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“With multi-core it’s like we are throwing this
Hail Mary pass down the field and now we have
to run down there as fast as we can to see if we
can catch it.”
— David Patterson, UC Berkeley computer sci-
ence professor

Abstract

We consider preemptive online scheduling algorithms to
minimize the total weighted/unweighted flow time plus
energy for speed-scalable heterogeneous multiprocessors.
We show that the well-known priority scheduling algo-
rithms Highest Density First, Weighted Shortest Elapsed
Time First, and Weighted Late Arrival Processor Sharing,
are not O(1)-speed O(1)-competitive for the objective of
weighted flow even in the special case of fixed variable
speed processors (aka the related machines setting). This
illustrates that scheduling heterogeneous multiprocessors
is a different, and algorithmically more challenging prob-
lem, than scheduling homogeneous multiprocessors.

We then show that a variation of the non-clairvoyant
algorithm Late Arrival Processor Sharing coupled with
a non-obvious speed scaling algorithm is scalable for
the objective of unweighted flow plus energy on speed-
scalable multiprocessors. This is the first provably scal-
able non-clairvoyant algorithm on heterogeneous multi-
processors, even in the related machines setting, for the
objective of total (unweighted) flow time.
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1 Introduction

Around 2002, the consequences of Moore’s law finally
impacted computer processor designers as they hit a “ther-
mal wall”, where it was no longer economically viable
to cool the ever-hotter traditional uniprocessor architec-
tures. One technology adopted to surmount this thermal
wall is multiprocessor chips. The common rule of thumb
is that the power used by a processor is roughly cubic in
the speed of the processor. In theory m processors with
speed s/m could potentially handle the same load as one
speed-s processor, but with a factor of 1/m2 less power.
Moore’s gap, which is the difference in the achievable per-
formance predicted by Moore’s law and the actual perfor-
mance of commercial processors, is largely explained by
difficulty of getting many slower processors to approxi-
mate the performance of one fast processor in practice.

Current commercial chip architectures mostly com-
monly consist of a homogeneous collection of identi-
cal processors. However, many computer architects be-
lieve that architectures consisting of heterogeneous pro-
cessors/cores will be the dominant architectural design in
the future [7, 18, 19, 20, 21]. The main advantage of a
heterogeneous architecture over a homogeneous architec-
ture is that it allows for the inclusion of processors whose
design is specialized for particular types of jobs, with the
intent that jobs be assigned to a processor best suited for
that job. Most notably, it is envisioned that these heteroge-
neous architectures will consist of a small number of high-
power high-performance processors for critical jobs, and
a larger number of lower-power lower-performance pro-
cessors for less critical jobs. Naturally, the lower-power
processors would be more energy efficient in terms of the
computation performed per unit of energy expended, and
would generate less heat per unit of computation. An ex-
ample of a such a heterogeneous multiprocessor is the
STI Cell chip. For a given area and power budget, het-
erogeneous multiprocessor architectures can give a order
of magnitude better performance than homogeneous mul-
tiprocessor architectures [15]. This makes research into
scheduling policies for heterogeneous processors of fun-
damental importance (see the position paper [7] for fur-
ther arguments about the importance of this research di-
rection).



Currently the most pervasive technology for achiev-
ing power heterogeneity is that of speed-scalable pro-
cessors. Speed-scalable processors have a collection of
available speeds, and the power consumed at the various
speeds is a convex function of the speed. The speed of the
processors can be dynamically scaled over time. A system
that sits atop a speed-scalable processor needs not only an
online scheduling policy to determine which job to run on
which processor, but also a speed scaling policy for set-
ting the speed of these processors. In the homogeneous
setting, each processor runs at the same speed when using
a particular power setting while in the heterogeneous set-
ting the speed for a given power depends on the specific
processor being considered.

Following the line of research in [14, 13], we inves-
tigate worst-case performance guarantees (or competitive
ratios) achievable by algorithms for scheduling heteroge-
neous multiprocessor architectures. Throughout the pa-
per we focus on a type of heterogeneous multiprocessor
scheduling which is best described as related heteroge-
neous multiprocessors and is defined as follows. We adopt
the following formal model as in [14]. We are given a col-
lection ofm processors/machines, with processor i having
a speed functionQi: for every valueP ,Qi(P ) is the speed
obtained when the processor is run at a power of P . No-
tice that the speed depends on the processor being consid-
ered. One can assume without loss of generality that Qi
is concave, continuous, and Qi(0) = 0 [2]. If processors
are not running a job then they can be shut down, and con-
sume no power. Jobs arrive in an online fashion over time,
with job Jj arriving in the system at its release/arrival time
rj . The job has a positive size pj , and a positive impor-
tance/weight wj . Each job can be scheduled on only one
processor at each time and can be preempted. The goal
is to devise a scheduling policy and an associated speed
scaling policy to minimize some weighted combination
of the average (weighted) flow time

∑
j wjFj of the jobs

and the total energy consumed. Here, the flow time Fj of
a job Jj is the difference between its completion time and
its release time. We also note that an important special
case of this model is the related machines model, where
each processor i can only run at a single fixed speed si
and each processor consumes no power.

Before stating our findings, we review the current
state of research along this line (readers unfamiliar with
standard scheduling terminology are advised to consult
Section 1.3).

