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Abstract
We consider a general online scheduling problem on
a single machine with the objective of minimizing∑
j wjg(Fj), where wj is the weight/importance of job

Jj , Fj is the flow time of the job in the schedule, and g is
an arbitrary non-decreasing cost function. Numerous nat-
ural scheduling objectives are special cases of this general
objective. We show that the scheduling algorithm Highest
Density First (HDF) is (2+ε)-speedO(1)-competitive for
all cost functions g simultaneously. We give lower bounds
that show the HDF algorithm and this analysis are essen-
tially optimal. Finally, we show scalable algorithms are
achievable in some special cases.

1 Introduction
In online scheduling problems a collection of jobs
J1, . . . , Jn arrive over time to be scheduled by one or
more servers. Job Jj arrives at a nonnegative real release
time rj , and has a positive real size/work pj . A client sub-
mitting a job would like their job completed as quickly as
possible. In other words, the client desires the sever to
minimize the flow time of their job. The flow time Fj of
job Jj is defined as Cj − rj , where Cj is the time when
the job Jj completes. When there are multiple unsatisfied
jobs, the server is required to make a scheduling decision
of which job or jobs to prioritize. The order the jobs are
completed depends on a global scheduling objective. For
example, a global objective could be to minimize the to-
tal flow time of all the jobs. A scheduler for this objec-
tive optimizes the average performance. Another possi-
ble objective is to minimize the total squared flow time,
i.e.

∑
j(Fj)

2. This objective naturally balances average
performance and fairness. The scheduling literature has
primarily focused on designing and analyzing algorithms
separately for each objective.

In this paper, we study a general online single ma-
chine scheduling problem that generalizes many natural
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scheduling objectives. For our problem, we allow each
job to have a positive real weight/importance wj . For a
job Jj with flow time Fj , a cost of wjg(Fj) is incurred
for the job. The only restriction on the cost function
g : R≥0 → R≥0 is that it is nondecreasing, so that it is
never cheaper to finish a job later. The cost of a schedule
is
∑
j wjg(Fj). We assume that preemption is allowed

without any penalty. This framework generalizes many
scheduling problems that have been studied in scheduling
literature such as the objectives mentioned above and the
following.

Weighted Flow Time: When g(x) = x, the objective
becomes the total weighted flow time [7]. The total
stretch is a special case of the total weighted flow
time where wj = 1/pj [8].

Weighted Flow Time Squared: If g(x) = x2 then the
scheduling objective is the sum of weighted squares
of the flows of the jobs [4].

Weighted Tardiness with Equal Spans: Assume that
there is a deadline dj for each job Jj that is equal
to the release time of j plus a fixed span d. If
g(t) = 0 for t not greater than the deadline dj , and
g(t) = wj(t − dj) for t greater than the deadline
rj + d, then the objective is weighted tardiness.

Weighted Exponential Flow: If g(x) = ax, for some
real value a > 1, then the scheduling objective is the
sum of the exponentials of the flow, which has been
suggested as an appropriate objective for scheduling
problems related to air traffic control, and quality
control in assembly lines [5, 6].

For the latter two objectives, no non-trivial results
were previously known in the online setting. Note that our
general problem formulation encompasses settings where
the penalty for delay may be discontinuous, as is the
penalty for late filing of taxes or late payment of parking
fines. To our best knowledge, minimizing a discontinuous
cost function has not been been previously studied in non-
stochastic online scheduling.

Most commonly one seeks online algorithms that
guarantee that the degradation in the scheduling objective
relative to some benchmark is modest/minimal/bounded.
The most natural benchmark is the optimal offline sched-
ule. If every online algorithm performs poorly compared



to the optimal solution, as is commonly the case, the most
commonly used alternate benchmark is the optimal sched-
ule on a slower processor [16]. The algorithm A is said
to be s-speed c-competitive if A with an s speed proces-
sor is guaranteed to produce a schedule with an objective
value at most c times the optimal objective value obtain-
able on a unit speed processor. The informal notion of an
online scheduling algorithm A being “reasonable” is then
generally formalized as A having constant competitive-
ness for some small constant speed augmentation s. In-
tuitively, a s-speed O(1)-competitive algorithm should be
able to handle a load of 1

s of the server capacity [18]. Usu-
ally the ultimate goal is to find a scalable algorithm, one
where the speed augmentation required to achieve O(1)-
competitiveness is arbitrary close to one. Our main result,
given in Section 2, is:

• The scheduling algorithm Highest Density First
(HDF) is (2 + ε)-speed O(1)-competitive for all cost
functions g.

