
Hallucination Helps: Energy Efficient Virtual Circuit Routing

Antonios Antoniadis∗ Sungjin Im† Ravishankar Krishnaswamy‡ Benjamin Moseley§

Viswanath Nagarajan¶ Kirk Pruhs‖ Cliff Stein∗∗

Abstract

We consider virtual circuit routing protocols, with an objec-

tive of minimizing energy, in a network of components that

are speed scalable, and that may be shutdown when idle.

We assume that the speed s of a link is proportional to its

load, and assume the standard model for component power,

namely that the power is some constant static power σ plus

sα, where typically α ∈ [1.1, 3]. We give a polynomial-time

offline algorithm for multicommodity routing, that has ap-

proximation ratio O(logα k), where k is the number of de-

mand pairs. This is obtained as a combination of three natu-

ral combinatorial algorithms. The key step of the algorithm

design is a random sampling technique that we call halluci-

nation, which is reminiscent of the Sample-Augment frame-

work for solving Buy-at-Bulk type problems, and sampling

in cut-sparsification algorithms. The analysis of the approx-

imation ratio is then a direct consequence of the flow-cut

gap for multicommodity flow. The algorithm extends rather

naturally to an online algorithm, which we show has compet-

itive ratio Õ(log3α+1 k). The analysis of the online algorithm

introduces a natural “priority” multicommodity flow prob-

lem, and bounds the priority multicommodity flow-cut gap-

this might also be of independent interest. We also explain

how our hallucination technique can be used to achieve an

(O(log km), O(log km)) bicriteria approximation result for

the problem of buying a minimum cost collection of unit-

capacitated edges to support a concurrent multicommodity

flow, where m is the number of links in the network.

∗University of Pittsburgh. Supported by a fellowship within

the Postdoc-Programme of the German Academic Exchange
Service.
†Duke University. Partially supported by NSF Award CCF-

1008065.
‡Computer Science, Princeton University. Supported by the

Simons Postdoctoral Fellowship.
§Toyota Technological Institute at Chicago
¶IBM T.J. Watson Research Center
‖University of Pittsburgh. Supported in part by NSF grants

CCF-1115575, CNS-1253218 and an IBM Faculty Award.
∗∗Dept. of IEOR, Columbia University. Supported in part by

NSF grant CCF-0915681.

1 Introduction

According to the US Department of Energy [1], data
networks consume more than 50 billion kWH of energy
per year, and a 40% reduction in wide-area network en-
ergy is plausibly achievable if network components could
dynamically adjust their speed to be proportional to de-
mand. Virtual circuit routing, in which each connection
is assigned a reserved route in the network with a guar-
anteed bandwidth, is used by several network protocols
to achieve reliable communication [24]. In this paper we
consider virtual circuit routing protocols, with an objec-
tive of minimizing energy, in a network of components
that are speed scalable, and that may be shutdown when
idle.

We adopt the standard models for virtual circuit
routing and component energy, in particular these are
the same as used in [3,4,8]. In the Energy Efficient Rout-
ing Problem (EERP), the input consists of an undirected
multi-graph G = (V,E), with |V | = n, |E| = m, and a
collection of k request-pairs {(si, ti) | si, ti ∈ V and i ∈
[k]}. The output is a path Pi, representing the virtual
circuit for a unit bandwidth demand, between vertices
si and ti, for each request-pair i ∈ [k]. In the online ver-
sion of the problem, the path Pi must be specified before
later request-pairs become known to the algorithm. We
assume that the speed of an edge is proportional to its
flow, which is the number of paths that use that edge.
We further assume that the power used by an edge with
flow f is σ+ fα if f > 0, and that the edge is shutdown
and consumes no power if it supports no flow. The ob-
jective is to minimize the aggregate power used over all
the edges.

The term fα is the dynamic power of the compo-
nent as it varies with the speed, or equivalently load, of
the component. Here α > 1 is a parameter specifying
the energy inefficiency of the components, as speeding
up by a factor of s increases the energy used per unit
computation/communication by a factor of sα−1. The
value of α is in the range [1.1, 3] for essentially all tech-
nologies [10,32]. The parameter σ is the static power,
that is the power used when the component is idle, and
that can only be saved by turning the component off.
The static power is really only relevant/interesting if it

1141 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

is large relative to the dynamic power of routing one
unit of flow, thus we will assume that σ � 1.

Although speed scalable links in networks are plau-
sible, presumably speed scaling is more likely to occur
in the routers. The modeling of scalable network com-
ponents by edges in [3,4,8], as well as here, is motivated
primarily by reasons of mathematical tractability. Net-
work design problems with edge costs are usually easier
to solve than the corresponding problems with vertex
costs. And, solutions for the vertex cost problems are
often obtained by extending the solution for the edge
cost problem.

1.1 The Backstory We first consider the case that
the static power σ is zero. In this case, Aspens et al. [5]
showed that the natural online greedy algorithm isO(1)-
competitive. Gupta et al. [18] showed how to use convex
duality to attain the same result. To understand the
case when there is no static power, assume that there is
a common source and common sink, that is all si = s
and all ti = t, and the network consists of disjoint s-t
paths. Then the convexity of the power function implies
that in the optimal solution each path has the same
aggregate power. The difficulty for a general network
comes from the interplay between paths, but intuitively
one still wants to spread the flow out over the whole
network.

Let us return to the case that the static power is
nonzero. If the static power is very large (σ � kα),
then the optimal solution is essentially to route all
flow over a minimum cardinality Steiner forest that
connects corresponding request-pairs (since this min-
imizes static power); that is, the flow should be as
concentrated as possible. The difficulty, in the gen-
eral case, comes from the competing goals of minimiz-
ing static power, where it’s best that flows are con-
centrated, and minimizing dynamic power, where it’s
best that the flows are spread out. Andrews et al. [4]
showed that there is a limit to how well these compet-
ing demands can be balanced by showing that there is
no polynomial-time algorithm with approximation ra-
tio o(log1/4 n), under standard complexity theoretic as-
sumptions. In contrast, Andrews et al. [3] showed that
these competing forces can be “poly-log-balanced” by
giving a polynomial-time poly-log-approximation algo-
rithm. We think it is fair to say that the algorithm de-
sign and analysis in [3] are complicated and rely on big
“hammers”, namely the well-linked decomposition of
Chekuri-Khanna-Shepherd [13], the construction of ex-
panders via matchings of Khandekar-Rao-Vazirani [23],
and edge-disjoint routings in well-connected graphs due
to Rao-Zhou [28]. Moreover, the “poly” in the poly-log
approximation is sufficiently large that it was not ex-

plicitly calculated in [3]. A critical parameter in [3] is
q = σ1/α. If the flow on an edge is at least q, then one
knows that the dynamic power on that edge is at least
the static power, and thus static power can be charged
to the dynamic power in the analysis. Roughly speak-
ing, the algorithmic strategy in [3] is to aggregate the
flow within groups, each containing q request-pairs, and
then combining the above mentioned results [13,23,28]
to route between groups.

Bansal et al. [8] considered the case of a common
source vertex s for all request-pairs, that is all si = s.
Applications for a common source vertex include data
collection by base stations in a sensor network, and sup-
porting a multicast communication using unicast rout-
ing. [8] gave a polynomial-time O(1)-approximation al-
gorithm. The algorithm design and analysis is consid-
erably easier than [3] because, after aggregation into
groups, all the flow is going to the same place. [8] also
gave an O(log2α+1 n)-competitive randomized online al-
gorithm, by giving a procedure for forming the groups
in an online fashion. In addition, they also provided
hardness results for various generalizations of EERP.