1.1 Current State of Affairs We consider the popu-
lar and well-studied problems of minimizing the total
weighted and unweighted flow time plus energy. We say
that a processor runs at a fixed speed if there is only one
possible speed for the processor and it consumes no en-
ergy. The current state of affairs (see Tables 1, 2 and 3 in
the Appendix) can roughly be summarized as follows. For

a single processor of fixed speed, the well-known prior-
ity algorithms1 covered in standard introductory operating
systems texts are known to be scalable (i.e. possess a con-
stant competitive ratio when provided a processor that is a
factor (1 + ε) faster than the optimal solution) for the un-
weighted case—these include SRPT (shortest remaining
processing time), SJF (shortest job first), SETF (shortest
elapsed time first), and their weighted versions are known
to be scalable for the weighted case [17, 6, 11, 4, 3]. (See
Appendix A for definitions of these algorithms.) Like-
wise, for a single processor that is speed-scalable, we
can obtain near-optimal algorithms in the weighted or
unweighted settings by combining the standard priority
scheduling algorithms with a natural speed-scaling policy
where the power is set to be a small multiple of the total
weight of the unsatisfied jobs [5, 2, 1, 9, 10]. It is easy
to see that such a speed-scaling policy is natural (for the
objective of weighted flow times plus energy) because it
balances the increase in the weighted flow time objective
with the increase in the energy objective. Furthermore,
many of these standard priority scheduling algorithms are
known to be scalable for the problem of homogeneous
fixed-speed multiprocessors [25, 12, 11].

For heterogeneous multiprocessors however, the
landscape is not so well-charted. Scalable clairvoyant al-
gorithms are known for weighted flow on fixed speed pro-
cessors [8], and for weighted flow plus energy on speed-
scalable processors [14]. These algorithms are quite dif-
ferent, and more complicated than the standard priority
algorithms. It is also known that the non-clairvoyant
scheduling algorithm Processor Sharing (or Equiparti-
tion/Round Robin) is (2 + ε)-speed O(1)-competitive for
the objective of unweighted flow plus energy on speed-
scalable processors [13].

1.2 Our Contributions Based on conversations with
our colleagues, the near universal expectation/intuition of
scheduling researchers was that scheduling (related) het-
erogeneous multiprocessors should be similar to schedul-
ing homogeneous processors. In particular, it was be-
lieved that the standard priority algorithms that are known
to be scalable for the uniprocessor and for homogeneous
multiprocessor problems, should also extend to the het-
erogeneous multiprocessor problem. The first contribu-
tion of this paper is to show that this intuition is not cor-
rect.

Most of the analysis techniques for scheduling algo-
rithms in the homogeneous multiprocessor fixed speed
setting do not extend to the heterogeneous fixed speed

1We say a scheduling algorithm is a priority algorithm if the jobs
are assigned a single parameter (which can possibly change with time)
called its priority, and the scheduling decision is based solely on each
job’s priority. For example, in SRPT, the priority of each job is simply
the remaining processing time of the job.



multiprocessor setting for one or both of the following
reasons. Firstly, contrary to conventional intuition, pri-
ority algorithms such as SRPT and SJF are not locally
competitive2 (even with any constant factor speed aug-
mentation) as they are on a homogeneous fixed speed mul-
tiprocessor [23]. (See Appendix B.) Secondly, unlike the
homogeneous case, it is difficult to establish lower bounds
on when the optimal solution completes these jobs. E.g.,
the total work of a set of jobs divided by the total speed
of the processors is not useful: even though a set of pro-
cessors may have large aggregate speed, each individual
processor may be very slow. For the same reason, the
number of processors is not a useful quantity.

If we were to consider weights, the situation becomes
more challenging. We show in Section 2 that the standard
extension of priority algorithms for the weighted flow ob-
jective, namely HDF, WSETF, and WLAPS (weighted
latest arrival processor sharing), are all not O(1)-speed
O(1)-competitive, even for the related machines setting
when machines have different but fixed speeds and con-
sume no energy. Note that as mentioned above, these
algorithms are scalable for the homogeneous case when
all processors have the same speed [11, 12]. Intuitively,
perhaps the underlying reason is that when we have both
related machines and weighted jobs there is an extra di-
mension to the problem over both the cases of weighted
jobs on homogeneous machines and unweighted jobs on
heterogeneous machines. The natural extensions of prior-
ity algorithms fail to capture the interplay between these
dimensions. We believe that this justifies the analysis of
non-standard algorithms in [8, 14].

One natural question that arises from these negative
results, and prior positive results, is whether any non-
clairvoyant algorithm can be scalable on a heterogeneous
multiprocessor system. Studying the performance of non-
clairvoyant algorithms is of particular importance because
schedulers in general purpose systems generally do not
know the size of the job upon its arrival. In Section 3, we
show that for unweighted flow plus energy, the answer
is yes. That is, we show that the following algorithm,
which combines the LAPS [11] (latest arrival processor
sharing) policy with a non-intuitive speed-scaling policy
is scalable for the objective of total flow plus energy on
a heterogeneous multiprocessor. This improves upon the
result of [13] which shows that the scheduling algorithm
Equipartition is (2 + ε)-speed O(1)-competitive for the
same objective.

At a high level, the main technical difficulty in show-

2An algorithm is locally competitive if at all times the increase in
the algorithm’s objective is within a constant factor of the increase in
the optimal solution’s objective. For weighted flow time this means that
the total weight of unsatisfied jobs in the algorithm’s schedule is within
a constant factor of the total weight of unsatisfied jobs in the optimal
solution’s schedule at all times.

ing LAPS is scalable is the following. Consider the re-
lated machines model where machines have a fixed speed
and do not consume any energy. In this case, typical ar-
guments for LAPS on homogeneous multiprocessors pro-
ceed by (i) showing that we can treat m identical ma-
chines as just a single processor of speed m as long as
we restrict each job to not run at more than unit speed at
any time, and (ii) on this one machine instance, showing
that we can just distribute the speed of the system among
the εn most recently arriving jobs, and still make enough
progress on the overall objective. However, we run into
trouble in both steps for heterogeneous systems. For (i) it
is not clear what the single machine instance should be,
because the machines could have vastly different speed
profiles, and we can’t therefore place such natural restric-
tions on jobs to capture the fact that a job can run only on
one machine. So sticking with multiprocessors, the prob-
lem then with (ii) is that εn could always be smaller than
m, the number of machines. In this case it is not possible
to fully utilize the resources of m machines without run-
ning a job simultaneously on two machines, which is an
infeasible schedule. However, we show that the algorithm
which shares the εn fastest machines between the εn latest
arriving jobs is scalable. We use this as a starting point for
our general algorithm in the speed-scaling case. Because
of the issues discussed above, our analysis is also forced
to reason directly about a heterogeneous multiprocessor
system. See Section 3 for more details.

