ε/3) ≥ opt.

We use Lemma 3.2 to derive results for WThr, Thr,
and MM as follows. We start with WThr. Suppose T ∗ is
the signature for the optimal aligned schedule. It follows
that MWM(J , T ∗, 1) = opt. From Lemma 3.2, we can
find a signature T such that MWM(J , T , 1+ε/3) ≥ opt.
By integrality of bipartite matching, we can find a set
J ′ ⊆ J of jobs with total weight at least opt/(1 +
ε/3) such that J ′ can be mapped to T integrally with
congestion 1. Combining this with the (1 + ε/3)-speed
augmentation from Lemma 2.1 and the (1 + ε/3)-factor
loss of approximation ratio from rounding job weights,
we get a a (1 + ε, 1− ε)-approximation for WThr.

For Thr and MM, we use a relaxed form of
Lemma 3.2. Namely, we use congestion 2 rather than
congestion 1 + ε/3 to get a signature T such that
MWM(J , T , 2) ≥ opt. In this case, we observe that
we can achieve opt value by doubling the number of ma-
chines or speed of machines. Combining this with the
(1 + ε/3)-speed augmentation from Lemma 2.1 and re-
membering that we have no loss due to rounding job
weights, we get a (2 + ε, 1)-approximation for Thr. For
MM, by guessing the optimal number of machines, we get
(1 + ε, 2) and (2 + ε, 1)-approximations.

3.1 Defining a Sub-Problem: Extended WThr In-
stance We now start proving Lemma 3.2. We first reg-
ulate the input of a sub-instance by restricting that a job
J can only be discarded at the inclusive-minimal block



(A,B) in the recursion tree containing (rJ , dJ). Thus,
if B − A ≥ 2, then J can be discarded in (A,B) if
A ≤ rJ < b(A+B)/2c < dJ ≤ B. If B − A = 1
then J can be discarded if (rJ , dJ) = (A,B).

With this restriction, we can characterize the proper-
ties of the input to a sub-instance. The set J ′ of jobs can
be divided into two subsets. The first set contains the jobs
J ∈ J such that (rJ , dJ) ⊆ (A,B). Each job J in this set
can only be scheduled in (A,B) and cannot be discarded
at upper levels. Thus such a job J must be in J ′. The set,
denoted by Jin, is completely determined by (A,B). The
second set contains the jobs J whose window (rJ , dJ) in-
tersect (A,B) but are not contained in (A,B). We useJup
to denote this set of jobs since they are passed to (A,B)
from upper levels. For each J ∈ Jup, (rJ , dJ) contains
either A or B. The jobs J whose windows (rJ , dJ) are
disjoint from (A,B) can not be in J ′; otherwise there is
no valid solution since J can be not scheduled in (A,B)
and cannot be discarded in any sub-blocks of (A,B).

We use Tup to denote the set of reserved intervals
from upper levels. We can ignore the intervals that do not
intersect (A,B) because they do not affect the instance.
For the other intervals (a, b) ∈ Tup, (a, b) cannot be
completely contained in (A,B); otherwise the interval
would not be decided in upper levels. To sum up, in a
sub-instance, we are given

1. A block (A,B) (this determines the set Jin := {J ∈
J : (rJ , dJ) ∈ (A,B)}).

2. A set Tup of already allocated aligned intervals that
are not contained in (A,B) and intersect (A,B).

3. A set Jup ⊆ J of jobs J such that (rJ , dJ) is not
contained in (A,B) and intersects (A,B).

The jobs in Jup must be scheduled in (A,B): if we need
to discard some job J in the set, we would have done
so at some upper level. We can schedule some or all
jobs in Jin. We need to guarantee that the scheduling
intervals used, union Tup, can be allocated onmmachines.
The goal of the instance is to maximize the weight of
scheduled jobs in Jin. For convenience, we call such an
instance an extended WThr instance defined by (A,B)
(this defines Jin), Tup and Jup. The value of the instance
is the maximum weight of scheduled jobs in Jin. Notice
that we do not count the weight of jobs in Jup.

In the case B − A ≥ 2 and C = b(A+B)/2c,
we shall make a decision for each job in Jup ∪ Jin to
reduce the instance into two sub-instances. Let D(J)
be the decision for J . D(J) can be L (passing J to
the left instance), R(passing J to the right instance), ⊥
(discarding J) or some permissible interval (a, b) for J
such that A ≤ a < C < b ≤ B. D(J) is valid if

1. If D(J) = L, then (rJ , dJ) intersects (A,C).
2. If D(J) = R, then (rJ , dJ) intersects (C,B).
3. If D(J) = ⊥, then J ∈ Jin and rJ < C < dJ .

4. If D(J) is some permissible scheduling interval
(aJ , bJ) for J , then A ≤ aJ < C < bJ ≤ B.

We say the decision function D is valid if all decisions
D(J) are valid.

3.2 Reducing the Number of Different Inputs Using
a Sketching Scheme We now describe our sketching
scheme. We first show that the multi-set Tup is not a
concern – it has relatively few possibilities.

CLAIM 3.3. Given (A,B), there are at most nO(q/ε) =

nO( 1
ε2

logN) possibilities for Tup.

Proof. Recall that each interval (a, b) ∈ Tup contains
A or B (or both). By Corollary 2.1, there can be at
most O(1/ε) different aligned intervals for type-i jobs
that intersect A (B, resp.). Thus, there can be at most
O(q/ε) different aligned intervals in Tup. Since each
interval can appear at most n times in the multi-set Tup,
the total number of multi-sets is at most nO(q/ε), which is
nO( 1

ε2
logN) by Lemma 2.1.

We now deal with the set Jup. We cannot consider all
possible sets Jup since there are an exponential number of
possibilities. Instead, we cluster together similar possible
sets into a single set and represent this common set by
an approximate description. We describe how we cluster
and compress as follows. We focus on one job type and
one weight at a time; let Ji,j be the jobs of type-(i, j) in
Jup. For each job J ∈ Ji,j , (rJ , dJ) contains A or B.
If (rJ , dJ) contains A, then we say J is a left-side job;
otherwise we say J is a right-side job. Since we need
to schedule jobs in Jup inside (A,B), we think of left-
side jobs as having release time A, and right-side jobs as
having deadline B. Let J L

i,j be the set of left-side jobs in
Ji,j and J R

i,j be the set of right-side jobs in Ji,j . To define
our sketch, fix some δ > 0 whose value will be decided
later. Let ∆0 := 0,∆1 := 1, and ∆i := d(1 + δ)∆i−1e
for all integers i ≥ 2.

DEFINITION 3.4. (sketch) Given a set J ′ of jobs of same
type and same release time (deadline, resp.) which
are ordered in increasing (decreasing, resp.) order
of their deadlines (release times, resp.), the left-sketch
(right-sketch, resp.) of J ′, denoted as sketchL(J ′)
(sketchR(J ′), resp.), is a vector (t1, t2, · · · , t`) s.t.

• ` is the smallest number such that ∆`+1 > |J ′|;
• for every j ∈ [`], tj is the deadline (release time,

resp.) of the ∆j-th job in the ordering.

The loss of information in this sketch is that we only know
that there are ∆j−∆j−1 jobs in the left-sketch which have
deadlines between tj−1 and tj for every j ∈ [`]. However,
there are only (1+δ) factor more jobs with deadline by tj
than those with deadline by tj−1. Thus, we can schedule



all the former jobs by time tj−1 with an increase of at
most (1 + δ) factor in the congestion. The effectiveness
of our input sketches and solution signatures is formally
stated in the following lemma.