1.2 The Story Here We present three main results
in this paper, which we now discuss separately:
1. A polynomial-time O(logα k)-approximation
algorithm for EERP. The algorithm consists of the
following two stages:
Buying Stage: The first stage of the algorithm deter-
mines which edges to use (it is convenient to say that we
buy these edges). The algorithm first buys a Steiner for-
est to ensure minimal connectivity. Then each request-
pair, with probability Θ(log k

q) hallucinates that it wants
to route q units of flow unsplittably on a path between
its end-points. Any routing algorithm that is “good” for
the objective of dynamic power, for example the natu-
ral greedy algorithm from [18], is then used to route this
hallucinated flow. All edges on which hallucinated flow
is routed are then bought. Note that no actual flow is
routed in this stage.
Routing Stage: The second stage of the algorithm routes
the flow on the edges bought in the first stage, using any
algorithm that is “good” for minimizing dynamic power.

There are two main steps in the analysis. The
first step is to show by randomized rounding that the
dynamic power of the hallucinated flow is comparable
to OPT’s total power. The second step is to show that
there is a routing on the bought edges that has low
dynamic power. This is accomplished by assigning each
edge in the backbone a capacity roughly comparable to
the hallucinated flow on the edge, and showing that the
sparsest cut has sparsity Ω(log k). Then by appealing
to the flow-cut gap for multicommodity flows [6,25,26],

1142 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

we can conclude that there must be a low-congestion
routing, and hence a low dynamic power routing.

Overall, this improves on the results in [3] in the
following ways: (a) the approximation ratio is better
by many logα k factors, (b) the algorithm is much
simpler, being the combination of simple combinatorial
algorithms, and (c) the analysis is considerably simpler,
with the only real “hammer” being the flow-cut gap for
multicommodity flow. On the other hand, the results
in [3] extend to the slightly more heterogeneous setting
where the power used by each edge could include an
edge-dependent constant multiplier. The details of our
offline algorithm are in Section 3.

Hallucination is rather similar to the Sample-
Augment framework [19] for solving Buy-at-Bulk type
problems. This is perhaps surprising because in Buy-
at-Bulk, the cost on edges is purely concave, whereas
in our case the cost is convex after the jump at 0. Our
algorithm analysis is quite different than the analysis
of Sample-Augment for Buy-at-Bulk, and is more sim-
ilar in spirit of the analysis of cut-sparsification algo-
rithms [15,22,31].
2. A Randomized O(log3α+1 k · (log log k)2α)-
competitive online algorithm for EERP. The of-
fline algorithm rather naturally extends to an online
algorithm: We buy the Steiner backbone edges using
any of the known online algorithms for Steiner forest.
Whether a request-pair should hallucinate is decided on-
line by independent sampling. The online greedy algo-
rithm from [18], can be used for routing hallucinated
flow, and for routing the actual flow on the bought
edges. The analysis however is considerably more in-
volved than in the offline case. The analysis in [18] can
be adapted to show that the dynamic power for the
greedy algorithm is competitive against the power used
in an optimal priority routing, where a request-pair can
only route over edges bought by the online algorithm
up until the arrival time of the request-pair. Thus to
mimic the analysis in the offline case, we need to show
that there is a low-congestion priority routing on the
bought edges. This is accomplished by characterizing
the notion of sparset priority-cuts, and then bounding
the priority flow-cut gap for multicommodity flows.

We remark that this is the first poly-log-competitive
online algorithm for EERP, and that we believe that our
techniques for priority multicommodity flows and cuts
will likely find further applications in the future. The
details appear in Section 4.
3. A polynomial-time (O(log km), O(log km))
bicriteria approximation algorithm for the Mul-
ticommodity Capacitated Network Design Prob-
lem. The input to the capacitated multicommodity net-
work design problem is a graph G = (V,E) with each

edge having a cost ce and capacity q, and a collection of
k unit-demand request-pairs {(si, ti) : i ∈ [k]} that can
be supported on G. The goal is to select a minimum cost
subgraph H ⊆ G such that H can support a concurrent
multicommodity flow of the request-pairs. [3] uses the
techniques of embedding expanders via cut-matching
games [23] and expander routing [28] to achieve a poly-
nomial time algorithm that is polylog approximate with
respect to the optimal cost, while supporting 1/polylog
flow for each request-pair. We show in section 5 that
our hallucination techniques give a polynomial time al-
gorithm that is O(log km) approximate with respect to
the optimal cost, while supporting Ω(1/ log km) flow for
each request-pair.

2 Notation and Terminology

Recall that the input to EERP is an undirected multi-
graph G = (V,E) with |V | = n vertices, m edges, and k
request-pairs {(si, ti)}ki=1. The cost for routing f units
of flow over any edge is: zero if f = 0, and σ + fα

if f > 0. We are interested in unsplitably routing
request-pairs. In the analysis we will also be concerned
with fractional routings. We will refer to the former
as a routing and the latter as a fractional routing. The
power incurred by any solution is naturally split into two
parts: (i) static power which is σ times the number of
edges with positive flow, and (ii) dynamic power which
is
∑
e∈E f

α
e where fe denotes the flow on edge e ∈ E.

A useful parameter throughout the paper is q := σ1/α,
which is the amount of flow on an edge for which the
static and dynamic power are equal. We use Opt to
denote the total power of a fixed optimal solution. We
assume that α ≥ 1 is a constant, so any function of α is
just O(1).

For an undirected graph G = (V,E) and subset
S ⊆ V , we use the standard notation δG(S) := {(u, v) ∈
E : u ∈ S, v 6∈ S} for the cut corresponding to S.
When the graph is clear from context, we drop the
subscript. We shall sometimes refer to the vertices
of these request-pairs as terminals to distinguish them
from Steiner vertices in G (that do not participate in
any request-pair). The sparsity of an edge capacitated
graph G is the minimum (over all S ⊆ V) of the ratio
of the capacity crossing cut S to the demand crossing
it, i.e.

sparsity(G) := min
S⊆V

c(δ(S))∣∣{i ∈ [k] : |S ∩ {si, ti}| = 1}
∣∣ .

Here ce is the capacity for edge e, and c(δ(S)) =∑
e∈δ(S) ce. It is well known that if the sparsity

is Ω(log k) then there is a fractional routing for the
demands that respects the capacities [6,26].

1143 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

In the analysis of the online algorithm, we need to
define and use the notion of priority multicommodity
flows and cuts. Here, we have an increasing sequence
of unweighted multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k)
with respective request-pairs {(si, ti)}ki=1.

Definition 2.1. (Priority Multicommodity Flow)

Consider any sequence of multigraphs G(1) ⊆ G(2) ⊆
· · · ⊆ G(k) and request-pairs {(si, ti) : i ∈ [k]}. A
priority multicommodity flow of value λ consists of a
fractional routing of λ units between si and ti only
using edges of multigraph G(i), for each i ∈ [k], where
the total flow through any edge in this routing is at
most one.

Definition 2.2. (Priority Cuts) Consider any se-
quence of multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) and
request-pairs {(si, ti) : i ∈ [k]}. We say that a set
Q ⊆ G(k) of edges priority separates pair i if and only
if si and ti are separated in the graph G(i) \ Q. The
sparsity of a priority-cut Q is the ratio of |Q| to the
number of pairs that are priority separated by Q. The
sparsest priority-cut is the minimum sparsity over
all priority-cuts.

Definition 2.3. (Prefix Sparsity) Consider any
sequence of multigraphs G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) and
request-pairs {(si, ti) : i ∈ [k]}. The prefix sparsity of
this sequence is

k
min
i=1

min
S⊆V

∣∣δGi(S)
∣∣∣∣{j ∈ [i] : |S ∩ {sj , tj}| = 1}

∣∣ .
For notational convenience, we use δi(S) :=

∣∣δGi(S)
∣∣ for

any i ∈ [k] and subset S ⊆ V .

Finally, we describe the online “waterfilling” algo-
rithm from [18] that we use as a subroutine in all our
algorithms. Notice that the waterfilling algorithm is
concerned only with minimizing the dynamic power of
the routing, and does not involve the static power σ
at all. The O(1) competitive analysis in [18] assumed
that the graph was static, but the analysis can easily be
adapted to the case that the graph is growing to show
that the waterfilling algorithm is O(1)-competitive for
priority flows.