We note that this is the first example of a scalable
non-clairvoyant algorithm for speed-scalable heteroge-
neous processors, or even fixed-speed related machines.
Moreover, due to strong lower bounds without resource
augmentation [22], this is essentially the best positive re-
sult that we can hope for.

On the whole, our belief is that this paper suggests
that scheduling heterogeneous multiprocessors may be
inherently more difficult than scheduling homogeneous
multiprocessors, or at the very least, require substantially
different algorithms.

1.3 Review of Standard Scheduling Terminology
The flow Fj of a job Jj is its completion time Cj mi-
nus its release time rj . This is the amount of time that the
job waits to be satisfied. The weighted flow for a job Jj is
wjFj , and the weighted flow for a schedule is

∑
j wjFj .

A scheduler minimizing the weighted flow time focuses
on minimizing the average weighted quality of service.
The goal of the scheduler is to minimize the total weighted
flow time plus the total energy used. The intuitive ratio-
nale for the objective of weighted flow plus energy can be
understood as follows: assume that the possibility exists
to invest E units of energy to decrease the flow of jobs
J1, . . . , Jk by x1, . . . , xk respectively for some k > 0.
An optimal scheduler for this objective would make such
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an investment if and only if
∑k
i=1 wixi ≥ E. So the

importance wj of job Jj can be viewed as specifying an
upper bound on the amount of energy that the system is
allowed to invest to reduce Jj’s flow time by one unit of
time. Hence jobs with higher weight are more important,
since higher investments of energy are permissible to jus-
tify a fixed reduction in the job’s flow time. One can con-
sider many variations on this problem depending on the
following factors:
• Speed-Scalable Processors vs. Fixed-Speed Proces-

sors: A fixed speed processor has only one allowable
speed, the power used can be assumed to be zero with-
out loss of generality. A speed-scalable processor can
change its speed over time and the energy consumed
depends on the speed used.

• Homogeneous Multiprocessor vs. Heterogeneous
Multiprocessor: In the homogeneous setting, the
speed function of every processor is the same. That
is, each processor runs at the same speed for a given
amount of power. However, at any given time, the pro-
cessors can run at different speeds by using different
powers. In the heterogeneous setting, each processor
has its own specified speed function.

• Unweighted vs. Weighted Jobs: In the unweighted
setting each job is of equal importance, i.e., all
weights are assumed to be one. In the weighted case,
jobs have varying importance/weights associated.

• Clairvoyant vs. Non-Clairvoyant Scheduler: A
clairvoyant scheduler learns the job size when it is
released. A non-clairvoyant scheduler does not learn a
job’s size and must make scheduling decisions without
this information.
The most commonly used benchmark for online

scheduling problems with strong lower bounds is the opti-
mal offline schedule for the given instance but on slightly
slower processors [17]. For s, c ≥ 1, an algorithm A is
called s-speed c-competitive for the uniprocessor fixed-
speed setting ifA with an s-speed processor is guaranteed
to produce a schedule with objective value at most c times
the optimum on a unit speed processor. This generalizes
to the multiprocessor speed-scaling setting by assuming
that the speed processor i runs at with power P is s times
the speed the optimal algorithm can run processor i at with
power P . Intuitively, s-speedO(1)-competitive algorithm
should be able to handle a load of 1

s of the server capac-
ity [24]. The ultimate goal is to find an algorithm A such
that for any ε > 0, a speed augmentation of (1 + ε) is
enough for algorithm A to achieve O(1)-competitiveness.
Such an algorithm is called scalable.

2 Lower Bounds on Weighted Flow time on Related
Machines

In this section we show that the standard priority algo-
rithms for the weighted flow objective, namely HDF,
WSETF, and the most natural adaptation of WLAPS
(weighted latest arrival processor sharing), are not O(1)-
speed O(1)-competitive for total weighted flow time on
uniformly related machines. This is the heterogeneous
processor setting where each machine runs at a fixed
speed and consumes no power. When each machine con-
sumes no power, the objective just simplifies to minimiz-
ing the total weighted flow time. As previously stated,
this is a special case of the speed scaling heterogeneous
processor setting with the objective of total weighted flow
time plus energy. In each of the following subsections,
we first explain how these priority algorithms generalize
to heterogeneous machines, and then provide the lower
bound examples.

2.1 Lower Bound for Highest Density First (HDF)
In HDF, the priority of a job is its density, i.e., job Ji
has a priority equal to its weight divided by its size wi

pi
.

The algorithm on a single processor, always schedules the
highest density job. This naturally extends to related ma-
chines by scheduling the job of the kth highest density
on the kth fastest machine at all times. The work of [6]
shows that this algorithm isO(1)-speedO(1)-competitive
when all machines have the same speed. However, when
the speeds can be different, the following example shows
that HDF has unbounded competitive ratio on related ma-
chines, even when provided any constant speed augmen-
tation.

THEOREM 2.1. For any constants α,B > 0, there exists
an instance I(α,B) of related machines scheduling for
which HDF is not B-competitive for the objective of
weighted flow with a speed augmentation of α.

Proof. For this proof, let cost(A) denote the total
weighted flow time of an algorithm A. The instance I is
defined in the following manner. There is a “fast” machine
of speed S, and infinitely many “slow” machines of speed
1. At time t = 0, a “heavy” job of weight W and length
L arrives. Then, at each time i

αS , for integer 0 ≤ i < SL,
a “small” job of weight w = 4W/L and length 1 arrives
(all the parameters S,W,L will be set appropriately when
required).