LEMMA 3.5. Let J1 and J2 be two disjoint sets of
jobs such that jobs in J1 ∪ J2 have the same job type
i and the same release time (deadline, resp.). More-
over, sketchL(J1) = sketchL(J2) (sketchR(J1) =
sketchR(J2), resp.). Then there is a fractional matching
from J1 to J2 such that every job J ∈ J1 is matched to
an extent exactly 1 and every job J ∈ J2 is matched to an
extent at most 1 + δ. Moreover, if J ∈ J1 is matched to
J ′ ∈ J2, then dJ ≥ dJ′ (rJ ≤ rJ′ , resp.).

Proof. We only focus on the case where jobs in J1 ∪ J2
have the same releasing time. The case where they have
the same deadline is analogous. Consider the follow-
ing fractional bipartite-matching problem. The bipartite
graph we are considering is (J1,J2, E), where there is
an edge (J1, J2) ∈ E between a job J1 ∈ J1 and a job
J2 ∈ J2 if the dJ1 ≥ dJ2 .

By Tutte’s theorem, it suffices to prove that for
any non-empty subset J ′1 of J1, we have |J2(J ′1)| ≥
|J ′1|/(1 + δ), where J2(J ′1) is the set of neighbors of
J ′1 in the bipartite graph. Focus on a subset J ′1 ⊆ J1
and let t be the latest deadline of jobs in J ′1. Sup-
pose sketchL(J1) = sketchL(J2) = (t1, t2, · · · , t`) and
tj ≤ t < tj+1 (assume t`+1 = ∞). Then we have
|J ′1| ≤ ∆j+1 − 1 since there are at most ∆j+1 − 1 jobs
in J1 with deadline before tj+1. On the other hand, we
have |J2(J ′1)| ≥ ∆j since all jobs in J2 with deadlines
before or at tj are in J2(J ′1) and there are at least ∆j such
jobs. Notice that we have ∆j+1 ≤ (1 + δ)∆j + 1. Thus,
|J2(J ′1)| ≥ ∆j ≥ (∆j+1 − 1)/(1 + δ) ≥ |J ′1|/(1 + δ).

Let φLi,j = sketchL(J L
i,j) and φRi,j = sketchR(J R

i,j).
Let φ = {φoi,j}o∈{L,R},i∈[q],j∈[z](recall that z is the num-
ber of different weights). Instead of giving the set Jup as
input, we only give the sketch vector φ.

Thus, the approximate input of an extended WThr in-
stance contains a block (A,B), a set Tup of intervals and
the sketch vector φ that approximates Jup. To ensure our
sketch is a valid relaxation, we assume the best situation
that Jup is the “easiest” to schedule set of jobs that match
the sketch vector φ. Intuitively, since left-side (right-side,
resp.) jobs share the same release time A (deadline B,
resp.), they become easier when they have later deadlines
(earlier release times, resp.). We simply make the dead-
lines (release times, resp.) as late (early, resp.) as pos-
sible; meanwhile, we make the number of jobs as small
as possible. The set is formally defined and returned by
the procedure easiest-set in Algorithm 1. It is trivial that
cong(easiest-set(A,B, φ), T ) ≤ cong(Jup, T ) for any
set T of scheduling intervals. This newly constructed easy

set, easiest-set(A,B, φ) replaces Jup. The number of
possible inputs to a sub-instance is now affordable.

1: J ′ ← ∅;
2: for each (i, j) ∈ [q]× [z] do
3: (t1, t2, · · · , t`)← φLi,j ;
4: for k ← 1 to ` do
5: add to J ′, ∆k - ∆k−1 jobs of type i, with

release time A, deadline tk and weight type j;
6: (t1, t2, · · · , t`)← φRi,j ;
7: for k ← 1 to ` do
8: add to J ′, ∆k - ∆k−1 jobs of type i, with

release time tk, deadline B and weight type j;
9: return J ′.

Algorithm 1: easiest-set(A,B, φ): returning the “easi-
est” set of jobs agreeing with the sketches

PROPOSITION 3.1. The total number of possible inputs
to a sub-instance (A,B, Tup, φ) is NO( logn logN logW

ε2δ
).

Proof. The total length of sketches in φ is at most
O(qz log1+δ n). Since there are O(N) different release
times and deadlines, the number of possibilities for φ is
NO(qz log1+δ n) = NO( logn logN logW

ε2δ
). This dominates

the number of different Tup.

3.3 Wrapping Up The algorithm for processing each
dynamic programming state is given in Algorithm 2. The
output f = f(A,B, Tup, φ) is obtained with the relaxed
“easiest” set Jup that matches φ. Since this set is the
easiest, it can be only larger than the actual maximum
weight of jobs that can be scheduled in Jin with the
original φ. Our scheduling intervals F may not lead to a
schedule of value f due to the relaxation performed in the
sketches – however, we will show that this can be taken
care of by increasing the congestion parameter c slightly.

From Line 2 to Line 8, we deal with the base case
where (A,B) is a unit interval. When (A,B) has length
at least 2, we enumerate all achievable pairs of inputs,(
A,C, T L

up, φ
L
)

and
(
C,B, T R

up, φ
R
)
, for the two sub-

instances in Line 10. In Line 11, we find the decision
function D for Jup ∪ Jin to achieve the combination.
This involves some obvious comparisons such as whether
T L
up and T R

up have the set of scheduling intervals intersect-
ing time C. The only interesting part of this consistency
check is avoiding enumerating all possible decision func-
tions D for Jin ∪Jup, which was observed to be the main
bottleneck for the naı̈ve recursion. We show that the prob-
lem of finding the decision functionD can be reduced to a
bipartite graph matching problem and thus can be solved
efficiently.

LEMMA 3.6. Given T L
up, φ

L, and T R
up, φ

R, one can decide
whether some valid decision function D achieves the
combination in polynomial time.



Input: A,B,Jin defined by (A,B), Tup, φ;
Output: f(A,B, Tup, φ): maximum weight of jobs in Jin that can be scheduled;
F (A,B, Tup, φ): set of job intervals hosting Jin and Jup(defined in Line 1)

1: Jup ← easiest-set(A,B, φ);
2: if B = A+ 1 then
3: if |Tup|+ |Jup| ≤ m and (A,B) is a permissible interval for all jobs in Jup then
4: Select the m− |Tup| − |Jup| heaviest jobs in Jin (or the whole set Jin if possible);
5: f(A,B, Tup, φ)← total weight of the selected jobs;
6: F (A,B, Tup, φ)← multi-set of min {m− |Tup| , |Jup|+ |Jin|} intervals (A,B);
7: else f(A,B, Tup, φ)← −∞;
8: return

9: C ← b(A+B)/2c , f (A,B, Tup, φ)← −∞,J ′in ← {J ∈ Jin : rJ < C < dJ};
10: for every achievable pair of inputs (A,C, T L

up, φ
L) and (C,B, T R

up, φ
R) for the two sub-instances do

11: D ← valid decision function for Jin ∪ Jup achieving the two inputs;
12: f ′ ← f

(
A,C, T L

up, φ
L
)

+ f
(
C,B, T R

up, φ
R
)

+
∑
J∈J ′in,D(J)6=⊥ wJ ;

13: if f ′ > f (A,B, Tup, φ) then
14: f (A,B, Tup, φ)← f ′;
15: F (A,B, Tup, φ)← F

(
A,C, T L

up, φ
L
)
] F

(
C,B, T R

up, φ
R
)
] {D(J)}J∈Jin∪Jup,D(J)/∈{L,R,⊥};

Algorithm 2: Processing a dynamic programming state

Proof. Let J ′in ⊆ Jin be the set of jobs in J ∈ Jin whose
window (rJ , dJ) contains C. The decisions for jobs in
J ′in ∪ Jup will affect the inputs to the two sub-instances.
We claim checking whether some valid decision function
for J ′in ∪ Jup achieves the combination of inputs can be
reduced to a bipartite-graph matching problem.