The density of a job Jj is dj =
wj

pj
, the ratio of the

weight of the job over the size of the job. The algorithm
HDF always processes the job of highest density. Note
that HDF is (2 + ε)-speed O(1)-competitive simultane-
ously for all cost functions g. This is somewhat surprising
since HDF is oblivious to the cost function g. Indeed,
this implies that HDF performs reasonably for highly dis-
parate scheduling objectives such as average flow time
and exponential flows. In practice it is often not clear what
the scheduling objective should be. For competing objec-
tives, tailoring an algorithm for one can come at the cost
of not optimizing the other. Our analysis shows that no
single objective needs to be chosen. As long as the ob-
jective falls into the very general framework we consider,
HDF will optimize the objective. The main idea of this
analysis of HDF is to show that at all times, and for all
ages A, there must be Ω(1) times as many jobs of age A
in the optimal (or an arbitrary) schedule as there are in
HDF’s schedule. The bulk of the proof is a constructive
method to identify the old jobs in the optimal schedule.

In Section 3 we also show that it is not possible to
significantly improve upon HDF, or this analysis, along
several axes:
• If each job Jj has a distinct cost function gj then there

is no O(1)-speed O(1)-competitive algorithm for the
objective

∑
j gj(Fj). Thus it is necessary that the cost

functions for the jobs be uniform. Our lower bound
instance is similar to and inspired by an instance given
in Theorem 6.1 of [11].

• There is no online algorithm that is (2 − ε)-speed
O(1)-competitive and oblivious of the cost function
for any fixed ε > 0. Hence HDF is essentially the
optimal oblivious algorithm.

• No scalable algorithm exists. In other words, while
there may be a non-oblivious algorithm that is O(1)-
competitive with less than a factor of two speed aug-
mentation, some nontrivial speed augmentation is nec-
essary.
All of these lower bounds hold even in the case where

all jobs have unit weights. Hence, the intrinsic difficulty
of the problem is unaffected by weights/priorities. All
of these lower bounds hold even for randomized algo-
rithms. Hence, randomization does not seem to be par-
ticularly useful to the online algorithm. In contrast, we
show that in some special cases, scalable algorithms are
achievable:
• In Section 4 we show that the algorithm First-In-First-

Out (FIFO) is scalable when jobs have unit sizes and
weights.
• In Section 5 we show that a variation of the algorithm

Weighted Late Arrival Processor Sharing (WLAPS) is
scalable when the cost function g is concave, contin-
uous and twice-differentiable; hence g′′(F ) ≤ 0 for
all F ≥ 0. A concave cost function implies that
the goal is to finish as many jobs quickly as possi-
ble. The longer a job waits to be satisfied, the less
urgent it is to complete the job. This objective can
be viewed as making a few clients really happy rather
than making all clients moderately happy. Although
all of the scheduling literature that we are aware fo-
cuses on convex cost functions, there are undoubtedly
some applications where a concave costs function bet-
ter models the scheduler’s objectives. The algorithm
WLAPS is oblivious to the cost function g as well as
nonclairvoyant. A nonclairvoyant algorithm is oblivi-
ous to the sizes of the jobs.

1.1 Related Results The online scheduling results that
are probably most closely related to the results here are
the results in [4], which considers the special case of our
problem where the cost function is polynomial. The re-
sults in [4] are similar in spirit to the results here. They
show that well-known priority scheduling algorithms have
the best possible performance. In particular, [4] showed
that HDF is (1 + ε)-speed O(1/εk)-competitive where
k is the degree of the polynomial and 0 < ε < 1.
[4] also showed similar results for the scheduling algo-
rithms Shortest Job First and Shortest Remaining Process-
ing Time where jobs are of equal weight/importance. No-
tice that these results depend on the degree of the poly-
nomial. Our work shows that HDF is O(1)-competitive
independent of the rate of growth of the objective func-
tion when given 2 + ε resource augmentation for a fixed
0 < ε < 1. [4] also showed that any online algorithm
is nΩ(1)-competitive without resource augmentation. The
analyses of HDF in [4] essentially showed that at all



times, and for all ages A, there must be Ω(1) times as
many jobs of age Ω(A) in the optimal (or an arbitrary)
schedule as there are in HDF’s schedule. If the cost func-
tion g is arbitrary, such a statement is not sufficient to
establish O(1)-competitiveness. In particular, if the cost
function g(F ) grows exponentially quickly depending on
F or has discontinuities, the previous analysis does not
imply HDF has bounded competitiveness. We show the
stronger statement that there are Ω(1) times as many jobs
in the optimal schedule that are of age at least A. This
necessitates that our proof is quite different than the one
in [4].