Note that each small job has a density w, which is
greater than the density of the heavy job, W/L. Hence as
long as there is a small job that is unfinished, the heavy
job will not run on the fast machine in HDF’s schedule.
Now, since each small job completes on the fast machine
after a time of 1

αS , the next small job arrives as soon as
its preceding small job is finished by HDF by the way we
have set up the instance. This is repeated until all small



jobs complete and takes exactly SL 1
αS = L

α units of time.
This implies that the heavy job is processed entirely on
slow machines by HDF, and as a result, HDF incurs a
weighted flow time of at least cost(HDF) ≥W L

α .
The optimal solution, however, will run the heavy

job on the fast machine until completion, and run each
small job on a dedicated unit speed machine. Recall
that there are enough slow machines to run all small
jobs simultaneously. The cost of the optimal solution is
cost(Opt) = W L

S + wSL = W L
S + 4WS. We set

the length of the heavy job so that W L
S = 4SW , i.e.,

L = 4S2. This implies a lower bound on the competitive
ratio of W L

α

/
2W L

S = S
2α . To complete the proof, we set

S = 4αB.

2.2 A Lower Bound for Weighted Shortest Elapsed
Time First (WSETF) In this section we show a lower
bound on the well-known algorithm WSETF (weighted
shortest elapsed first) in the related machines setting
for total weighted flow time. We begin by describing
the algorithm: at any time t, let qj(t) denote the the
amount of work that job Jj has been processed by. For
any unfinished job Jj , define its priority at time t to be
wj/qj(t). Then WSETF assigns the job with the ith

highest priority on the ith fastest machine. We remark
that this algorithm is scalable on a single processor [4].
We now show that an instance quite similar to the bad
example for HDF is also bad for WSETF.

THEOREM 2.2. For any constants α,B > 0, there exist
related machine instances I(α,B) where WSETF is not
B-competitive for weighted flow with a speed augmenta-
tion of α.

Proof. For this proof, let cost(A) denote the total flow
time of an algorithm A. The instance I is defined in the
following manner and is similar to the lower bound on
HDF. There is a “fast” machine of speed S, and infinitely
many “slow” machines of speed 1. At time t = 0, a
“heavy” job of weightW and (unknown) length L arrives.
Then, at each time L

2αS + i
αS , for integer 0 ≤ i <

SL
2 , a “small” job of weight w and length 1 arrives (all

the parameters S,W,L,w will be set appropriately when
required). For notational convenience, we will assume
that SL2 is an integer.

At time t = L
2αS , the priority of the heavy job is

W
L/2 = 2W

L , since it has run on the fast machine and
there is α speed augmentation for WSETF. Note that by
definition, the priority of any job can only decrease over
time. We now set the value of w such that the worst-case
priority of a small job (i.e., when it completes) is larger
than this quantity. This implies that as long as a small
job is unfinished, the heavy job can not run on the fast
machine. The condition required for this is w

1 ≥
2W
L . We

therefore set w = 2W
L . Since each small job completes

on the fast machine in 1
αS time steps, a small job arrives

as soon as its preceding small job is finished by WSETF.
This will be repeated until all small jobs complete. This
takes exactly SL

2
1
αS = L

2α units of time. This implies
that the entire second half of the heavy job is processed
on slow machines by WSETF. Thus, WSETF incurs a
weighted flow time of at least cost(WSETF) ≥W L

2α .
The optimal solution, however, will run the heavy job

on the fast machine until completion, and run each small
job on a dedicated unit speed machine. Recall that there
are enough slow machines to accommodate all small jobs
simultaneously. The cost of the optimal solution is then
cost(Opt) = W L

S + SL
2 w = W L

S + SW . We set the
length of the heavy job so that W L

S = SW , i.e., L = S2.
This implies a lower bound on the competitive ratio of
W L

2α

/
2W L

S = S
4α . To complete the proof, we simply

set S = 8αB.

2.3 A Lower Bound for Weighted Latest Arrival Pro-
cessor Sharing (WLAPS) Finally, in this section we
show a lower bound on WLAPS. In order to simplify
the presentation, we describe a lower bound instance for
the Weighted Processor Sharing (WPS) algorithm (or
Equipartition or Round-Robin) for total weighted flow
time on related machines. Subsequently, we explain how
this also translates to a lower bound for WLAPS. This is
because WLAPS can be shown to always be dominated
by WPS when WPS is given a constant amount of re-
source augmentation over WLAPS by definition of the
algorithms. As usual, we begin with the algorithm de-
scription.

On a single fixed-speed machine, at any time, the al-
gorithm WPS works on a job Jj with weightwj at a speed
of its “fair share”, i.e., a fraction wj

W of the speed whereW
is the total weight of unfinished jobs. How do we gener-
alize this to multiple related machines? Ideally, we would
like to process job Jj at a rate of wj

W S, where S is the
total speed of the fastest n machines where n is the num-
ber of unfinished jobs. However, this may not always be
achievable. For example, if there is a single job Jj with
very large weight and n−1 jobs of negligible weight then
job Jj can only be processed at the speed of the fastest
processor because a job can only be processed by a sin-
gle processor at any point in time. This is much less than
its fair share of the fastest n processors. As a result, the
most natural extension of WPS to the setting of heteroge-
neous processors, is to assume that each job Jj is given
wj

W share of the bWwj
c fastest processors. Therefore, job

Jj is processed with a total speed of
bW/wjc∑
i=1

wj si
W

, where

the machines are ordered in decreasing order of speed. It
is not difficult to see that this scheduling policy can be
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achieved without scheduling a job on more than one ma-
chine at the same time. (Essentially, every job is sched-
uled to an extent of 1 across machines, and every machine
has utilization of at most 1. Then we can decompose this
fractional assignment into a convex combination of inte-
ger schedules, and then preemptively follow this combina-
tion). One can define the WLAPS algorithm in a similar
fashion: WLAPS uses the WPS algorithm assuming that
the latest ε fraction of the unsatisfied jobs that arrived the
latest are the only jobs in the queue where 0 ≤ ε ≤ 1 is a
constant that parametrizes WLAPS.