The left side of the bipartite graph is the set of all jobs
in J ′in ∪ Jup. We need to find a matching such that each
job in Jup is matched exactly once and each job in J ′in is
matched at most once. The right-side vertex matched by
a left-side job corresponds to the decision for the job. We
shall add vertices to the right-side and edges to the graph.

Some trivial conditions on T L
up, T R

up and Tup must
hold; otherwise, we claim there are no decision functions
D to give the pair of inputs. From T L

up ∪ T R
up \ Tup,

we can determine the newly introduced aligned intervals
(they must all contain C). For each aligned interval, we
add a vertex to the right-side of the graph. There is an
edge between a left-side job and a right-side interval if the
interval is a permissible interval for the job. The newly
added right-side vertices must be matched exactly once.
Matching a job to an interval corresponds to scheduling
the job in the interval.

We can also assign L or R to jobs in J ′in ∪ Jup. Since
the decisions are independent for different job types and
weight types, we can focus on each job type-i and weight-
type j. Let J ′ be the set of jobs of size-type i and weight
type j in J ′in∪Jup. Suppose φR,Li,j = (t1, t2, · · · , t`). Then
for every k ∈ [`], we have a right-side vertex representing
the point tk, and a right-side vertex representing the
interval (tk, tk+1) (assuming t`+1 = ∞). Similarly we
have right-side vertices for φL,Li,j , φ

L,R
i,j and φR,Ri,j . Consider

a job J ∈ J ′ such that setting D(J) = R will make J
a left-side job in the right-sub-block. If dJ ∈ (tk, tk+1)
for some k ∈ [`], then we connect J to the vertex on the
right side for φR,Li,j representing the interval (tk, tk+1). If
dJ = tk for some k ∈ [`], then J is connected to 3 vertices
for φR,Li,j : the one representing the interval (tk−1, tk), the
one representing the point tk and the one representing the
interval (tk, tk+1) (with the exception of k = 1, in which
case J is only connected to 2 vertices). Similarly, we add
edges by considering the case D(J) = L. Each vertex
on the right must be matched some suitable number of
times. For example, the vertex for φRLi,j representing tk
needs to be matched exactly once for every k ∈ [`], and
the vertex representing (tk, tk+1) needs to be matched
exactly ∆k+1 − ∆k − 1 times for k ∈ [` − 1] and at
most ∆k+1 −∆k − 1 times for k = `.

Clearly, this bipartite matching problem can be
solved efficiently, hence the lemma follows.

The final algorithm is as follows. For each block
(A,B) in the recursion tree from bottom to top, we
generate all possible Tup, φ and run Algorithm 2 for
the input A,B, Tup, φ. The most time-consuming part
is enumerating

(
A,C, T L

up, φ
L
)

and
(
C,B, T R

up, φ
R
)

and
verifying that they form a consistent combination. From
Proposition 3.1 and Lemma 3.6, we upper bound the
running time by NO( logn logN logW

ε2δ
).

We observe that our solution builds on a valid relax-
ation. Thus, f (0, N, ∅, φ) ≥ opt, where the sketch φLi,j
and φRi,j are all empty sequences. The correspondent so-
lution signature returned is T ∗ = F (0, N, ∅, φ). It is ob-
vious from the algorithm that T ∗ can be allocated on m



machines.
We set δ = Θ(ε/ logN) so that (1 + δ)logN ≤

1 + ε/3. Then the running time of the algorithm is

n
O
(

logn log2 N logW

ε3

)
, which is 2poly(logn,1/ε) when N and

W are poly(n). The following lemma yields Lemma 3.2
for this case. The proof uses Lemma 3.5 over O(logN)
levels, thereby giving congestion (1 + δ)logN .

LEMMA 3.7. MWM(J , T ∗, (1 + δ)logN ) ≥ opt.

Proof. For the proof, we shall use a slightly generalized
definition of MWM. In this new definition, we have four
parameters J ′′,J ′, T ′ and c, where J ′′ and J ′ are two
disjoint sets of jobs. The bipartite graph we are consider-
ing is (J ′′ ∪ J ′, T ′, E). There is an edge (J, T ) ∈ E if
T is a permissible interval of T . In the matching, every
job in J ′′ must be matched to an extent exactly 1, every
job in J ′ must be matched to an extent at most 1 and ev-
ery interval in T ′ must be matched to an extent at most
c. The goal is to maximize the total weight of matched
jobs in J ′, i.e,

∑
J∈J ′ wJ

∑
T :(J,T )∈E x(J,T ). Notice

that we do not count the weight of matched jobs in J ′′.
Let MWM(J ′′,J ′, T ′, c) be the value of the matching
problem. Thus, the original MWM(J ′, T ′, c) is equiva-
lent to MWM(∅,J ′, T ′, c) in the new definition. If the
problem is infeasible, we let the value be −∞.

Focus on a block (A,B) in the tree. We say a block
(A,B) is at level h if it has distance h to its nearest leaf.
Thus, leaves are at level 0 and the root is at level logN .

Focus on any level-h block (A,B) and any input
(A,B, Tup, φ). Let Jin = {J ∈ J : A ≤ rJ < dJ ≤ B}
be the jobs whose windows are in (A,B). Let Jup
be the set returned by easiest− set(A,B, φ). We show
that for any set J ′up of jobs that matches the sketch
vector φ, the returned set T = F (A,B, Tup, φ) satisfies
MWM(J ′up,Jin, T , (1 + δ)h) ≥ opt′, where opt′ is the
optimal value for the extended WThr instance defined by
(A,B), Tup and J ′up.

We prove the statement by induction on h. For the
base case h = 0, this is obviously true since the only
choice for J ′up is Jup and our algorithm is optimal for this
case. Focus on the case h ≥ 1. Let opt be the maxi-
mum weight for the extended WThr problem defined by
(A,B), Tup and Jup, and T . From the induction hypothe-
sis, it is easy to see that MWM(Jup,Jin, T , (1+δ)h−1) ≥
opt′. By applying Lemma 3.5 to each combination of
job-type i, weight-type j and side-type (left-side or right-
side jobs), it is easy to see that we can find a fractional
matching x from J ′up to Jup such that every job in J ′up
is matched to an extent exactly 1 and every job in Jup is
matched to an extent at most 1+ δ. Moreover, if J ′ ∈ J ′up
is matched to J ∈ Jup, then every permissible interval
for J is also a permissible interval for J ′. Consider the
fractional matching x′ achieving MWM(Jup,Jin, T , (1 +

δ)h−1). Recall that in x′ all jobs in Jup are matched to an
extent of exactly 1. Combining matchings x and x′, we
can obtain a fractional matching x′′ between J ′up∪Jin and
T where every job in J ′up is matched to an extent exactly
1, every job in J ′in is matched to an extent at most 1 and
every job in T is matched to an extent at most (1 + δ)h.
The extent to which a job J ∈ Jin is matched in x′ is the
same as that in x′′. Thus, MWM(J ′up,Jin, T , (1 + δ)h) ≥
MWM(Jup,Jin, T , (1 + δ)h−1) ≥ opt′.