Online Waterfilling Algorithm: The input for
this algorithm is an existing multicommodity flow
{fe : e ∈ E} in the graph (i.e. a routing of
previous request-pairs), a new request-pair (si, ti)
with a demand d. The output of the algorithm is an
augmentation of the existing multicommodity flow to
include a flow of d units along a single si − ti path
Pi that increases the aggregate dynamic power the
least. This can be computed using a shortest path
algorithm with edge costs (fe + d)α − fαe .

Theorem 2.1. ([18]) The waterfilling algorithm is
O(αα)-competitive for minimizing dynamic power in
a static graph. The waterfilling algorithm is O(αα)-
competitive for minimizing dynamic power for a priority
flow.

3 Offline Algorithm

In this section we give a polynomial time algorithm for
the Energy Efficient Routing Problem (EERP), and then
show that it has approximation ratio O(logα k).

Offline Algorithm Description:
1. Constructing the Steiner backbone: Setting
the cost of each edge to be the static power σ, we
buy a Steiner forest that provides connectivity for the
request pairs. The edges bought in this step form the
Steiner backbone GS .
2. Constructing the Hallucination backbone:
Each request-pair (si, ti) decides to independently
“hallucinate” a demand of q, with probability p =
min{1, 32λ/q}. Here λ = Θ(log k) ≥ log k is the flow-
cut gap for multicommodity flow [6,26]. We run the
waterfilling algorithm on request-pairs that halluci-
nate (in arbitrary order), to find an unsplittable rout-
ing H of q units of flow between these request-pairs.
We call this routing the hallucinated flow. We then
buy the edges in the support of H. These edges form
the hallucination backbone GH .
3. Routing on the backbone: The waterfilling
algorithm is used to route all request-pairs (with unit
demand) in arbitrary order in the backbone GF =
GS ∪GH .

Note that the hallucinated flow is used solely to
determine which edges to buy in the hallucination
backbone, and is not a routing of actual flow.

3.1 Analysis We show that this algorithm has an
approximation ratio of O(logα k) by bounding the static
power used in the backbone GF = GS∪GH (Steps 1 and
2) plus the dynamic power of the algorithm’s routing in
Step 3 as follows:
Static power of GS: By using the Steiner forest
2-approximation algorithm from [2,17], it follows that
the static power for the edges in GS is at most twice
the minimum static power required to achieve such
connectivity, and hence at most 2 · Opt.
Static power of GH : The static power of the hallu-
cination backbone GH is at most the dynamic power
of the hallucinated flow H since every hallucinated
request-pair routes q units of flow unsplittably in H.
In Lemma 3.1 we show that the dynamic power for the
hallucinated flow is O(λα) ·Opt (a similar argument can
be found in [8]).

1144 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Dynamic power: In order to bound the dynamic
power of our routing in Step 3, we show in Lemma
3.3 that there is a routing F of low dynamic power in
the subgraph GF . This is sufficient, as the waterfilling
algorithm used for routing within the backbone in
Step 3, is O(1)-approximate for dynamic power [18]. To
this end, we assign each edge in the backbone a capacity
ce equal to the amount of hallucinated flow routed on
it in H, plus αλq if it is in the Steiner backbone GS .
Using these capacities, we show (in Lemma 3.2 and
Corollary 3.1) that w.h.p, the sparsity of every cut is at
least λ. Therefore, by the well-known flow-cut gap for
multicommodity flow [6,25,26], there exists a fractional
routing within the backbone GF that respects these
capacities. We then show in Lemma 3.3, by randomized
rounding of this fractional multicommodity flow, that
there exists an integral routing in the backbone with
dynamic power O(1) times the dynamic power used by
the hallucinated flow H, plus O(λα) times the static
power used by GS .

Lemma 3.1. The expected dynamic power used by the
hallucinated flow H is O(λα) · Opt.

Proof. Let Opt denote any fixed optimal solution that
for each request-pair (si, ti), routes unit flow on path
P ∗i . Consider any outcome of the random hallucination
process. Let Opt′ send q units of flow on each path
P ∗i for only the hallucinated request-pairs i. We will
show that the expected dynamic power used by Opt′ is
O(λα) · Opt. Since the waterfilling algorithm is O(1)-
approximate for the objective of dynamic power [18], it
would follow that the expected dynamic power of the
hallucinated flow H is at most O(1) times the dynamic
power used by Opt′, i.e. O(λα) · Opt.

We bound the expected dynamic power in Opt′

separately for each edge e ∈ E. Fix an edge e and
consider all request-pairs whose optimal paths P ∗i use
e: if there are N of them, then e’s power (dynamic plus
static) in Opt is

Nα + σ = Nα + qα ≥ N · qα−1.

This inequality easily follows using the fact that qα =
σ, and considering two cases depending on whether
N ≥ q or not. Since each path P ∗i is chosen in Opt′

independently with probability min{1, 32λ/q}, we can
use Corollary 6.1 with p = min{1, 32λ/q} and D = q
to bound the expected dynamic power for e by the
following (up to an O(1) factor)

pNDα + (pND)α ≤ O(λα) · (Nqα−1 +Nα)

≤ O(λα) · (2Nα + σ)

which is at most O(λα) times the power for e in Opt.

Now summing over all edges and using linearity of
expectations, we conclude that the expected dynamic
power in Opt′ is at most O(λα) · Opt. �

Lemma 3.2. Assume 32λ ≤ q. Then with probability at
least 1− k−3α, the sparsity of GF = GS ∪GH with edge
capacities {ce} is at least λ.

Proof. Let H ⊆ [k] denote the pairs that hallucinate in
Step 2 of the algorithm. For the proof we consider a
virtual graph B on vertices V with the following edges:

• Steiner edges: each edge e ∈ GS has capacity
de = αλq in B.

• Hallucinated edges: for each i ∈ H there is an edge
(si, ti) in B with capacity d(si,ti) = q.

Observe that for any T ⊆ V , the capacity of cut δ(T)
in GF is at least as much as its capacity in B. Thus it
suffices to show that the sparsity of B is at least λ.

Let V1, . . . , V` denote the vertices in the connected
components of Steiner forest GS . Note that these are
also connected components in B since every request pair
{si, ti}ki=1 is connected in GS . In order to lower bound
the sparsity of B, it suffices to lower bound the sparsity
of each component of B. We will show that the sparsity
of any component of B is at least λ with probability
1− 1

k4α . Taking a union bound over ` ≤ k components
in B, would prove the lemma.

Consider any connected component of B: note
that the components in B are deterministic and do
not depend on the random hallucination. To reduce
notation, we assume in the rest of the proof that GS is
connected: so it is a Steiner tree. (Otherwise, exactly
the same argument works by restricting to the request-
pairs in a particular connected component.)

Since there are exponentially many cuts, we will
consider cuts systematically by defining equivalence
classes on cuts; then show that w.h.p. all cuts in the
same class will be large compared to the demand across
these cuts; and finally apply a union bound over all
classes. Note that all leaves in the Steiner tree GS are
terminals. We eliminate all degree 2 Steiner vertices in
GS by short-cutting, to obtain tree G′S . That is, every
maximal path P = 〈u, u1, u2, . . . , u`, v〉 in GS where
{uj}`j=1 are degree 2 Steiner vertices, is replaced by a
single edge (u, v) in G′S . Let P(GS) denote the set of
paths in GS corresponding to edges in G′S . Note that
Steiner vertices in G′S have degree at least three: so
their number is at most the number of leaves which is
at most 2k. Thus G′S has at most 4k edges.

We are now ready to define equivalence classes on
cuts. We say that two cuts C,C ′ ⊆ V are equivalent
if (i) both cut exactly the same set of edges in G′S (i.e,

1145 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

the same set of paths in P(GS)), and (ii) both have
the same set of request-pairs crossing. More precisely,
C ≡ C ′ if and only if

• {(u, v) ∈ G′S : u ∈ C, v 6∈ C} = {(u, v) ∈ G′S : u ∈
C ′, v 6∈ C ′}, and

• {i ∈ [k] : |{si, ti} ∩ C| = 1} = {i ∈ [k] :
|{si, ti} ∩ C ′| = 1}

Let Classj denote the set of classes that cut exactly
j edges in G′S . We first count the number of classes
in Classj : Since |G′S | ≤ 4k, there are at most (4k)j

different subsets of edges to be cut. Each cut C with
|δG′S (C)| = j divides tree G′S into j + 1 components.
For each component, there is a choice whether/not to
lie in C. So the number of classes in Classj is at most
2j+1 · (4k)j ≤ (16k)j .