It is well known that Shortest Remaining Processing
Time is optimal for total flow time, when all jobs are
of equal weight/importance and when g(x) = x. HDF
was first shown to be scalable for weighted flow, when
g(x) = x, in [7]. The nonclairvoyant algorithm Shortest
Elapse Time First is scalable for total flow time [16].
The algorithm LAPS that round robins among recently
arriving jobs is also nonclairvoyant and scalable for total
flow time [13]. The nonclairvoyant algorithm WLAPS, a
natural extension of LAPS was shown to be scalable for
weighted flow time [2], and later for weighted squares of
flow time [12].

Recently, Bansal and Pruhs considered the offline
version of this problem, where each job Jj has a indi-
vidual cost function gj(x) [3]. The main result in [3]
is a polynomial-time O(log log nP )-approximation algo-
rithm, where P is the ratio of the size of the largest job to
the size of the smallest job. This result is without speed
augmentation. Obtaining a better approximation ratio,
even in the special case of uniform linear cost functions,
that is when g(x) = x, is a well known open problem.
Thus it is fair to say that the problem that considers gen-
eral cost functions is very challenging even in the offline
setting.

As mentioned before, our result shows that with extra
speed HDF is O(1)-competitive simultaneously for all
cost functions g. Our one-for-all result could be useful
particularly when the algorithm designer is not certain
which scheduling objective to optimize among multiple
objectives that could compete with each other. This issue
motivated the work in [1, 17] to develop algorithms for
load balancing problems on multiple machines that are
good simultaneously for different norms.

1.2 Basic Definitions and Notation Before describ-
ing our results, we formally define some notation. Let
n denote the total number of jobs. Jobs are indexed
as J1, J2, ..., Jn. Job Ji arrives at time ri having
weight/importancewi and initial work/size pi. For a cer-
tain schedule A, let CAi be the completion time of Ji un-
der the schedule A. Let FAi = CAi − ri denote the flow
time of job Ji . The cost function g : R≥0 → R≥0 is a

non-decreasing function that takes a flow time and gives
the cost for the flow time. That is, it incurs cost g(FAi ) for
the unweighted objective and wig(FAi ) for the weighted
objective. If the schedule is clear in context, the notation
A may be omitted. Similarly, we let C∗i and F ∗i denote
the completion time and flow time of job Ji by a fixed op-
timal schedule. We will let A(t) denote the set of unsatis-
fied jobs in the schedule at time t by the online algorithm
A we consider. Likewise, O(t) denotes the analogous set
for a fixed optimal solution OPT. We will overload nota-
tion and allowA and OPT to denote the algorithmsA and
OPT as well as their final objective. We will use pAi (t)
and pOi (t) to denote the remaining work at time t for job
Ji in the A’s schedule and OPT’s schedule, respectively.
Throughout the paper, for an interval I , we let |I| denote
the length of the interval I . For two intervals I and I ′ ⊆ I
we will let I \I ′ denote I with the subinterval I ′ removed.

2 Analysis of HDF
We show that Highest Density First (HDF) is (2+ε)-speed
O( 1

ε )-competitive, for any fixed ε > 0, for the objective
of
∑
i∈[n] wig(Fi). We first appeal to the result in [7] that

if HDF is s-speed c-competitive when jobs are unit sized
then HDF is (1 + ε)s-speed

(
1+ε
ε · c

)
-competitive when

jobs have varying sizes. Although in [7], this reduction
is stated only for the objective of weighted flow, it can be
easily extended to our general cost objective. We provide
a full proof of this in Section 6.

LEMMA 2.1. [7] If HDF is s-speed c-competitive for
minimizing

∑
i∈[n] wig(Fi) when all jobs have unit size

and arbitrary weights then HDF is (1 + ε)s-speed(
1+ε
ε · c

)
-competitive for the same objective when jobs

have varying sizes and arbitrary weights where ε > 0
is a constant.

This reduction slices each job Ji into unit sized jobs
of the same density whose total size is pi. Reducing
from an integral objective to a fractional objective has
become standard, e.g. [7, 4, 10]. Therefore it is sufficient
to show that HDF is 2-speed O(1)-competitive for unit-
sized jobs. Thus we will make our analysis assuming
that all jobs have unit size, which can be set to 1 without
loss of generality by scaling the instance. We assume
without loss of generality that weights are no smaller than
one. For the sake of analysis, we partition into jobs into
classes Wl, l ≥ 0 depending on their weight: Wl :=
{Ji | 2l ≤ wi < 2l+1}. We let W≥l :=

⋃
l′≥lWl′ .