4 Dealing with Large N and W for Machine
Minimization and Throughput

4.1 Sketch of Algorithms We first sketch how to prove
Lemma 3.2 when N and W are large. Basically there
are two barriers: (1) the number of blocks (A,B) in
the recursion tree can be exponential; (2) the number of
different job types (size/weight) can be ω(poly log n).

We now show how to remove the first barrier. We dis-
tinguish flexible jobs from non-flexible jobs: flexible jobs
are the jobs J satisfying (dJ − rJ)/pJ ≥ poly(n, 1/ε)
for some suitable function poly(n, 1/ε). Intuitively, these
jobs J are flexible in the following sense: if there is a big
job scheduled in J’s window, then with additional speed
augmentation, J can be scheduled with the big job; other-
wise, J has plenty of empty space within its window and
can be flexibly scheduled. Using this intuition, we show
that by using (1 + ε)-speed, we can assume all flexible
jobs have size 0. Notice that in the non-preemptive set-
ting, jobs of size 0 make sense. Then, each job either has
size 0 or size pJ ≥ (dJ − rJ)/poly(n, 1/ε). With this
property, we can then identify a set of interesting points:
the points in which a job starts or ends. Using the above
property and aligned intervals, we can bound the number
of interesting points by poly(n, 1/ε). In our DP, we can
focus on the blocks (A,B) where both A and B are in-
teresting points. This will reduce the number of blocks to
poly(n, 1/ε).

Now consider the second barrier. We can wlog.
assume W is polynomial since we can remove jobs of
weight at most εW/n; if jobs are unweighted, there is
nothing to do here. By scaling, we can assume W is
O(n/ε). The only thing that remains is to handle the
large number of different job sizes. The key idea is that
when we divide a block (A,B) into two blocks (A,C)
and (C,B), we choose a point C that does not belong
to the window (rJ , dJ) of a small job J . A job J is
small if 0 < pJ ≤ (B − A)/poly(n, 1/ε). If the
quantity poly(n, 1/ε) is suitable, we can still choose a C
that almost equally splits (A,B) (recall that if pJ > 0,
then dJ − rJ ≤ pJ · poly(n, 1/ε)). Then, the two
sub-blocks are (A,C ′) and (C ′′, B), where C ′ and C ′′

are the interesting points to the left and the right of C
respectively. Consider the set Jup of jobs for a fixed
(A,B). The size of a job J ∈ Jup is at most B − A



since otherwise it can not be scheduled in (A,B). Also,
it is at least (B−A)/poly(n, 1/ε). This holds because of
the way blocks are cut: if a job J has very small positive
size (thus, very small window) compared to B − A, then
we avoided cutting its window in upper levels. Thus, for
such a job J , (rJ , dJ) is either contained in (A,B) or
disjoint from (A,B). Therefore, there are only O(log n)
different job types in Jup and we can afford to use our
sketching scheme for Jup. It is true that our recursion
tree can have height much larger thanO(log n). However,
for each block (A,B), the congestion factor we lose is
only on the job-types which are present in Jup. By using
a careful type-wise analysis for the congestion, we can
bound the overall congestion by (1 + δ)O(logn).

4.2 Detailed Algorithms We now give detailed algo-
rithms to deal with large N and W . For WThr, we can
assume W is at most O(n/ε), only losing a 1− ε/4 factor
in the approximation ratio. Consider the largest weight
W . If some job has weight at most εW/(4n), then we can
discard it. Since our optimal value is at least W and we
discard at most εW/4 total weight, we only lose a factor
of 1− ε/4 in the approximation ratio. By scaling, we can
assume all weights are positive integers less than O(n/ε).

In the first step, we shall deal with what we call
flexible jobs. These are the jobs J with pJ much smaller
than dJ − rJ .

DEFINITION 4.1. (FLEXIBLE JOBS) A job J ∈ J is
flexible if pJ ≤ ε(dJ−rJ )

6n2 .

We show that with some small speed, we assume the
sizes of flexible jobs are 0. Notice that in non-preemptive
scheduling, jobs of size 0 make sense.

LEMMA 4.2. With (1 + ε/4)-speed, we can assume flex-
ible jobs have size 0.

Proof. We change the sizes of flexible jobs to 0 and then
find a scheduling of J on m machines. Then, we change
the size of flexible jobs back to their original sizes.

Fix some machine and some job J of size 0 scheduled
on the machine. We change its size back to its original
size pJ . We say a job J ′ is small if its current size
(which is either 0 or pJ′ ) is at most 5npJ/ε and big
otherwise. Consider the case where no big jobs scheduled
on the machine intersect (rJ + pJ , dJ − pJ). Then, since
(dJ−rJ) ≥ 6n2pJ/ε and there are at most n jobs, we can
find a free segment of length at least (6n2pJ/ε − 2pJ −
5npJ/ε×n)/n ≥ pJ in (dJ+pJ , rJ−pJ) on the machine.
Thus, we can schedule the job J in the free segment.
Now consider the case where some big job J ′ scheduled
on the machine intersects (rJ + pJ , dj − pJ). Since the
0-sized job J was scheduled somewhere in (rJ , dJ), the
scheduling interval for J ′ can not cover the whole window

(rJ , dJ). Then, we can either cut the first or the last pJ
time slots of scheduling interval for J ′ and use them to
schedule J . The length of the scheduling interval for J ′ is
reduced by pJ ≤ εpJ′/(5n). Thus, we have changed the
size of J back to its original size pJ .

For each size J ′, the scheduling interval for J ′ is cut
by at most εpJ′/(5n)× n = εpJ′/5. The new scheduling
is valid if the machines have speed 1+ε/4 ≥ 1/(1−ε/5).

With the sizes of flexible jobs changed to 0, we then
define the aligned intervals of positive size and define
permissible intervals as in Section 2.1. We say a point
in the time horizon (0, N) is an interesting point if it is
the starting-point or the ending-point of some permissible
interval for some positive-sized job, or if it is rJ for some
0-sized job J .

LEMMA 4.3. The total number of interesting points is
O(n3/ε2).

Proof. Focus on a positive job J . Suppose it is of type
i, defined by (si, gi). Then the number of permissible
intervals for J is d(dJ − rJ)/gie ≤ O(n2si/(εgi)) =
O(n2/ε2), where the last equation is by Lemma 2.1. Since
there are n jobs, the total number of interesting points is
bounded by O(n3/ε2).

We can assume that jobs start and end at interesting
points. This is clearly true for positive-sized jobs. For a 0-
sized job, we can move them to left until it hits its arrival
time or ending-point of some other interval. Our algo-
rithm is still based on the naive dynamic programming. In
order to improve the running time, we need to make two
slight modifications to the naive dynamic programming.