For each class C ∈ Classj , we show that with high
probability, all cuts in C have capacity at least λ times
the demand across cuts in C. Let R(C) denote the set
of demands across any cut in C. We consider two cases
depending on the value of r := |R(C)|.

1. r ≤ αjq. In this case, since any cut in C has j edges
from GS (since it has j edges from G′S), each with
capacity αqλ, its capacity is at least j ·αqλ ≥ λ · r.

2. r = |R(C)| > αjq. For each demand in R(C), let
Xi denote a random variable that indicates if the
pair hallucinates or not. Note that Pr[Xi = 1] =
min{1, 32λ/q} = 32λ/q; so E[

∑r
i=1Xi] = 32λ·r

q .
We show that the probability that a cut in C does
not support the demand R(C) is sufficiently small.
By observing that each pair (si, ti) contributes to
every cut in C by at least qXi, it suffices to upper-
bound the following probability:

Pr
[
q

r∑
i=1

Xi < rλ
]

= Pr
[r∑
i=1

Xi < rλ/q
]

= Pr
[r∑
i=1

Xi < E[

r∑
i=1

Xi]/32
]

≤ exp
(
− (E[

r∑
i=1

Xi])/4
)

< exp
(
− (αjq) · (32λ/q)/4

)
≤ exp(−8αj log k) ≤ k−8αj .

The first inequality follows from the Chernoff
bound (See Appendix 6), the second inequality uses
r > αjq, and the third inequality is by λ ≥ log k.

By summing over all j ≥ 1 and all classes in Classj ,
we derive that the probability that there is a cut with

sparsity less than λ is at most∑
j≥1

|Classj | · Pr
[
q

r∑
i=1

Xi < rλ
]

=
∑
j≥1

(16k)jk−8αj

= O(1/k4α),

which completes the proof. �

Corollary 3.1. With probability at least
1 − O(1/k3α), there exists a capacity-respecting
fractional routing of all request-pairs in backbone GF .

Proof. If 32λ > q then all pairs hallucinate, and the
hallucinated flow H itself respects the capacities. If
32λ ≤ q, then a capacity-respecting fractional routing
exists w.h.p. by Lemma 3.2 and by the fact that
λ = Θ(log k) is the multicommodity flow-cut gap. �

Lemma 3.3. The expected dynamic power used by the
algorithm is O(λα) times the static power used by
GS plus O(1) times the dynamic power used by the
hallucinated flow H.

Proof. We will bound the expected optimal dynamic
power of the routing instance in Step 3, by the claimed
expression. Using the O(1)-approximation for dynamic
power from [18], this would imply the lemma.

We first consider the case where there exists a
capacity-respecting fractional routing G in GF . The
dynamic power of G on any edge e ∈ GS with flow
ge ≤ 2qλα is charged to O(λα) times the static power
of the edges in GS . The dynamic power for G on any
edge e with flow ge > 2qλα is charged to the dynamic
power of the hallucinated flow H: ge is at most the
capacity ce = αλq + H−flow on e, so ge is at most
twice H−flow on e.

[18] shows that a simple randomized rounding of
the fractional routing G produces an integral routing
F with expected dynamic power at most O(1) times
the dynamic power of G plus the edge capacities. The
edge capacities are O(λ) times the static power used
by GS plus O(1) times the dynamic power used by the
hallucinated flow H.

If there is no capacity-respecting multicommodity
flow, then consider the multicommodity flow that routes
each (si, ti) along the unique si − ti path in GS . Since
each edge is used at most k times, the dynamic power
is at most kα times the static power used by GS .
Corollary 3.1 states that this event can occur with
probability at most 1/k3α. So its contribution to the
expectation is O(1) times the static power of GS . �

4 Online Algorithm

In this section we show that the offline algorithm
can naturally be adapted to an online algorithm with

1146 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

competitive ratio O(log3α+1 k · (log log k)2α). In order
to present our algorithmic ideas more transparently, we
first describe the algorithm assuming that k is known in
advance which we will prove isO(log3α+1 k·(log log k)α)-
competitive. We will then show in Section 4.5 how
to discharge this assumption to make the algorithm
truly online at the cost of an additional factor of
O((log log k)α) in the competitive ratio.

In response to request-pair (si, ti) the algorithm takes
the following steps:
1. Augmenting the Steiner backbone: We run
an online algorithm for Steiner forest to connect si
and ti, where the cost of edges is the static power σ.
Let GS(i) be the Steiner forest maintained after the
ith request-pair.
2. Augmenting the Hallucination backbone:
The request-pair (si, ti) hallucinates a demand of q
with probability p = min(1, 32 log k/q). We then use
the online waterfilling algorithm to find an unsplit-
table routing of q units of hallucinated flow between
si and ti. The edges used in this routing are added to
the hallucinated backbone GH(i−1) to obtain GH(i).
3. Routing: We again run the online waterfilling
algorithm to route one unit of actual flow between
si and ti in the graph GF (i) = GS(i) ∪ GH(i), to
minimize the dynamic power.

4.1 Overview of Online Algorithm Analysis We
show that our online algorithm (which knows k a
priori) is an O

(
log3α+1 k · (log log k)α

)
-competitive for

EERP as follows. For online Steiner forest, the greedy
algorithm is known to be O(log2 k)-competitive [7], and
there is a somewhat more complicated algorithm that
is O(log k)-competitive [9]. Using the latter algorithm,
the static power of the edges in GS(k) is O(log k) ·Opt.
As in the offline analysis, the static power for the
hallucination backbone is O(logα k) · Opt.

The analysis of the dynamic power of the actual
multicommodity flow is more involved than in the offline
case. The analysis in [18] can be adapted to show that
the dynamic power of the actual multicommodity flow
is O(1) competitive against the dynamic power of the
optimal priority multicommodity flow. In a priority
multicommodity flow, each request-pair can only route
over edges of lower priority, which are those bought by
the online algorithm up until the arrival time of the
request-pair. Thus to mimic the analysis in the offline
case, we need to show that there is a low-congestion
priority multicommodity flow on the backbone edges.
The capacity ci(e) of each edge e ∈ GF (i) is the amount
of hallucinated flow from the first i request-pairs that it
supports, plus (α log k) ·q if it is in the Steiner backbone

GS(i). It will be convenient to view these capacities as
unweighted parallel edges. For each i, we denote by G(i)
the multigraph consisting of ci(e) parallel edges between
the end-points of each edge e. Recall the definitions of
priority flow and cut, and prefix-sparsity from Section 2.

We consider the maximum priority multicommodity
flow problem, fractionally priority routing as large of
a fraction of each demand as possible, which can be
easily expressed as a linear program. We then consider
the dual linear program, in which the optimal integer
solution is the sparsest priority cut. In a priority cut Q
a request pair (si, ti) is priority separated if si and ti are
separated in G(i) \Q. Both LPs are defined formally in
Section 4.3.

We show the existence of a large priority multicom-
modity flow using two main steps: First, in subsection
4.2 we bound the prefix-sparsity our backbone, and then
use this to show that the sparsest priority-cut has spar-
sity Ω(1). Second, in subsection 4.3, we bound the pri-
ority flow-cut gap by O(log2 k · log log k). The flow-cut
gap for priority multicommodity flow is the ratio be-
tween the minimum sparsity of a priority-cut and the
maximum value of a priority multicommodity flow (This
is analogous to the relation between concurrent multi-
commodity flow and sparsest cut [25,26]). Combining
these results, we obtain a priority multicommodity flow

of value Ω
(

1
log2 k·log log k

)
satisfying the capacities. This

implies a priority multicommodity flow of value one that
satisfies capacities scaled up by O(log2 k · log log k), i.e.
having dynamic power O

(
log3α+1 k · (log log k)α

)
·Opt.