THEOREM 2.3. For any constants α,B > 0, there exist
related machine instances I(α,B) where WPS is not B-
competitive for weighted flow with any constant speed
augmentation α.

Proof. Consider the following instance. There are n jobs,
with job Jj having a weight of wj = 1/j and length lj
which will be determined later. There are nmachines with
machine i with speed 1/

√
i. We will set the lengths of the

jobs in such a way that all jobs complete at the same time
in WPS.

We can bound the cost of WPS as follows. For such
an instance, it is easy to see that the total speed at which
job Jj is processed by the WPS algorithm is exactly
α
∑jHn

i=1
1

jHn

1√
i

where α is the speed augmentation WPS
has over the optimal solution. Set lj to be precisely the
above sum so that WPS completes all the jobs at exactly
t = 1. Thus, WPS incurring a weighted flow time of∑
j wj = Hn = Ω(log n).

Now we bound the cost of the optimal solution.
Consider the following alternate schedule which simply
schedules job Jj on machine j. Noticing that lj =
α 1
jHn

∑jHn

i=1
1√
i
≤ O( α√

jHn
), we get that the weighted

flow time for this schedule is at most∑
j

wj lj
sj

=
∑
j

1√
j
lj ≤

O(α)√
Hn

∑
j

1
j
≤ O(α

√
log n)

which gives the Ω(
√

log n) bound on the competitive ratio
of WPS for any speed augmentation of α.

The careful reader might observe that the above
algorithm does not utilize every machine to an extent of
1. Indeed, consider the example of one heavy job and a
large number of very small jobs. Then the utilization of
machines 3, 4, . . . is negligibly small because each tiny
job only occupies wj/W of these machines while much
of the total weight in W comes from the heavy job (even
though the heavy job is never going to be scheduled on
these slower machines). A better algorithm with possibly
better performance is one where we re-weight the jobs’
fair shares on each machine depending on which jobs have
not yet been scheduled to full utilization. However, it

can be shown that the above example has an unbounded
competitive ratio even for this modified algorithm.

Now we show how the previous lemma extends to
lower bound the performance of WLAPS.

COROLLARY 2.1. For any constants α,B > 0, there
exist related machine instances I(α,B) where WLAPS
is not B-competitive for weighted flow with any constant
speed augmentation α.

Proof. Note that by definition of WPS and WLAPS,
when WPS is given a constant factor greater resource aug-
mentation WPS schedule can only be better for total flow
time than WLAPS. In particular, this holds when WPS is
given more than a 1

ε factor greater resource augmentation
over WLAPS where ε is the constant that parametrizes
WLAPS. Thus a lower bound of c on the competitive ra-
tio of WPS for any constant resource augmentation this
implies a lower bound of c on the competitive ratio of
WLAPS for any constant resource augmentation.

3 LAPS on a Heterogeneous Multiprocessor for Flow
Plus Energy

We now move on to our positive results. In particular, we
show that a natural extension of the LAPS algorithm is
scalable for the objective of minimizing the total flow time
plus energy on a heterogeneous multiprocessor. Recall
that in this model, each processor i is speed-scalable with
an independent speed function Qi, and the scheduler at
each time must decide on the speed-scaling policy and
the job assignment policy. We begin by describing these
policies for our algorithm LAPS.

LAPS Speed Scaling Policy. At each time t, a collection
of processors and associated speed settings are selected
to maximize the aggregate speed extracted, subject to the
constraints that (i) the number of processors selected is
at most dε|A(t)|e, and (ii) the aggregate power used is at
most dε|A(t)|e where A(t) is the set of unfinished jobs
for the online algorithm. More formally, the total speed
extracted is given by the algorithm GreedySS(ε|A(t)|)
defined below. Note that if there are more machines than
dε|A(t)|e being used then our algorithm idles some of
the processors even though there are jobs that could be
scheduled.

LAPS Job Selection Policy. The extracted speed is
evenly shared among the dε|A(t)|e jobs that arrived the
most recently. Such a distribution is possible because
the number of machines running at non-zero speed in
the speed scaling policy defined by GreedySS is at most
dε|A(t)|e, and in this case, it is easy to have the algo-
rithm cycle through different permutations to share the
dε|A(t)|e jobs on the chosen machines.

The Speed Abstraction Problem and the GreedySS Al-
gorithm. We now define the speed extraction problem



and define an optimal greedy algorithm GreedySS for this
problem. The definition of the algorithm and proof of
Lemma 3.1 appears in [13]. We re-state it for complete-
ness.

Speed Extraction Problem. Given an integer power
budget W , assign an integer power budget of Ei to each
processor i so as to maximize the total extracted speed∑
iQi(Ei) subject to the constraints that Ei is a non-

negative integer, and
∑
iEi ≤W .

Algorithm GreedySS. Intuitively the algorithm partitions
the power budget into units, and assigns each unit to the
machine which offers the best increase to the total speed
that can be extracted. Note that we only constrain all fea-
sible solutions for the above speed extraction problem to
set integral values for theEi’s, and make no such assump-
tion about the different power settings of the machines in
general. We now give the pseudo-code of GreedySS for
completeness:
• Initially set Ei := 0 for all processors i. Ei will

eventually be the power used by processor i.
• For j = 1 to W do

• Let k = arg maxiQi(Ei + 1)−Qi(Ei)
• Increment Ek to Ek + 1

• Set the speed si of each processor i to be Qi(Ei)

LEMMA 3.1. [13] The greedy algorithm GreedySS opti-
mally solves the speed extraction problem.

3.1 Simplifying Assumptions In order to convey the
main idea of our analysis more clearly, we make the
following simplifying assumptions. These assumptions
will affect the resulting competitive ratio by a factor of
at most Oε(1).