First, when we are solving an extended WThr in-
stance on block (A,B), we change (A,B) to (A′, B′),
where A′ is the interesting point to the right of A and B′

interesting point to the left of B. By our definition of
interesting points, this does not change the instance. The
base cases are when (A,B) contains no interesting points.
With this modification, the tree of blocks defined by the
recursive algorithm can only contain O(n3/ε2) blocks.

Second, we change the way we choose C. For a fixed
(A,B), we say a positive-sized job J is small if its size is
at most ε(B − A)/(12n3) and big otherwise. We select
ourC such thatC is not contained in any window (rJ , dJ)
of small jobs J . Since all positive-sized jobs are non-
flexible, the total window size over all small jobs J is
at most n × ε(B − A)/(12n3) × 6n2/ε ≤ (B − A)/2.
Thus, we can choose C such that A+ (B −A)/4 ≤ C ≤
A+ 3(B −A)/4.

With the two modifications, we can describe our
sketching scheme. Fix a block (A,B). It is clear that
A andB will not be contained in window (rJ , dJ) for any
small job J . This is true since in small jobs w.r.t (A,B)



are also small w.r.t super-blocks of (A,B). Then when
cutting blocks in upper levels, we avoid cutting windows
of small jobs. If a job has size greater than B −A, then it
clearly can not be scheduled in (A,B). Thus, for fixed
(A,B), Jup will only contain big jobs of size at most
B − A. That is, Jup only contain jobs of size more than
ε(B − A)/(12n3) and at most B − A. There can be at
most O(log n/ε) different job types in Jup (jobs of size 0
are of the same type). Using the same sketching scheme
as in Section 3.2, the total number of different sketches
for fixed (A,B) can be at most nO(logn/ε)zO(log1+δ n) =

nO(log3 n/(δε)).
We now analyze the congestion we need. It is

true that the tree of blocks may have up to n levels.
However, for a specific job type, the number of levels
where we lose a factor in the congestion for the job type
isO(log n). In order to prove this more formally, we need
to generalize the definition of the maximum weighted
matching. MWM(J ′,J ′′, T ′, c) is defined the same as
before, except that now c : [q] → R a vector of length q.
If an aligned interval T ∈ T ′ is of type i ∈ [q], then it can
be matched to an extent at most ci.

For every block (A,B) in the recursion tree, we
shall define a congestion vector c : [q] → R such that
the following holds. Consider any approximate input
(A,B, Tup, φ) to an extended WThr instance on (A,B).
Let Jin = {J ∈ J : A ≤ rJ < dJ ≤ B} be the jobs
whose windows are in (A,B). Let Jup be the set returned
by easiest− set(A,B, φ). Then for any set J ′up of jobs
that matches the sketch vector φ, the returned set T =
F (A,B, Tup, φ) satisfies MWM(J ′up,Jin, T , c) ≥ opt′,
where opt′ is the value for the extended WThr instance
defined by (A,B), Tup and J ′up.

It is obvious that we can set the c to be all-one vector
for base blocks. Suppose have defined the congestion
vector c1, c2 for the two sub-blocks of (A,B). We now
define the congestion vector c for the block (A,B). From
the proof of Lemma 3.7, it is easy to see that we can
define c be the following vector. If ε(B − A)/(12n3) ≤
si ≤ B − A (recall that si is the size of type-i jobs),
we let ci = (1 + δ) max

{
c1i , c

2
i

}
; otherwise, we let

ci = max
{
c1i , c

2
i

}
.

Now consider the final c we get for the root block.
Then ci = (1 + δ)h, where h is the maximum number of
blocks (A,B) in a root-to-leaf path of the recursion tree,
such that ε(B − A)/(12n3) ≤ si ≤ B − A. Since a
child block has size at most 3/4 times its parent block, h
is at most O(log(12n3/ε)) = O(log n). Thus, by setting
δ = Ω(ε/ log n), we finish the proof of Lemma 3.2 with
running time 2poly(logn,1/ε).

5 Algorithms for (Weighted) Flow Time
The algorithms for FT and WFT follow from the same
framework that we used for WThr with only minor mod-
ifications; thus we only highlight the differences. In FT
and WFT, jobs have no deadlines. Hence we start with an
obvious upper bound onN := maxJ′∈J rJ′+

∑
J′∈J pJ′

– clearly, all jobs can be completed by time N in any op-
timal solution. Proposition 2.1 again holds for FT and
WFT. The only difference is that we solve a minimum-
cost perfect matching problem for the same bipartite
graph used in the proof where each edge between J and
T has a cost that is wJ times the flow time or tardiness of
J when J is assigned in T . In the naı̈ve DP, we do not
have the option of discarding a job. Hence D(J) =⊥ is
disallowed.

We now focus on WFT. One crucial observation for
WFT is that jobs of the same type (size and weight) can
be scheduled in First-In-First-Out manner since jobs do
not have deadlines. Using this observation, we can obtain
a simpler (1 + ε, 1 + ε)-approximation for WFT with
polynomial N and W . The DP has a “path-structure” :
it proceeds from time 0 to time N . However, to handle
WFT with arbitrary N and W , we need to use our tree-
structure DP framework. Hence we stick with our general
framework.

We first consider the case when N and W are
poly(n). In each sub-instance in the recursion, we are
given a block (A,B), a set Tup of already allocated inter-
vals and a set Jup. Since jobs have deadlines ∞, there
are no jobs in Jin. The goal is to schedule all jobs in Jup
inside (A,B) so as to minimize the total weighted flow
time. With the above crucial observation, we can spec-
ify Jup exactly. Focus on jobs of type (i, j) in J . We
order these jobs by ascending release times. With this ob-
servation, the set of type-(i, j) jobs in Jup must appear
consecutively in the ordering (assuming a consistent way
to break ties). Thus, we only need to store two indices
indicating the first job and the last job of each type. Since
the DP is exact, we do not lose anything from it. The only
factors we lose are from the pre-processing step: a (1+ε)-
speed due to rounding job sizes and aligning jobs, and
a (1 + ε)-approximation factor due to rounding weights.
The second factor is unnecessary for FT. Thus, we obtain
a (1 + ε, 1)-approximation for FT and the (1 + ε, 1 + ε)-
approximation for WFT when N and W are poly(n).

Now we show how to extend the above algorithm for
WFT to the case of large N and W . The overall ideas are
similar to those we used for MM, and WThr. We begin
with an easy upper bound on the optimum objective opt
for our problem.

CLAIM 5.1.
∑
J wJpJ ≤ opt ≤ 2n2 maxJ wJpJ .

Proof. The lower bound on opt is trivial; we focus on
the upper bound. We schedule jobs in non-increasing



order of weights and we say J ′ < J if J ′ is before
J in the ordering. If we try to schedule each job J
as early as possible, then it is easy to see that job J’s
weighted flow time is at most wJ(

∑
J′<J pJ′ + npJ) ≤∑

J′≤J wJ′pJ′+wJnpJ . Summing this upper bound over
all jobs yields the lemma.

The next step is to simplify “negligible” jobs. We say
that a job J is negligible if wJpJ ≤ ε2

8n5 opt, otherwise
non-negligible. As usual, we can guess opt using a binary
search.

LEMMA 5.2. With (1 + 2ε) extra speed, we can assume
that negligible jobs have size 0. More precisely, making
some jobs have size 0 can only decrease the total weighted
flow time to schedule all jobs, and with (1 + 2ε) extra
speed, we can in polynomial time convert a schedule
for the simplified instance to a schedule for the original
instance without increasing the total weighted flow time.