In Section 4.4 we bring these components together to
show a competitive ratio of O

(
log3α+1 k · (log log k)α

)
.

Then in Section 4.5 we remove the assumption that the
algorithm knows k a priori with an extra factor loss of
O((log log k)α) in competitive ratio.

4.2 Prefix Sparsity to Priority Sparsest Cut
We show in Lemma 4.1 that the prefix sparsity of the
backbone is Ω(log k), and then show in Lemma 4.2 that
this implies that the sparsest priority cut has value Ω(1).
Notice the difference between the conditions on sparsest
priority-cut and prefix-sparsity. For example, a demand
j may be priority cut by some Q ⊆ G(k) even though it
is not separated in G(i)\Q for any i > j, i.e. j does not
appear in the expression for the ith prefix-sparsity. In
particular, a large sparsest priority-cut clearly implies
a large prefix-sparsity, but the converse (which is what
we need to use) is not obvious. Lemma 4.2 proves this
converse relation at the loss of a log k factor.

Lemma 4.1. Suppose that 32 log k ≤ q. Then with
probability of at least 1 − O(1/k2α), the prefix sparsity
of the sequence G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) seen in the

1147 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

online algorithm is at least log k. That is, for all i and
all S ⊆ V , the capacity δi(S) is at least log k times the
number of pairs {(sj , tj)}ij=1 crossing the cut (S, V \S).

Proof. Fix some i. Note that multigraph G(i) is an
equivalent representation of the backbone GF (i) along
with its capacities ci(·). Since all pairs in [i] have
hallucinated independently, we can apply Lemma 3.2
and conclude that the sparsity of G(i) is at least λ w.r.t
demand pairs [i]. The lemma follows by a simple union
bound over all i ∈ [k]. �

Lemma 4.2. Consider a sequence of multigraphs
G(1) ⊆ G(2) ⊆ · · · ⊆ G(k) with pairs {(si, ti) : i ∈ [k]}.
If the prefix-sparsity is at least log k, then the sparsest
priority cut is at least 1

3 .

Proof. Consider any Q ⊆ G(k) that priority separates
pairs X ⊆ [k]. We will show that |X| ≤ 3 · |Q|, which
would imply the desired lower bound on the sparsest
priority-cut. Define graph H(i) := G(i) \Q for each i ∈
[k]. The proof is based on considering the connectivity
structure in the sequence H(1) ⊆ H(2) ⊆ · · · ⊆ H(k).
We say that at each time i ∈ [k] the request-pair (si, ti)
arrives. At time j when (sj , tj) arrives, the edges
G(j) \ G(j − 1) \ Q are added to graph H(j − 1) to
get graph H(j). Note that for each i ∈ X, the pair
si − ti is separated in graph H(i), by the definition of
priority-cut Q.

Observe that the number of pairs in X (i.e. pairs
priority cut by Q) that are disconnected in H(k) =
G(k) \ Q can be bounded by |Q|/ log k, since G(k)’s
sparsest cut has value at least log k. We will now upper
bound the number of pairs in X that are connected in
H(k). For a subset of vertices V ′ ⊆ V , letN(V ′) = |{i ∈
X : si, ti ∈ V ′}| be the total number of request-pairs in
X that are induced in V ′. We will show below that the
sum of N(C) over all components C in H(k) is at most

2 |Q|. This would prove that |X| ≤ |Q|
log k +2|Q| ≤ 3 · |Q|.

In the following, we refer to the end points of request-
pairs as terminals.

Toward this end we define a recurrence. Consider
any i ∈ [k] and a connected component C in H(i). Let
j ≤ i be the earliest time a request-pair arrived such
that all vertices in C became connected in graph H(j).
Let C1, C2, . . . C` be the components in H(j − 1)[C]
which merged to become connected as C, at time j.
By definition, N(Ch) equals the number of pairs in X
that are contained in Ch, for each h ∈ [`]. Note that

N(C) equals
∑`
h=1N(Ch) + I(C) where I(C) denotes

the number of pairs of X “crossing” {Ch}`h=1, i.e. pairs
having end points in two distinct components among
{Ch}`h=1. For each h ∈ [`] define:

• Qh = |δ(Ch) ∩ Q| the number of edges in Q with
exactly one endpoint in Ch, and

• Ih =
∣∣{a ∈ X : a ≤ j − 1, |{sa, ta} ∩Ch| = 1}

∣∣ the
number of pairs in X that arrive by time j− 1 and
have exactly one end point in Ch.

We index the components {Ch}`h=1 so that C1 contains
the maximum number of terminals. We claim that
I(C) ≤

∑`
h=2 Ih. To see this, note that each pair in

I(C) must have exactly one end-point in at least one
component {Ch}`h=2. Also, since each pair b ∈ I(C) is
in X and is induced on C which gets connected at time
j, we must have b < j: recall that for b ∈ X, sb and tb
must be disconnected in graph H(b). Thus we have

N(C) ≤
∑̀
h=1

N(Ch) +
∑̀
h=2

Ih.

We now use the prefix-sparsity condition to bound
Ih. Consider the cut Ch in graph G(j−1). The number
of crossing edges

∣∣δG(j−1)(Ch)
∣∣ is at most Qh since Ch

is a maximally connected component of H(j − 1) =
G(j − 1) \ Q. The number of pairs crossing Ch with
index at most j− 1 is at least Ih. So the sparsity of cut
Ch in graph G(j − 1) is bounded between:

log k ≤
∣∣δG(j−1)(Ch)

∣∣∣∣{a ∈ [j − 1] : |Ch ∩ {sa, ta}| = 1}
∣∣ ≤ Qh

Ih
.

The lower bound is by the prefix-sparisty assumption,
and the upper bound is by the preceding argument.
Combining the above two equations, we obtain

(4.1) N(C) ≤
∑̀
h=1

N(Ch) +
1

log k
·
∑̀
h=2

Qh.

Consider expanding this recursion to obtain∑
D:comp(H(k)) N(D); the base case is singleton compo-

nents, i.e. N({v}) = 0 for any v ∈ V . Consider the con-
tribution of each edge e = (u, v) ∈ Q separately. When-

ever e participates in the expression 1
log k ·

∑`
h=2Qh

in (4.1), the number of terminals in the component con-
taining either u or v doubles. This is because e must
have one end-point in some {Ch}`h=2 and we chose in-
dices such that terminals(C1) ≥ terminals(Ch) for all
h ∈ [`]. Thus, the number of times e contributes is at
most 2 log2 k, and its total contribution is ≤ 2 log k

log k = 2.

It follows that
∑
D:comp(H(k)) N(D) ≤ 2·|Q|. This com-

pletes the proof. �

4.3 Priority Flow-Cut Gap This subsection proves
the following result:

1148 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Theorem 4.1. The flow-cut gap for priority multicom-
modity flow is O(log2 k · log log k).

Consider any instance of priority multicommodity
flow, given by a sequence G(1) ⊆ G(2) ⊆ · · ·G(k)
of multigraphs on vertex-set V and demand pairs
{(si, ti)}ki=1. We follow a natural approach by consid-
ering the LP formulation for priority multicommodity
flow and its dual (which is an LP relaxation for sparsest
priority-cut). We bound the flow-cut gap by showing
that this sparsest priority-cut LP has a small integral-
ity gap: this relies on a variant of the region growing
approach [14,16].

The LP for priority multicommodity flow, and its
dual are given below.

max γ(PriorityFlowLP)

s.t.
∑
p∈Pi

f(p) ≥ γ ∀i ∈ [k](4.2)

∑
p|e∈p

f(p) ≤ 1 ∀e ∈ G(k)(4.3)

f(p) ≥ 0 ∀i ∈ [k],∀p ∈ Pi(4.4)

min
∑

e∈G(k)

de

(SparsestPriorityCutLP)

s.t.

k∑
i=1

ηi ≥ 1(4.5) ∑
e∈p

de ≥ ηi ∀p ∈ Pi ∀i ∈ [k](4.6)

de ≥ 0 ∀e ∈ G(k)(4.7)

ηi ≥ 0 ∀i ∈ [k](4.8)

Here Pi denotes the set of paths from si to ti in
G(i) and f(p) denotes the flow on some path p.