(A): We assume that Opt is the GKP algorithm [14]
which is a clairvoyant online algorithm that is (1 + ε)-
speed O(1/ε)-competitive (by doing this, we only lose
an additional factor of O(1/ε) in the competitive ratio).
In particular, we crucially use the following property of
the GKP algorithm: if GKP has |O(t)| jobs unsatisfied
at any time t, then the most speed it can use (in total
over all machines) at this time is GreedySS(|O(t)|). This
follows from the fact that the GKP algorithm always
runs any machine at a power that is at most the number
of unfinished jobs assigned to the machine; this gives
a valid solution for the Speed Extraction problem, and
the quantity GreedySS(|O(t)|) can only be larger by its
optimality.

(B): We assume that the arrival times of jobs are distinct to
simplify the analysis—we can handle identical arrivals by

making infinitesimally small perturbations in the arrival
times.

(C): We assume that LAPS is given (1 + 10ε) speed-up
for some given parameter 0 < ε < 1/10.

3.2 Potential Function Analysis In this section we
define and analyze a potential function to bound the
competitiveness of LAPS. A tutorial on the use of
potential functions to analyze scheduling problems can be
found in [16]. Before we define the potential function,
we introduce some notation. Denote the completion
time of job Ji as CAi (and COi ) for the online algorithm
(and optimal schedule respectively). At any time t, let
A(t) denote the set of unsatisfied jobs in the algorithm’s
schedule, and likewise O(t) is the set of unsatisfied jobs
in Opt’s schedule. We also let pAi (t) denote the remaining
work at time t for job Ji in the algorithm’s schedule, and
pOi (t) is the remaining work at time t for job Ji in Opt’s
schedule. Also define zi(t) = max{pAi (t) − pOi (t), 0}.
For a job Ji, let rank(i, t) :=

∑
ji′∈A(t),ri′≤ri

1 denote
the number of unfinished jobs that arrived earlier. For
any integer value W , let Q(W ) := GreedySS(W ) denote
the value of the optimal solution to the Speed Extraction
problem with budgetW . Our potential function is defined
as follows.

Φ(t) =
2
ε2

∑
Ji∈A(t)

rank(i, t)zi(t)
Q(rank(i, t))

Now we bound the changes in the potential function.
When bounding the changes, the following lemma will be
useful. The proof of the following lemma is straightfor-
ward given the definition of Q.

LEMMA 3.2. For any integersA andB such thatB ≥ A,
we have that Q(A) ≥ A

BQ(B).

Proof. Consider the run of the algorithm GreedySS(B),
and consider the B increments that it made. By definition
of GreedySS, Q(B) is the sum of the incremental speeds
we obtained at each step, and these values are monotoni-
cally non-increasing. As a result, if we only consider the
first A of these increments, we get a feasible solution to
the Speed Extraction Problem on input A, and this has
value at least (A/B)Q(B).

The next two corollaries follow immediately from the
above Lemma.

COROLLARY 3.1. For any integer i ≥ 2, we have that
i−1

Q(i−1) ≤
i

Q(i)

COROLLARY 3.2. For any integer n and 0 < ε ≤ 1,
Q
(
dεne

)
≥ εQ(n).
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We are now ready to proceed with an amortized
analysis. Let λ > 0 be some constant. Our aim is to
show the following equation holds at all times t:

2|A(t)|+ d
dt

Φ(t) ≤ 2λ|O(t)|.(3.1)

We will also show that Φ(0) = Φ(∞) = 0, and Φ
does not experience any increase at discontinuities. By
integrating over time, we can then conclude that the total
cost of the online algorithm (flow time plus energy) is
at most λ times that of the optimal algorithm. We now
consider various cases:
Job Arrival: Consider when job Ji arrives. This job has
the largest rank out of all the jobs inA(t). When Ji arrives
the rank of every other job remains the same and the terms
in Φ corresponding to other jobs do not change. There is
a new term added to the potential function corresponding
to job Ji, but we know that zi(ri) = 0. Hence there is no
overall change to the potential function value.
Job Completion: Consider a time t when job Ji com-
pletes in the online algorithm. The term in the potential
function corresponding to Ji must be 0 since zi(Ci) = 0
by definition. This term drops out of the potential func-
tion, causing no change in the potential value. The ranks
of all the other jobs which arrive after Ji will decrease by
1, but by Corollary 3.1, the net change for these terms is
negative. Therefore the completion of a job Ji may cause
a discontinuity at Φ(t), but we have ensured that Φ does
not increase. Further, it can be seen that when Opt com-
pletes a job there is no effect on the potential function.
Job Processing: Here we consider the change in Φ due
to the processing of jobs by the algorithm and the optimal
solution in an infinitesimally small time interval [t, t+dt)
when there are no job arrivals or completions. We will
break the analysis into two cases.
Case (a): |O(t)| ≥ ε2|A(t)|. In this case, we ignore
the change in Φ due to the algorithm’s processing. This
can be justified since the algorithm’s processing can only
decrease Φ. We will charge the algorithm’s flow time
and any increase in the potential function directly to the
optimal solution. We first upper bound the increase in
Φ. To this end, recall that the most speed Opt uses
is Q(|O(t)|) because assumption (A) states that Opt is
the GKP algorithm. By Corollary 3.1, the adversary can
increase Φ the most by working on the job with the highest
rank. Let |O(t)| = c|A(t)| where c ≥ ε2. We obtain the
following upper bound on the increase in Φ due to Opt’s
processing:

2
ε2
|A(t)|

Q(|A(t)|)
Q(|O(t)|) =

2
ε2
|A(t)|Q(c|A(t)|)

Q(|A(t)|)

There are two cases. If c ≥ 1 then we ap-
peal to Lemma 3.2 and infer that 2

ε2 |A(t)|Q(c|A(t)|)
Q(|A(t)|) ≤

2
ε2 |A(t)|c = 2

ε2 |O(t)|. Otherwise, 2
ε2 |A(t)|Q(c|A(t)|)