Proof. Clearly, making some jobs have size 0 can only
decrease the total weighted flow time to schedule all
jobs. To show the second part of the claim, we consider
negligible jobs J in an arbitrary order, and revert their
current sizes 0 to their respective original sizes pJ . For
each negligible job J , we push back the job to the right
until we find either an empty space of size pJ or a job J ′

of size npJ/ε – this job J ′ can be either a non-negligible
job, or a negligible job whose job size has been reverted to
its original size. Note that job J can move at most n(pJ +
npJ/ε) time steps. Hence this will increase the objective
by at most 2n2

ε wJpJ ≤
ε

4n3 opt ≤ ε
2n maxJ wJpJ .

Hence the total increase of the objective due to moving
negligible jobs is at most ε2 maxJ wJpJ . This loss can be
offset by shrinking the job J that maximizes wJpJ by a
factor of (1−ε/2). This can be done using a (1+ε)-speed
augmentation.

We now show that we can still get a feasible schedule
with a small amount of extra speed augmentation. If job
J found an empty space to schedule itself, there’s nothing
we need to do. If job J found a big job J ′ with size at least
npJ/ε, then we shrink job J ′ using speed augmentation to
make a minimal room for J . In the worse case, job J ′ can
be shrink by a factor of (1− ε/n)n−1 ≥ 1− ε by all other
jobs. Thus 1/(1− ε) extra speed augmentation is enough
to get a feasible schedule for the original instance. The
lemma follows by observing 1/(1 − ε) ≤ 1 + 2ε for a
sufficiently small ε > 0, and rescaling ε appropriately.

For each job J , we define a “fictitious” but safe
deadline dJ such that wJ(dJ − rJ) ≤ opt. We make a
simple observation which follows from the definition of
negligible jobs and deadlines.

PROPOSITION 5.1. For all negligible jobs J , pJ ≤

ε2

4n5 (dJ − rJ). For all non-negligible job J , pJ ≥
ε2

8n5 (dJ − rJ).

We now use the same trick of avoid cutting small-
window jobs as we did for MM and WThr. Consider
a sub-instance on block (A,B). We say that job J has
a small window (with respect to (A,B)) if dJ − rJ ≤
1
n2 (B − A); other jobs have a large window. As before,
we can find a nearly middle point C of (A,B) without
cutting any small-window jobs. Hence we focus on large-
window jobs. Let’s first consider large-window non-zero-
sized jobs. All such jobs have size at least ε2

8n7 (B − A).
Knowing that only jobs of size at most (B − A) are
considered, we can conclude that the sizes of all large-
window non-zero-sized jobs are within factor O(n7).
Also from definition of non-negligible jobs, we know that
the weights of all large-window non-zero-sized jobs are
within factor O(n12). Hence we only need to consider
O((log2 n)/ε) different types (sizes and weights) of jobs.

Now let’s focus on the 0-sized jobs. If jobs are
unweighted, then these jobs are of the same type, hence
we can get a 1-approximaiton – note that we do not need
to round jobs weights, and we lost no approximation
factor so far. However, if jobs have weights we need an
additional step since the 0-sized jobs may have a wide
range of weights. Note that we can assume that 0-sized
jobs have large windows. Hence for all 0-sized jobs which
can be potentially cut, we have dJ−rJ ≥ 1

n2 (B−A). For
a 0-sized job J such that dJ−rJ ≥ n2(B−A), we reduce
job J’s weight to 0, and these jobs will be taken care of as
an equal type: This is justified for the following reason.
We know that at this point no matter where we schedule
job J within (A,B), job J’s weighted flow time can be
affected by at most wJ(B − A) ≤ wJ(dJ − rJ)/n2 ≤
opt/n2. Hence we now have that for all 0-sized non-zero-
weight jobs J , (B − A)/n2 ≤ dJ − rJ ≤ n2(B − A).
This implies that the weights of 0-sized non-zero-weight
jobs are now all within factorO(n4). Hence we only have
O((log n)/ε) different types (weight) of 0-sized jobs.

6 Algorithms for (Weighted) Tardiness
If we simply copy the algorithm for MM and WThr and
hope it works for WTar, then we have a barrier: the set
Jin is not determined by the block (A,B). In WTar, even
if a job J has window (rJ , dJ) completely contained in
(A,B), we may schedule J after B. Thus, we need to
store the set Jin. The sketching scheme used in MM and
WThr utilizes a key property: the set of jobs for which
we are going to construct a sketch either have the same
release time or the same deadline. However, in Jin, jobs
can have different release times and different deadlines.
Thus, the sketching scheme will not work.

To remove this barrier, we modify the naı̈ve DP
slightly. Suppose in some instance on a block (A′, B′), we



need to schedule some jobs J with dJ ≤ A′ of type-(i, j).
Then, all these jobs can be treated equally – after paying
costA′−dJ for each of them, we can treat them as having
the same release time and deadline A′. We design our DP
so that the tardiness A′ − dJ is already charged in some
other sub-instance and this instance is not responsible for
it. Thus, we only need to know how many such jobs J
need to be scheduled.

With this observation in mind, let us focus on the
block (A,B). If we have decided to schedule some job
J ∈ Jin with A ≤ rJ ≤ dJ ≤ B to the right of B, then
by the above argument, the sub-instances on blocks to the
right of B do not care about the release time and deadline
of J . They only care about their job types and weight
types. Thus, in the instance for (A,B), it suffices to have
a number hi,j in the input indicating the number of jobs
J ∈ Jin of type (i, j) that are scheduled to the right of
B. In the sub-instance for (A,B), we just need to push
the best set of jobs in Jup to the right of B. The cost of
pushing back jobs is included in the objective.

We remark that we need 4-speed in the preprocessing
step to make permissible intervals form a laminar family.
This is to avoid some involved case analysis. Thus the
final speed is 8 + ε. We believe our ideas can lead to a
(2+ ε, 1+ ε)-approximation by using a more complicated
DP.

We now describe our algorithm for WTar in more
details. We first assume N and W are polynomial.
Assume N is a power of 2. Then we build a perfect
binary tree of blocks of depth logN , where the root block
is (0, N), the two child-blocks equally split the parent-
block, and leaf-blocks are blocks of unit length. By using
4-speed, we can assume each job J has size 2i for some
0 ≤ i ≤ logN and a permissible interval of such a job
is a block of length 2i in the tree. Thus, the set of all
permissible intervals form a laminar family. We say a job
is of type-i if its size is 2i. By losing a factor of 1 + ε
in the approximation ratio, we can assume the number of
different weights is at most O((logW )/ε); we can index
the weights using integers from 1 to O((logW )/ε). Our
algorithm is based on a slightly modified version of the
naı̈ve DP described in Section 2.3. We first describe the
sub-instance in the recursion and explain the meaning of
each term. The input to a sub-instance is as follows.

1. an aligned block (A, B);
2. a number m′ indicating the number of allocated

intervals containing (A,B);
3. Jup, a subset of jobs J in J ; for each J ∈ Jup,

(rJ , dJ) ∩ (A,B) 6= ∅ and (rJ , dJ) 6⊂ (A,B);
4. gi,j , i ≤ log(B −A) and j ∈ [z];
5. hi,j , i ≤ log(B −A) and j ∈ [z].