The feasible solutions for the primal LP are frac-
tional routings such that each request-pair i routes at
least a γ flow between them in graph G(i) (constraint
(4.2)), and such that no edge supports flow more than
one (constraint (4.3)). This is precisely the priority mul-
ticommodity flow problem.

In the dual, we have an LP relaxation of the sparsest
priority-cut problem: if an integral solution Q priority-
cuts k′ request-pairs, we set ηi = 1/k′ for the request-
pairs which are separated, and de = 1/k′ for edges in Q
and 0 otherwise. The objective value is then the sparsity
of the priority-cut Q.

By duality, the optimal values of these two LPs
are equal. So, to prove Theorem 4.1, it suffices to
upper bound the integrality gap of SparsestPriorityCutLP
by O(log2 k · log log k). Consider any fixed optimal
solution (η∗, d∗) to SparsestPriorityCutLP. First, we
use a standard geometric scaling step to reduce the
problem to a “priority multi-cut” problem (where the
η values are “0− 1”) with an O(log k)-factor loss in the
sparsity. Then we apply a variant of region growing to
round fractional priority multi-cut solutions to integral
solutions, which loses another O(log k · log log k) factor.

Lemma 4.3. For any optimal solution (η∗, d∗) to
SparsestPriorityCutLP, there exists another feasible so-
lution (η′, d′) satisfying the following properties:

•
∑
e d
′
e ≤ 8 log k ·

∑
e d
∗
e, and

• there is a subset C ⊆ [k] such that η′i = 1
|C| for

i ∈ C and 0 otherwise.

Proof. For all i ∈ [k] where η∗i ≤ 1/(2k) we set η∗i = 0.
Notice that since there are at most k variables ηi,
this results in a solution to SparsestPriorityCutLP where
the constraint (4.5) is satisfied to extent 1/2. We
now geometrically group the η∗ variables, according
to classes Ch = {i ∈ [k] | 2−h < η∗i ≤ 2−h+1}
for h ∈ {1, 2, . . . , log(2k)}. Let C` be the group that
maximizes

∑
i∈C` η

∗
i . Since there are at most 2 log k

groups and η∗ totals to at least half, we have |C`|
2`−1 ≥∑

i∈C` η
∗
i ≥ 1

(4 log k) .

For each i /∈ C` set η′i = 0 and for each i ∈ C`

set η′i = 1
|C`| . Also set d′e to be 2`

|C`| · d
∗
e for all

e ∈ G(k). It is easy to see that (η′, d′) is a valid
fractional solution for SparsestPriorityCutLP. Moreover,

the objective
∑
e d
′
e = 2`

|C`| ·
∑
e d
∗
e ≤ 8 log k ·

∑
e d
∗
e. �

Fix the solution (η′, d′) and subset C ⊆ [k] from
the above lemma. By scaling d′ up by a factor |C|,
we obtain a fractional solution {ze : e ∈ G(k)} to the
priority multicut instance restricted to the multigraph
sequence 〈G(i) : i ∈ C〉 and pairs C. Next, we show
that z can be rounded to obtain an integral solution
Q ⊆ G(k) that priority-cuts all the pairs in C, and has
|Q| ≤ O(log k · log log k) ·

∑
e ze. The sparsity of such a

priority-cut Q is at most:

|Q|
|C|

≤ O(log k · log log k) ·
∑
e ze
|C|

≤ O(log2 k · log log k)
∑
e

d∗e.

This would complete the proof of Theorem 4.1.

1149 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Bounding the integrality gap for priority multi-
cut. Consider any instance of priority multicut given by
a sequence H(1) ⊆ H(2) ⊆ · · · ⊆ H(r) of multigraphs
with demand pairs {(si, ti)}ri=1. The goal is to find a
minimum size subset Q ⊆ H(r) of edges that priority
cuts each pair, i.e. si− ti is disconnected in H(i)\Q for
all i ∈ [r]. Note that in our setting, r ≤ k the number of
pairs in the sparsest priority cut instance. The natural
LP relaxation for priority multicut is:

min

{ ∑
e∈H(r)

ze :
∑
e∈p

ze ≥ 1 ∀p ∈ Pi, ∀i ∈ [r],

ze ≥ 0, ∀e ∈ H(r)

}
.

Above, Pi is the set of si − ti paths in graph H(i).
We first give a rounding algorithm for priority

multicut that loses an O(log2 r) factor, this is based
on applying the “region growing” step from [16,25]
recursively. A more careful recursion as in [14,30] can
be used to obtain an O(log r · log log r) bound. We refer
to the full version of the paper for a formal description
and proof.

Before the proof, we introduce some useful notation.
Given a graph L ⊆ H(r), let dL denote the shortest-
path metric defined by {ze : e ∈ L}, i.e. dL(u, v) is the
length of the shortest path between u and v with weight
z on edges of L. For any vertex v ∈ V and ρ > 0, define:

• BL(v, ρ) :=
{
u ∈ V : dL(v, u) < ρ

}
the ball of ra-

dius ρ around v in metric dL.

• δL(v, ρ) = {(u,w) ∈ L : u ∈ BL(v, ρ), w /∈
BL(v, ρ)} the edges cut by BL(v, ρ).

• L(v, ρ) the induced graph of L on vertices BL(v, ρ).

• VL(v, ρ) :=
∑
e∈L(v,ρ) ze +∑

(u,w)∈δL(v,ρ)

(
ρ− dL(v, u)

)
+ V∗

r ·
terminals

(
BL(v, ρ)

)
the volume of ball BL(v, ρ).

Here V∗ =
∑
e∈H(r) ze is the total “volume” of the

LP solution.

Rounding Algorithm I. This is a careful adap-
tation of the LP rounding for multi-cut [16]. We first
state a useful result from that paper.

Lemma 4.4. ([16]) For any i ∈ [r] and L ⊆ H(r) with
dL(si, ti) ≥ 1, there exists 0 < ρ < 1/2 such that
|δL(si, ρ)| ≤ 3 log r · VL(si, ρ).

Our rounding procedure is recursive: the input is
an index i ∈ [r] and vertex subset U ⊆ V such that
i is the maximum index with both si, ti ∈ U . The

goal is to priority-cut all pairs ΠU induced on U . (The
initial call is with i = r and U = V ; the initial solution
Q = ∅.) Given i and U we consider the induced graph
L = H(i)[U]. Note that dL(si, ti) ≥ 1 since both
si, ti ∈ L and by feasibility of fractional solution z,
dH(i)(si, ti) ≥ 1. By applying Lemma 4.4 to both si
and ti, we find two radii ρs, ρt <

1
2 such that:

|δL(si, ρs)| ≤ 3 log r · VL(si, ρs),

and |δL(ti, ρt)| ≤ 3 log r · VL(ti, ρt).

Note that the balls BL(si, ρs) and BL(ti, ρt) are dis-
joint. So one of them has at most |ΠU |/2 induced
pairs. We consider the ball, say around si, which has
fewer request-pairs induced inside it. We add the cut
δL(si, ρs) to Q, and set U1 ← BL(si, ρs) and U2 ←
U \ BL(si, ρs). Note that all request-pairs j ∈ ΠU and
having exactly one end-point in U1 are priority-cut by
Q (they are separated even in graph H(i) ⊇ H(j)). To
handle the remaining pairs of ΠU , we recurse on U1

(resp. U2) with the maximum induced pair in U1 (resp.
U2). By Lemma 4.4 the increase in |Q| is at most 3 log k
times VL(si, ρs) the volume of H(i)[U1]; in this case we
say that all edges in H(i)[U1] get charged. Moreover,
by the choice of ball BL(si, ρs) = U1, the number of
induced pairs in U1 is at most |ΠU |/2 i.e. half the in-
duced pairs in U . This implies that whenever an edge e
gets charged, the number of induced pairs in the recur-
sive call containing e reduces by a factor two: so each
edge gets charged at most log2 r times. Hence the final
solution cost |Q| is at most 3 log2 r ·

∑
e∈H(r) ze.