Q(|A(t)|) ≤
2
ε2 |A(t)| ≤ 2

ε4 |O(t)| since Q is non-decreasing and
|A(t)| ≤ 1

ε2 |O(t)|. Thus the increase is at most a con-
stant times the optimal solution’s current cost. This bound
combined with the fact that the algorithm’s cost is at most
2|A(t)| ≤ 2

ε2 |O(t)|, we get that the term 2|A(t)|+ d
dtΦ(t)

is at most 4
ε4 |O(t)|. Thus, setting the constant λ from

above to be 2/ε4 suffices.
Case (b): |O(t)| ≤ ε2|A(t)|. In this case, we need
to use the potential function to pay for the increase in
the algorithm’s objective. First consider the change in
Φ due to the adversary’s processing of jobs. Again by
assumption (A), the most speed Opt can use at time t
is Q(|O(t)|). By Corollary 3.1, the largest increase in
the potential function would occur when Opt uses all
of the power invested on the job with the highest rank.
Therefore the largest increase in the potential due to Opt’s
processing is upper bounded by:

2
ε2
|A(t)|Q(|O(t)|)
Q(|A(t)|)

≤ 2
ε2
|A(t)|Q(dε|A(t)|e)

Q(|A(t)|)
[By definition of Q and |O(t)| ≤ ε2|A(t)| ≤ dε|A(t)|e]

Now consider the change in the potential function due
to the algorithm’s processing. Again, by the definition of
our algorithm, we know that the algorithm round robins
the dε|A(t)|e latest arriving jobs on at most dε|A(t)|e ma-
chines whose total speed extracted is Q(dε|A(t)|e). Let
A′(t) be the set of jobs that the algorithm processes. For
any job Ji which the algorithm processes, rank(i, t) ≥
(1 − ε)|A(t)| and Q(rank(i, t)) ≤ Q(|A(t)|). Fur-
ther, we know that the z variables decrease for at least
dε|A(t)|e− ε2|A(t)| jobs since the optimal solution has at
most ε2|A(t)| jobs in its queue by assumption. For these
jobs zi decreases at a rate of 1

ε|A(t)|Q(dε|A(t)|e)(1+10ε)
using the fact that the algorithm is given (1 + 10ε) re-
source augmentation and the definition of the algorithm.
Thus we have that the change in Φ due to the algorithm’s
processing is at most the following

− 2
ε2

∑
Ji∈A′(t)\O(t)

rank(i, t)
Q(rank(i, t))

· 1
dε|A(t)|e

Q(dε|A(t)|e)(1 + 10ε)

≤ − 2
ε2

∑
Ji∈A′(t)\O(t)

(1− ε)|A(t)|
Q(rank(i, t))

· 1
dε|A(t)|e

Q(dε|A(t)|e)(1 + 10ε)

[Since rank(i, t) ≥ (1− ε)|A(t)| for Ji ∈ A′(t)]



≤ − 2
ε2
· (1− ε)|A(t)|
Q(|A(t)|)

· 1
dε|A(t)|e

∑
Ji∈A′(t)\O(t)

Q(dε|A(t)|e)(1 + 10ε)

[Since Q(|A(t)|) ≥ Q(rank(i, t)) for all Ji ∈ A(t)]

≤ − 2
ε2
· (1− ε)|A(t)|
Q(|A(t)|)

· 1
dε|A(t)|e

·
(
dε|A(t)|e − ε2|A(t)|

)
Q(dε|A(t)|e)(1 + 10ε)

[Since |A′(t)| = dε|A(t)|e]

≤ − 2
ε2
· (1− ε)2|A(t)|

Q(|A(t)|)
·Q(dε|A(t)|e)(1 + 10ε)

Thus the total net change in the potential function is
at most,

2
ε2
|A(t)|Q(dε|A(t)|e)

Q(|A(t)|)

− 2
ε2

(1− ε)2|A(t)|Q(dε|A(t)|e)(1 + 10ε)
Q(|A(t)|)

≤ −2
ε
|A(t)|Q(dε|A(t)|e)

Q(|A(t)|)
[Since ε ≤ 1/10]

≤ −2|A(t)| [By Corollary 3.2]

Thus, the net change in the potential function plus
the increase in the algorithm’s objective is non-positive.
So this gives us the restriction that λ ≥ 0. Therefore, we
get that λ = 2

ε4 suffices in all cases.
For the final analysis, we add the upper bound on the

change for each of the cases we studied above. Let d
dtΦ(t)

denote the change (rate) of Φ(t), d
dtLAPS(t) denote the

change of our algorithm’s objective and d
dtOpt(t) denote

the change in the optimal solution’s objective. We have
that d

dtLAPS(t) + d
dtΦ(t) ≤ 2

ε4
d
dtOpt(t) by the previous

arguments. Thus,

LAPS =
∫ ∞

0

( d
dt

LAPS(t)
)

dt

=
∫ ∞

0

( d
dt

LAPS(t) +
d
dt

Φ(t)
)

dt

[Since Φ(0) = Φ(∞) = 0]

≤
∫ ∞

0

( 2
ε4

d
dt

Opt(t)
)

dt =
2
ε4

Opt

However, since we assumed that Opt runs the GKP
algorithm (which is in itself (1 + ε)-speed O(1/ε)-
competitive from [14]), we get that the overall competi-
tive ratio of our non-clairvoyant algorithm isO(1/ε5). We
stress that we have not tried to optimize the competitive
ratio but rather to show that the related machines setting
admits a non-clairvoyant scalable algorithm.

THEOREM 3.1. The algorithm LAPS is (1 + ε)-speed
O(1/ε5)-competitive for the problem of flow time plus
energy on related machines.
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A Summary of Known Results and Our Results

We summarize previously known results together with
our results. Our results are marked by [*]. See the
following summary to see what scheduling algorithm
each short name refers to. Any algorithm that starts
with “W” implies the weighted version of its unweighted
counterpart. Note that showing an upper bound for the
non-clairvoyant setting subsumes the clairvoyant setting.
Likewise, an upper bound for the speed scaling setting
subsumes the fixed processor setting. A lower bound for
an algorithm in the fixed processor setting then implies a
lower bound for the algorithm in the speed scaling setting.