Consider any input sequence σ where all jobs have unit
size. We consider the algorithm HDF with 2 speed-up.
Note that HDF always schedules the job with the largest
weight when jobs have unit size. We assume that HDF
breaks ties in favor of the job that arrived the earliest.
To prove the competitiveness of HDF on the sequence σ,
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Figure 1: The graph G.

we will recast our problem into a network flow where a
feasible maximum flow maps flow times of the jobs in the
algorithm’s schedule and those in the optimal solution’s
schedule. The weight of each job in the algorithm’s
schedule will be charged to jobs in the optimal solution’s
schedule that have flow time at least as large. Moreover,
the total weight of the algorithm’s jobs mapped to a single
job Ji in the optimal solution’s schedule will be bounded
by O(wi). Once this is established, the competitiveness
of HDF follows.

Formally, the network flow graph G = (V = {s} ∪
X ∪ Y {t}, E) is constructed as follows. We refer the
reader to Figure 1. There are source and sink vertices
s and t respectively. There are two partite sets X and
Y . There is a vertex vx,i ∈ X and a vertex vy,i ∈ Y
corresponding to job Ji. Intuitively, the vertices in X
correspond to jobs in the algorithm’s schedule and those
in Y correspond to jobs in the optimal solution’s schedule.
There is an edge (s, vx,i) with capacity wi for all i ∈ [n].
There is an edge (vx,i, t) with capacity 8wi for all i ∈ [n].
Making the capacity the of edge (vy,i, t) equal to 8wi
ensures that job Ji in the optimal solution’s schedule is not
overcharged. There exists an edge (vx,i, vy,j) of capacity
∞ if Fi ≤ F ∗j andwi ≤ wj . Recall that Fi and F ∗i denote
the flow time of job Ji in the algorithm’s and the optimal
solution’s schedule respectively.

Our main task left is to show the following lemma.

LEMMA 2.2. The minimum cut in the graph G is∑
i∈[n] wi.

Assuming that Lemma 2.2 holds, we can easily prove
the competitiveness of HDF for unit sized jobs.

THEOREM 2.1. HDF is 2-speed 8-competitive for mini-
mizing

∑
i∈[n] wi · g(Fi) when all jobs are unit sized.

Proof. Lemma 2.2 implies that the maximum flow f is∑
i∈[n] wi. Let f(u, v) denote the flow on the edge

(u, v). Note that the maximum flow is achieved only when
f(s, vx,i) = wi for all jobs i ∈ [n]. We charge the cost of
each job in the algorithm’s schedule to the optimal cost in

the most obvious way as suggested by the maximum flow.
That is, by chargingwig(Fi) to

∑
j f(vx,i, vy,j)g(F ∗j ) we

have:

HDF =
∑
i∈[n]

wig(Fi)

=
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(Fi)

[Since f is conserved at vx,i]

≤
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(F ∗j )

[Since (vx,i, vy,i) ∈ E only if Fi ≤ F ∗j ]

=
∑
j∈[n]

f(vy,j , t)g(F ∗j )

[Since f is conserved at vy,j]

≤
∑
j∈[n]

8wjg(F ∗j )

[8wj is the capacity on vy,j]
= 8OPT

By Lemma 2.1 and Theorem 2.1, we obtain

THEOREM 2.2. HDF is (2 + ε)-speed O( 1
ε )-competitive

for minimizing
∑
i∈[n] wig(Fi) when jobs have arbitrary

sizes and weights.

The remaining section is devoted to proving
Lemma 2.2. Let (S, T ) be a minimum s-t cut. For nota-
tional simplicity, for any pair of disjoint subsets of vertices
A and B, we allow (A,B) to denote the set of edges from
vertices in A to vertices in B. We let c(e) denote the ca-
pacity of edge e and c(A,B) the total capacity of all edges
in (A,B). LetXs = X∩S,Xt = X∩T , Ys = Y ∩S and
Yt = Y ∩ T . Note that all edges in ({s}, Xt) are cut by
the cut (S, T ), i.e. ({s}, Xt) ⊆ (S, T ) and c({s}, Xt) =∑
vx,i∈Xt

wi. Knowing that (Ys, {t}) ⊆ (S, T ), it suf-
fices to show that

8
∑

vy,j∈Ys

wj ≥
∑

vx,i∈Xs

wi.(2.1)

This suffices because if we assume (2.1) is true, we
have c(S, T ) ≥ ∑

vx,i∈Xt
wi + 8

∑
vy,j∈Ys

wj ≥∑
vx,i∈Xt

wi +
∑
vx,i∈Xs

wi =
∑
i∈[n] wi.