Block (A,B) and Jup is as in the algorithm for
WThr. We must schedule all jobs in Jup in (A,B). m′

is correspondent to Tup. Since our permissible intervals

form a laminar family, and (A,B) is a permissible inter-
val, it suffices to use a single numberm′. By the definition
of m′, m−m′ machines are available during the interval
(A,B).

We now explain {gi,j}i,j and {hi,j}i,j . The input
{gi,j}i,j defines the set of jobs with deadlines before or
at A that must be scheduled in the block (A,B). We
use JL to denote these jobs. Then, for every integer
0 ≤ i ≤ log(B − A) and j ∈ [z], there are exactly gi,j
such jobs of type (i, j). Notice the tardiness of each job
J ∈ JL is at least A − dJ . We shall design our recursion
so that the A− dJ tardiness is already considered and the
instance for (A,B) is not responsible for this cost. Thus,
we treat jobs in JL as having arrival times and deadlines
equalingA. We also assume JL is a newly created set that
is disjoint from J .

Let Jin = {J ∈ J : (rJ , dJ) ∈ (A,B)} as in the
algorithm for WThr. Then hi,j is the number of type-
(i, j) jobs in Jin that need to be scheduled outside (A,B),
i.e, in an interval with starting time greater than or equal
to B. For such a job J , this instance is responsible for
a tardiness of B − dJ . The remaining tardiness for J is
counted in some other instance.

We can now describe the goal of our instance. We
need to select a set JR ⊆ Jin of jobs, such that for every
i, j, JR contains exactly hi,j type-(i, j) jobs. The goal is
to schedule all jobs in set JL ∪ Jup ∪ (Jin \ JR) inside
(A,B) in m − m′ machines so as to minimize the total
weighted tardiness of jobs in JL ∪ Jup ∪ Jin. For jobs in
JL ∪ Jup ∪ (Jin \ JR), the tardiness is defined normally.
For jobs J ∈ JR, the tardiness is defined as B − dJ .
As described earlier, the instance is responsible for the
tardiness of jobs in JR up to time B.

We proceed with describing how to reduce the in-
stance to two sub-instances on (A,C) and (C,B). Let’s
first make decisions for jobs of type i = log(B − A).
We need to schedule these jobs in the entire block (A,B)
or to the right of B. For a job J ∈ Jup ∪ JL of type
i, we must schedule it in (A,B) and incur a cost of
wJ max{0, B − dJ}. All jobs J ∈ Jin of type i =
log(B − A) must have the same arrival time A. For each
weight type j, we shall add hi,j jobs of type-(i, j) in Jin
with the largest deadlines to JR and schedule the remain-
ing jobs in (A,B). With jobs of type i = log(B − A)
scheduled, the m′ parameters for the two sub-instances
are determined.

We need to define the other parameters:
J L
up,
{
gLi,j
}
i,j
,
{
hLi,j
}
i,j

for the instance on (A,C)

and J R
up,
{
gRi,j
}
i,j
,
{
hRi,j
}
i,j

for the instance on (C,B).
We first initialize all integer parameters to 0 and set
parameters to ∅.

For each job J ∈ Jup of type i < log(B − A) and
weight type j, we have two choices for J : either pass it



to the left instance or the right instance. If (rJ , dJ) does
not intersect (C,B) and we chose to pass J to the right
instance, then we have to increase gRi,j by 1 and pay a cost
of wJ(C− dJ). If (rJ , dJ) does not intersect (A,C) then
we can not pass J to the left instance. In other cases, we
add J to J L

up or J R
up without incurring any cost.

It is easy to make decisions for jobs in JL. For each
job type i < log(B−A) and weight type j, we enumerate
the number of type-(i, j) jobs that will be scheduled in
(A,C) and the number of these jobs that will be scheduled
in (C,B) (the two numbers sum up to gi,j). We add the
first number to gLi,j and the second number to gRi,j . If we
passed a job to in JL to the (C,B), we incur a cost of
wJ(C −A).

Now, we consider jobs in Jin. Fix some job type
i < log(B − A) and weight type j. Each job J ∈ Jin
can fall into three categories depending on its window
(rJ , dJ): (1) (rJ , dJ) ⊆ (A,C); (2) (rJ , dJ) ⊆ (C,B);
(3) rJ < C < dJ . We enumerate the number of jobs in
each category that will be pushed to JR. Notice that these
three numbers sum up to hi,j . We add the first number
to hLi,j and the second number to hRi,j . We incur a cost of
w(B−C) times the first number, wherew is the weight for
weight type j. Also, we enumerate the number of jobs in
category (1) that will be passed to the right instance. We
add the number to hLi,j and to gRi,j . We make individual
choices for jobs in category (3). Each job J can either be
added to JR, in which case we incur a cost ofwJ(B−dJ),
or passed to the left instance, in which case we add it to
J L
up, or passed to the right instance, in which case we add

it to J R
up.

We have made all the decisions. Then we recursively
solve the two sub-instances and the cost of the instance
will be the cost we incurred in the reduction plus the total
cost of the two sub-instances. We enumerate all combina-
tion of decisions and take the one with the smallest cost.

To convert the above exponential time algorithm to
quasi-polynomial time DP, we shall again use the sketch-
ing scheme for Jup defined in Section 3.2. With the
sketching scheme, the input to a sub-instance now has
small size, since all other parameters can take a few val-
ues. Using the same argument as in Section 3.3, we obtain
a quasi-polynomial time algorithm for WTar with speed
(8 + ε). There is a slight difference between WThr and
WTar. In the algorithm for WThr, using the sketching
scheme only increases the congestion, but does not affect
the approximation ratio. In the algorithm for WTar, the
sketching scheme also affect the approximation ratio. It
is easy to see that the approximation ratio lost is 1 + δ by
using the sketching scheme: in the proof of Lemma 3.5,
we constructed a mapping from J1 to J2 such that each
job in J1 is mapped to an extent exactly 1, each job in
J2 is mapped to an extent at most 1 + δ. Moreover if
some J1 ∈ J1 is mapped to some J2 ∈ J2, then J1

is “easier” than J2: either rJ1 = rJ2 , dJ1 ≥ dJ2 or
rJ1 ≤ rJ2 , dJ1 = dJ2 . In either case, if we use the same
scheduling interval for J1 and J2, the tardiness for J1 will
be at most the tardiness for J2. Use the fact that each
job in J2 is mapped to an extent at most 1 + δ, we con-
clude that the sketching scheme will increase the cost by
at most a factor of 1+δ. The final approximation ratio we
can guarantee is 1 + ε, even in the case of Tar. Since the
proof for our efficient DP is almost identical to the proof
for WThr, we omit it here.

We now describe how we handle the case where
N and W are super-polynomial. By binary search, we
can assume we are given the optimum cost opt. With
this opt, we can make two modifications to the input
instance, which are already described respectively in the
algorithms for WFT and WThr. First, if a job J has
pJ ≤ (dJ − rJ)/poly(n, 1/ε), we change the size of pJ
to 0. This can only make the problem simpler. Using the
similar idea as in Lemma 4.2, we can change the sizes
back to the original sizes, with (1 + ε)-speed and no loss
in the approximation ratio. That is, if the 0-sized job J
is scheduled inside (rJ , dJ), we can find an interval for
J inside (rJ , dJ). If it is scheduled at CJ ≥ dJ , then
we can find an interval for J inside (rJ , CJ). Second, if
wJpJ ≤ opt/poly(n, 1/ε), then, we change the size of
pJ to 0. By Lemma 5.2, we can change the sizes back by
losing a (1 + ε)-speed and (1 + ε)-approximation.