4.4 Putting the pieces together In this subsec-
tion we explain how to put the pieces together to
show in Lemma 4.5 that there is witness priority mul-
ticommodity flow that routes all demands in the back-
bone, and whose expected dynamic power is O(log3α k ·
(log log k)α) times the static power used by GS plus
O(log2α k · (log log k)α) times the dynamic power used
by the hallucinated flow H. The proof is similar to that
of Lemma 3.3.

Corollary 4.1. With probability of at least 1 −
O(1/k2α), there exists a fractional priority routing that
respects all capacities within a factor of O(log2 k ·
(log log k)).

Proof. Suppose that 32 log k ≤ q. Then by Lemma 4.1,
the prefix sparsity of the sequence of graphs GF (1) ⊆
GF (2) ⊆ ... ⊆ GF (k) is at least log k with probability
at least 1 − O(1/k2α). This implies that the sparsest
priority-cut is at least 1/3 by Lemma 4.2. Then the
proof follows since we have shown that the priority flow-
cut gap is at most O(log2 k(log log k)). If 32 log k ≥ q,

1150 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

all demand pairs hallucinate, and the hallucinated flow
H is itself the desired priority multicommodity flow. �

Lemma 4.5. There exists an integral priority muticom-
modity flow that routes all demands within the backbone
with expected dynamic power O(log3α k · (log log k)α)
times the static power used by GS plus O(log2α k ·
(log log k)α) times the dynamic power used by the hal-
lucinated flow H.

Proof. Suppose that there exists a fractional priority
routing that respects all capacities within factor γ =
O(log2 k · (log log k)); this occurs w.h.p. from Corol-
lary 4.1. Then (as in the offline case) we use the re-
sult from [18] that randomized rounding of a fractional
routing produces an integral routing, at the loss of an
O(1)-factor in expected dynamic power. The dynamic
power of flow of up to 2qγ log k on each edge of GS is
charged to O(log3α k·(log log k)α) times the static power
of the edges in GS . The dynamic power on edges with
a flow of greater than 2qγ log k is charged to γα times
the dynamic power of the hallucinated flow H.

If there is no capacity-respecting priority multicom-
modity flow, consider the multicommodity flow that
routes each demand (si, ti) along the shortest path con-
necting the demand in GS(i). Since each edge is used by
at most k paths, the dynamic power is at most kα times
the static power used by GS . Corollary 4.1 states that
this event can occur with probability at most 1/k2α.
So its contribution to the expectation is O(1) times the
static power of GS . �

4.5 When k is not known a priori Our algorithm
extends to the truly online setting when the final
number k of request-pairs is not known in advance:
this results in an additional (log log k)α overhead in the
competitive ratio. That is, we obtain a competitive ratio
of O

(
log3α+1 k · (log log k)2α

)
-competitive.

We refer to the full version of the paper for a formal
description and proof.

5 Multicommodity Capacitated Network
Design

In this section, we consider the capacitated multicom-
modity network design problem (CapND), as studied
by [3]. In this problem, we are given a multigraph
G = (V,E) with each edge e ∈ E having a cost ce and
uniform capacity q. We are also given a collection of k
request-pairs {(si, ti) : i ∈ [k]} each with unit demand.
The goal is to pick a minimum cost subgraph H ⊆ G
such that H can support a concurrent multicommod-
ity flow of the request-pairs. Let m = |E| denote the
number of edges in G.

Andrews et al. [3] gave a (polylog, polylog) bicrite-
ria approximation algorithm for CapND using the tech-
niques of embedding expanders via cut-matching games
[23] and expander routing [28]. That is, the cost of
their solution H is polylog times the optimal cost, and
H can support 1/polylog flow of each request-pair con-
currently. In fact, they obtain this result for CapND as
a by-product of their algorithm for EERP. In this paper,
we show the following improved result for this problem.

Theorem 5.1. There is an (O(log km), O(log km)) bi-
criteria approximation for CapND, i.e. the solution

costs O(log km) times optimal and supports Ω(1)
log km flow

of each request-pair.

We note that we can also handle non-uniform
demand, at the expense of an additional log factor in
the approximation. A related problem that has also
been studied [11,12,20] is capacitated survivable network
design, where the requirement is forH to satisfy the flow
requirement individually for each demand rather than
concurrently. These results are incomparable to those
for CapND.

We now present the details of our algorithm. First,
we show that an LP-rounding algorithm gives an
(O(1), O(log km)) bicriteria approximation for the spe-
cial case when all capacities and demands are equal to
q. Then we show that the hallucination approach can
be used to reduce the general case (unit demand and q
capacity) to that of equal demand and capacity.

The case of equal demands and capacities. Here
we consider the CapND problem when each request-pair
has q units of demand (which is also the edge capacity).
By scaling, we assume that all demands and capacities
are one. Our algorithm is then a simple randomized
rounding of the natural LP relaxation, which allows
violation in capacities by O(log km).

min
∑
e

cexe(LPcap)

s.t.
∑
p∈Pi

f(p) ≥ 1 ∀i ∈ [k](5.9)

∑
p|e∈p

f(p) ≤ xe ∀e ∈ E(5.10)

f(p) ≥ 0 ∀i ∈ [k],∀p ∈ Pi(5.11)

0 ≤ xe ≤ O(log km) ∀e ∈ E(5.12)

Here Pi is the set of all si − ti flow paths. If the
LP is infeasible, then we declare that our instance is
infeasible. If not, then we do a simple randomized
rounding (on the flow paths for each request-pair), and

1151 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

get an integral solution with expected cost equal to
the LP cost, and where each edge is used by at most
O(log km) request-pairs with probability 1 − 1

m . Thus
we obtain a randomized (O(1), O(log km)) bicriteria
approximation algorithm.

Algorithm for CapND:
1. Constructing the Steiner backbone: Setting
the cost of an edge to be ce, we buy an (approximate)
min-cost Steiner forest that provides connectivity for
the request-pairs. The edges bought in this step form
the Steiner backbone GS .
2. Constructing the Hallucination backbone:
Each request-pair (si, ti) decides to independently
“hallucinate” a demand of q, with probability p =
min{1, 32λ/q}. Here again λ = Θ(log k) is the flow-
cut gap for multicommodity flow [25,26]. Now, we
use the procedure above (for uniform capacity and
demands).

a. If LPcap was infeasible then declare infeasibility
for the CapND instance.

b. Else, we obtain a subgraph GH and unsplittable
routing H of q units between each hallucinated
request-pair; H violates the capacities of each
edge in GH by at most O(log km). We call this
routing the hallucinated flow.

3. Final Solution: Output the subgraph GF =
GS ∪GH .

5.1 Analysis The analysis proceeds along the same
lines as in Section 3:
Cost of GS: By using the Steiner forest approximation
algorithm from [2,17], one can guarantee that cost of
GS is at most twice the minimum cost required to
even achieve connectivity between the request-pairs,
and hence at most 2 · Opt.
Cost of GH : Using a standard Chernoff bound, it
follows that with probability 1 − 1

km , the demand of
the hallucinated request-pairs can be routed on the
support of Opt, while violating each capacity by a
factor of O(log km). (This is similar to Lemma 3.1.)
We now obtain a feasible LP solution to LPcap of
cost O(log km) · Opt. Using this as a starting point,
our rounding algorithm for the case of equal demands
and capacities, returns a graph GH of expected cost
O(log km) ·Opt which can unsplittably route (using H)
flow of q units for each hallucinated request-pair, while
sending O(log km) · q flow on each edge.
Routing on GS∪GH : The last part of the proof shows
that w.h.p. there is a flow F for the original request-
pairs, having low congestion in the subgraph GF . To

this end, we assign “virtual capacities” {ĉe : e ∈ GF } as
follows: edge e ∈ GF gets a virtual capacity equal to the
amount of hallucinated flow routed on it in H, plus 2λ·q
if it is in the Steiner backbone GS . Using these virtual
capacities, we can use Lemma 3.2 and Corollary 3.1 to
conclude that with probability 1 − 1

k3 , the sparsity of
every cut is at least λ (w.r.t the original request-pairs).
Therefore, there exists a flow within the backbone GF
that respects these virtual capacities, owing to the flow-
cut gap for multicommodity flow [26]. Finally, the
virtual capacity of each edge in GF is O(log km) · q
because H uses any edge to at most O(log km) q, and
we added O(log k) · q units for each edge in GS . This
completes the proof of Theorem 5.1.