• PS: Round Robin shares the total processing speed
amount the jobs proportionally to the weight of the
jobs.

• SETF: Shortest Elapsed Time First gives the ith

fastest processor to the job with ith highest apparent
density, where the apparent density is the weight of
the job over the amount the job has been processed.
Ties are broken by sharing the processor.

• LAPS: Latest Arrival Processor Sharing applies
Round Robin to the latest arriving ε fraction of the

jobs.

• SRPT: Shortest Remaining Processing Time gives
the ith fastest processor to the job with the ith least
remaining work.

• HDF: Highest Density First gives the ith fastest
processor to the job with the ith highest density,
where density is weight over original work.

• SJF: Shortest Job First gives the ith fastest processor
to the job with the ith least original work.



Fixed Speed Processor Speed-Scalable Processor
Clairvoyant Non-Clairvoyant Clairvoyant Non-Clairvoyant

Unweighted SRPT optimal SETF scalable [17] SRPT competitive [5, 2, 1] LAPS scalable [9]
SJF scalable [6] LAPS scalable [11] SJF scalable [2]

Weighted HDF scalable [6] WSETF scalable [4] HDF scalable [2] WLAPS scalable [10]
WLAPS scalable [3]

Figure 1: Guarantees for the standard scheduling algorithms on a uniprocessor

Fixed Speed Processors
Clairvoyant Non-Clairvoyant

Unweighted SRPT scalable [25, 12] LAPS scalable [11]
SJF scalable [25]

Weighted HDF scalable [25] WLAPS scalable [3]

Figure 2: Guarantees for the standard scheduling algorithms on a homogeneous multiprocessor

Fixed Speed Processors Speed-Scalable Processors
Clairvoyant Non-Clairvoyant Clairvoyant Non-Clairvoyant

Unweighted PS (2 + ε)-speed
O(1)-competitive [13]

LAPS Variant
scalable [*]

Weighted HDF not scalable [*] WSETF not scalable [*] Scalable Algorithm [14]
Scalable Algorithm [8] WLAPS not scalable [*]

Figure 3: Guarantees for the standard scheduling algorithms on a heterogeneous multiprocessor
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B Local Competitiveness Lower Bounds

A scheduling algorithmA is said to be locally competitive
if the number (or total weight) of unfinished jobs at any
time t under A’s schedule is comparable to the number
(or total weight) of unfinished jobs in the optimal sched-
ule. Local competitiveness implies that the algorithm’s
competitive ratio can be bounded for (weighted) flow time
because the (weight) number of the unsatisfied jobs in a
schedule at some time is the instantaneous increase in the
objective at that time. Many scheduling algorithms have
been proved to have bounded competitiveness using a lo-
cal competitiveness argument. In particular, SRPT and
SJF can be shown to be scalable on identical parallel ma-
chines via a local competitiveness argument. We however
show that these algorithms are not locally competitive on
related machines even with any constant speedup. Recall
that in the related machines setting machines/processors
have different fixed speeds and consume not power. We
show that local competitiveness cannot be shown even in
the unweighted setting.

THEOREM B.1. For any s ≥ 1, assume that SRPT or
SJF is given s-speed augmentation. Then there exists a
schedule and time t such that the schedule finished all jobs
at time t while SRPT or SJF has unsatisfied jobs.

Proof. We first describe the instance. There are k +
1 groups of machines, M0,M1, ...,Mk. Group Mi

has h2(k−i) machines of speed hi where h is a suffi-
ciently large constant. There are k + 1 groups of jobs,
J0,J1, ...,Jk. Group Ji has h2(k−i) jobs of size hi. For
notational convenience, we will use subscript to denote a
subset of groups. For example,M≥i =

⋃
i′≥iMi′ .

Note that one can finish all jobs by time 1 by schedul-
ing each job in Ji on one machine inMi. We will show
that SRPT cannot finish all jobs by time k

s . Then the
theorem follows by setting k = s + 1 and t = 1. At
time 0, SRPT fills all machines inM≥1 with the jobs in
J0. This is because jobs in J0 are the shortest jobs and
|J0| = h2k >

∑k
i=1 h

2(k−i) = |M≥1|. Until time 1
2s ,

no job in J0 can be finished by SRPT unless it is pro-
cessed on one of the machines in M≥1. The total vol-
ume of jobs in J0 that can be processed on M≥1 for
1
2s time units by s speed resource augmented machines
is at most 1

2

∑k
i=1 h

2(k−i)hi = 1
2

∑k
i=1 h

2k−i ≤ h2k−1.
The last inequality holds for sufficiently large h. Further,
machines in M0 can process at most h2k/2 volume of
jobs in J0 during [0, 1

2s ]. Hence we have a lower bound
h2k−h2k/2−h2k−1 = h2k/2−h2k−1 on the total remain-
ing volume of the unfinished jobs in J0 at time 1

2s . This
is because the total volume of jobs in J0 is h2k and a total
volume of at most h2k/2+h2k−1 can be processed during
[0, 1

2s ] by SRPT with s resource augmentation. Since this
lower bound is larger than |M≥1|, we know that during

[0, 1
2s ], all jobs in J≥1 were scheduled only on machines

in M0. It is easy to see that each job in J≥1 has been
processed by a fraction of at most 1

h .
The remaining proof can be completed by repeating

this argument. Formally, one can show the following:
At time `

2s for integer 1 ≤ ` ≤ k, each job in J≥` has
remaining size that is at least (1 − 1/h)` times its initial
size. The proof for SJF is the same, since SJF and SRPT
produce the same schedule on any instance where all jobs
arrive at the same time by definition of the algorithms.
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