We define a hard deadline eJ for each job J . The
hard deadline eJ is defined as the maximum integer such
that wJ(eJ − dJ) ≤ opt. That is, if the job J is finished
after eJ , then the total cost will be more opt. Notice that
if pJ is not 0, then wJpJ ≥ opt/poly(n, 1/ε) and pJ ≥
(dJ − rJ)/poly(n, 1/ε). Thus, (eJ − dJ) ≤ opt/wJ ≤
pJ · poly(n, 1/ε), i.e, pJ ≥ (eJ − dJ)/poly(n, 1/ε),
implying pJ ≥ (eJ − rJ)/poly(n, 1/ε). We call (rJ , eJ)
the hard window for J .

We use the tricks we used in WThr and WFT. When
defining the laminar family of permissible intervals, we
avoid cutting hard windows of small jobs. We start from
the block (0, N) and let it be a permissible interval.
We divide (0, N) into two parts and recursively defining
permissible intervals in the two parts. Suppose we are
now dealing with (A,B), which is a permissible interval.
We want to find a point C and define two permissible
intervals (A,C) and (C,B). We say a job J is small if
its size is positive and at most (B − A)/poly(n, 1/ε).
Then, we choose a C so that C is not inside the hard
window of any small job. We can choose a C so that
min {C −A,B − C} at least (1/2−ε/32)(B−A)−1/2
( the -1/2 is for rounding C to a integer). To avoid
the dependence of running time on N , we stop recurse
if no positive-sized jobs can be completely scheduled in
(A,B). By the property that pJ ≥ (eJ−rJ)/poly(n, 1/ε)
if pJ > 0, it’s easy to see that the number of blocks in the



laminar family is poly(n, 1/ε).
We show that for each interval (a, b), we can find

a permissible interval in the family with length at least
(1/4 − ε/32)(b − a) that are contained in (a, b). To
see this, consider the inclusive-minimal block (A,B) in
the laminar family that contain (a, b). Suppose (A,B)
is divided into (A,C) and (B,C) in the laminar family.
Thus a < C < b. WLOG we assume C − a ≥ (b− a)/2.
Then (A,C) is recursively divided into two sub-blocks
and we always focus on the right sub-block. Consider the
first time the block is completely inside (a,C). Assume
the block is (A′′, C) and its parent block is (A′, C). Then,
A′ < a ≤ A′′. Since A′′ split (A′, C) almost equally, we
have C −A′′ ≥ (1/2− ε/32)(C −A′)− 1/2. Since C −
A′ ≥ C−a+1, we haveC−A′′ ≥ (1/2−ε/32)(C−a)−
ε/32 ≥ (1/2−ε/16)(C−a) ≥ (1/4−ε/32)(b−a). Thus,
by using 1/(1/4− ε/32) ≤ (4 + ε)-speed, we can assume
the permissible intervals form a laminar family. Using the
same technique as we handle the WThr problem, we can
reduce the running time to quasi-polynomial.

7 Lower Bound for Machine Minimization
In this section we show a lower bound of 2log

1−ε n on the
speed needed to reduce the extra factor of machines to be
o(log log n) for the discrete variant of the problem for any
constant ε > 0 unless NP admits quasi-polynomial time
optimal algorithms. To show the lower bound, we extend
the result of [12] showing a lower bound of Ω(log log n)
on the factor of extra machines needed without speed aug-
mentation. In [12] they create a job scheduling instance
where no algorithm can distinguish between whether the
instance is feasible on a single machine or Ω(log log n)
machines unless NP ⊆ DTIME(nlog log logn). In the case
that the instance requires Ω(log log n) machines, they
show that in the instance there must be a set of nested
time intervals where Ω(log log n) jobs must be sched-
uled. We build on this result by extending their instance
so that not only are there nested time intervals where jobs
must be scheduled, but also many such parallel instances
in each interval so that even with speed augmentation
there must be Ω(log log n) jobs scheduled scheduled at
the same time. We do this by adding extra jobs to the in-
stance, but not too many to ensure the instance has size
at most npoly(logn). We note that the majority of the in-
stance is the same as in [12]. The complete proof of this
lower bound result will appear in the full version of this
paper.

8 Discussion and Further Applications
In this paper, we developed a novel dynamic program-
ming framework for various non-preemptive scheduling
problems. Our framework is very flexible; it applies to
WThr, MM, WFT, WTar. We can handle other schedul-

ing problems besides those discussed above. To give a few
examples, we sketch algorithms for the following prob-
lems.

Maximum Weighted Throughput in Related Ma-
chines: The problem is the same as WThr except that ma-
chines can have different speeds. A job J can be sched-
uled in an interval of length pJ/s in (rJ , dJ) on a ma-
chine of speed s. We only consider the case when N and
W are poly(n) and speeds are positive integers polyno-
mially bounded by n. By using (1 + ε)-extra speed, we
may assume the number of different speeds isO(log n/ε).
With this observation, it is straightforward to get a quasi-
polynomial time (1+ε, 1−ε)-approximation for this prob-
lem by modifying our algorithm for WThr.

Convex Cost Function for Flow Time: This problem
generalizes many problems where each job’s objective
grows depending on the job’s waiting time. In this prob-
lem, each job has a release time but no deadline. Jobs may
have weights. We are also given a non-decreasing and
non-negative convex function g. Our goal is to minimize∑
J wJg(FJ). This general cost function captures WFT

and `k norms of flow time. The problem without requiring
g to be convex was studied both in the offline and online
settings [4, 20, 14], but all in the preemptive setting. We
note that [4] considered an even more general case where
each job can have a different cost function. For the case
where g is convex, we easily obtain a quasi-polynomial
time (1 + ε, 1 + ε)-approximation. This is because we can
wlog assume jobs of the same type (size and weight) can
be scheduled in FIFO order as was the case for WFT. Us-
ing the same tricks as in the algorithm for WFT, we can
handle the case when N and W are large. It would be
interesting to address the problem with a non-convex cost
function.

Scheduling with Outliers: In this scenario, we are given
a threshold p ∈ [0, 1] and our goal is to schedule p fraction
of jobs in J . Various scheduling objectives can be
considered in this scenario, including MM, WFT, WTar,
and minimizing some convex cost function for flow time.
Optimization problems with outliers were considered in
various settings [8, 16], and scheduling problems with
outliers were considered in [6, 17]; see [17] for pointers
to other scheduling works of similar spirit. In particular,
[17] gives a logarithmic approximation for FT in the
preemptive setting.

It is fairly straightforward to extend our results to the
outlier setting. The only change is to keep the number
of type-(i, j) jobs that need to be scheduled in the input
for each (i, j) pair. With small modifications to our
algorithms for non-outlier problems, we obtain the first
set of results for scheduling with outliers in the non-
preemptive setting.

We finish with several open problems. Although



our framework is flexible enough to give the first or im-
proved non-trivial results for a variety of non-preemptive
scheduling problems, it requires quasi-polynomial time.
Is it possible to make our algorithm run in polynomial
time? Is there a more efficient sketching scheme? Also
it would be interesting if one can give a (1 + ε)-speed
1-approximation for MM.
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