6 Probabilistic Inequalities

Theorem 6.1. ([27]) Let X1, X2, ..., XN be N inde-
pendent random variables such that Pr[Xi = 0] = 1− pi
and Pr[Xi = 1] = pi. Let Y =

∑N
i=1Xi and µ = EY .

Then for any δ > 0, it follows that

Pr
[
Y ≤ (1− δ)µ

]
≤ exp(−µδ2/2).

Theorem 6.2. ([21,29]) Let X1, X2, . . . , XN be inde-
pendent non-negative random variables. Let α > 1 and
Kα = Θ(α/ logα). Then it is the case that(

E[(
∑
i

Xi)
α]

)1/α

≤ Kα max

(∑
i

E[Xi],

(∑
i

E[Xα
i]

)1/α
)
.

Corollary 6.1. ([8]) Let p ≥ 0, and let
X1, X2, . . . , Xn be i.i.d. random variables tak-
ing value D with probability min{1, p}. Then
E[(
∑
iXi)

α] ≤ (Kα)α · max{1, pN Dα + (pND)α},
where Kα = Θ(α/ logα).

Proof. For the case when p ≥ 1, Xi = D with proba-
bility 1, and hence we can conclude that E[(

∑
iXi)

α] =
(ND)α. For the case when p ∈ [0, 1], E[Xi] = pD, and
E[Xα

i] = pDα. From this we can conclude that the up-
per bound in Theorem 6.2 is Kα max(pND, (pN)1/αD).
Taking αth powers and replacing the max by a sum, we
get E[(

∑
iXi)

α] ≤ (KαD)α((pN)α + pN). �

References

[1] Vision and roadmap: Routing telecom and data centers
toward efficient energy use, May 2009. Proceedings of
Vision and Roadmap Workshop on Routing Telecom
and Data Centers Toward Efficient Energy Use.

1152 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[2] Ajit Agrawal, Philip N. Klein, and R. Ravi. When
trees collide: An approximation algorithm for the
generalized steiner problem on networks. SIAM J.
Comput., 24(3):440–456, 1995.

[3] Matthew Andrews, Spyridon Antonakopoulos, and
Lisa Zhang. Minimum-cost network design with
(dis)economies of scale. In FOCS, pages 585–592, 2010.

[4] Matthew Andrews, Antonio Fernández, Lisa Zhang,
and Wenbo Zhao. Routing for energy minimization in
the speed scaling model. In INFOCOM, pages 2435–
2443, 2010.

[5] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin,
and Orli Waarts. On-line routing of virtual cir-
cuits with applications to load balancing and machine
scheduling. J. ACM, 44(3):486–504, 1997.

[6] Yonatan Aumann and Yuval Rabani. An o(log k)
approximate min-cut max-flow theorem and approxi-
mation algorithm. SIAM J. Comput., 27(1):291–301,
1998.

[7] Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-
line generalized steiner problem. In SODA, pages 68–
74, 1996.

[8] Nikhil Bansal, Anupam Gupta, Ravishankar Krish-
naswamy, Viswanath Nagarajan, Kirk Pruhs, and Cliff
Stein. Multicast routing for energy minimization using
speed scaling. In MedAlg, pages 37–51, 2012.

[9] Piotr Berman and Chris Coulston. On-line algorithms
for steiner tree problems (extended abstract). In
STOC, pages 344–353, 1997.

[10] David Brooks, Pradip Bose, Stanley Schuster, Hans M.
Jacobson, Prabhakar Kudva, Alper Buyuktosunoglu,
John-David Wellman, Victor V. Zyuban, Manish
Gupta, and Peter W. Cook. Power-aware microar-
chitecture: Design and modeling challenges for next-
generation microprocessors. IEEE Micro, 20(6):26–44,
2000.

[11] Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev
Khanna, and Nitish Korula. Approximability of ca-
pacitated network design. In IPCO, pages 78–91, 2011.

[12] Deeparnab Chakrabarty, Ravishankar Krishnaswamy,
Shi Li, and Srivatsan Narayanan. Capacitated network
design on undirected graphs. In APPROX, 2013.

[13] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shep-
herd. Multicommodity flow, well-linked terminals, and
routing problems. In STOC, pages 183–192, 2005.

[14] Guy Even, Joseph Naor, Satish Rao, and Baruch
Schieber. Divide-and-conquer approximation algo-
rithms via spreading metrics. J. ACM, 47(4):585–616,
2000.

[15] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A.
Harvey, and Debmalya Panigrahi. A general framework
for graph sparsification. In STOC, pages 71–80, 2011.

[16] Naveen Garg, Vijay V. Vazirani, and Mihalis Yan-
nakakis. Approximate max-flow min-(multi)cut the-
orems and their applications. SIAM J. Comput.,
25(2):235–251, 1996.

[17] Michel X. Goemans and David P. Williamson. A
general approximation technique for constrained forest

problems. SIAM J. Comput., 24(2):296–317, 1995.
[18] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk

Pruhs. Online primal-dual for non-linear optimiza-
tion with applications to speed scaling. CoRR,
abs/1109.5931, 2011.

[19] Anupam Gupta, Amit Kumar, Martin Pál, and Tim
Roughgarden. Approximation via cost sharing: Sim-
pler and better approximation algorithms for network
design. J. ACM, 54(3):11, 2007.

[20] M. Hajiaghayi, R. Khandekar, G. Kortsarz, and Z. Nu-
tov. Capacitated network design problems: hardness,
approximation algorithms, and connections to group
steiner tree. In Manuscript, 2013.

[21] William B. Johnson, Gideon Schechtman, and Joel
Zinn. Best constants in moment inequalities for linear
combinations of independent and exchangeable random
variables. Ann. Probab., (1):234–253, 1985.

[22] David R. Karger. Random sampling in cut, flow, and
network design problems. Mathematics of Operations
Research, 24(2):383–413, 1999.

[23] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani.
Graph partitioning using single commodity flows. J.
ACM, 56(4), 2009.

[24] James F. Kurose and Keith W. Ross. Computer
Networking: A Top-Down Approach. Addison-Wesley
Publishing Company, USA, 2009.

[25] Frank Thomson Leighton and Satish Rao. Multicom-
modity max-flow min-cut theorems and their use in de-
signing approximation algorithms. J. ACM, 46(6):787–
832, 1999.

[26] Nathan Linial, Eran London, and Yuri Rabinovich.
The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.

[27] Rajeev Motwani and Prabhakar Raghavan. Random-
ized Algorithms. Cambridge University Press, 1995.

[28] Satish Rao and Shuheng Zhou. Edge disjoint paths
in moderately connected graphs. SIAM J. Comput.,
39(5):1856–1887, 2010.

[29] Haskell P. Rosenthal. On the subspaces of Lp (p > 2)
spanned by sequences of independent random variables.
Israel J. Math., 8:273–303, 1970.

[30] Paul D. Seymour. Packing directed circuits fraction-
ally. Combinatorica, 15(2):281–288, 1995.

[31] Daniel A. Spielman and Shang-Hua Teng. Spectral
sparsification of graphs. SIAM J. Comput., 40(4):981–
1025, 2011.

[32] Adam Wierman, Lachlan L. H. Andrew, and Ao Tang.
Power-aware speed scaling in processor sharing sys-
tems. In INFOCOM, pages 2007–2015, 2009.

1153 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d

09
/1

2/
16

 to
 1

28
.5

9.
15

0.
14

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