Our attention is focused on showing (2.1). For any
V ′ ⊆ V , let N(V ′) denote the set of out-neighbors of V ′,
i.e. N(V ′) = {z | (v, z) ∈ E, v ∈ V ′}. Since (S, T )
is a minimum s-t cut, (S, T ) does not contain an edge
connecting a vertex in X to a vertex in Y ; recall that such
an edge has infinite capacity. Therefore N(Xs) ⊆ Ys
where N(Xs) is the out-neighborhood of the vertices
in Xs. For any positive integer l, define Wl(Xs) :=
{vx,i | vx,i ∈ Xs, Ji ∈ Wl}; recall that Ji is in classWl



if 2l ≤ wi < 2l+1. We show the following key lemma.
Here it is shown that the neighborhood ofWl(Xs) is large
compared to |Wl(Xs)|.

LEMMA 2.3. The vertices in Wl(Xs) have at least
1
2 |Wl(Xs)| neighbors in Y , i.e. |N(Wl(Xs)) ∩ Y | ≥
1
2 |Wl(Xs)|.

Proof. Consider each maximal busy time interval I where
HDF is always scheduling jobs in W≥l. Let C(I, l) be
the set of jobs in Wl(Xs) which are completed by HDF
during the interval I . Let Jk be the job that is inWl(Xs)
which is completed during the interval I and has the
highest priority in HDF’s schedule (if such a job exists).
This implies that the job Jk has the shortest flow time of
any job inWl(Xs) that is completed during the interval I .
We will show that vx,k has at least 1

2 |C(I, l)| neighbors in
Y , i.e.

|N({vx,k}) ∩ Y | ≥
1

2
|C(I, l)|(2.2)

and all jobs corresponding to these neighbors were com-
pleted by HDF during I . Taking a union over all maximal
busy intervals will complete the proof.

We now focus on proving (2.2). Recall that Fk =
Ck−rk is the flow time of job Jk. Since Jk has the highest
priority among all jobs in C(I, l), Jk is not preempted
during [rk, Ck] by any job in C(I, l) (but could be by
higher priority jobs not in C(I, l)). Hence Jk is the only
job in C(I, l) that is completed during [rk, Ck]. Now we
count the number of jobs in C(I, l) that are completed
during I \ [rk, Ck]. Since HDF has 2-speed, HDF can
complete at most 2|I| − 2Fk volume of work during
I \ [rk, Ck]. Since we assumed all jobs have unit size,
the number of such jobs is at most b2|I| − 2Fkc. Hence,
using this and by including Jk itself we obtain

b2|I| − 2Fkc+ 1 ≥ |C(I, l)|(2.3)

We now lowerbound |N({vx,k}) ∩ Y | to show (2.2).
Roughly speaking, we want show that OPT has many jobs
of flow time at least Fk. Let JHDF(I) be the set of jobs
that are completed by HDF during I . Note that all jobs in
JHDF(I) must arrive during the interval I . For the sake
of contradiction, suppose this is not true, i.e. there is a job
Jj that arrives before the start of I and completes during I .
Then HDF must be busy processing jobs of weight as high
as Jj during [rj , Cj ], contradicting the definition of the
interval I being maximal. Consider the time at e(I) + Fk
where e(I) is the ending time of the interval I . Since the
volume of jobs in JHDF(I) is 2|I| (recall that HDF has
2 speed) and OPT can process at most |I|+Fk volume of
work during I ∪ [e(I), e(I)+Fk], OPT must have at least
2|I| − (|I|+Fk) = |I| −Fk volume of jobs in JHDF(I)
left at the time e(I) + Fk. See the Figure 2. Therefore if
|I|−Fk is an integer, OPT has at least |I|−Fk+1 jobs in

timeI

rk Ck

e(I)

e(I) + Fk

Figure 2: The interval I in HDF’s schedule.

JHDF(I) that have flow time at least Fk; here one extra
job that is completed by OPT exactly at time e(I) + Fk
is counted. If |I| − Fk is not integral, then OPT has at
least d|I| − Fke jobs in JHDF(I) that have flow time at
least Fk. In both cases, we conclude that OPT has at least
b|I| − Fkc + 1 jobs in JHDF(I) that have flow time at
least Fk. All such jobs have weight at least 2l, since they
are in JHDF(I). Hence the vertices in Y corresponding
to such jobs are neighbors of vx,k and we have

|N({vx,k}) ∩ Y | ≥ b|I| − Fkc+ 1(2.4)

The inequalities (2.3) and (2.4) proves (2.2) and the
lemma follows.

Now we are ready to complete the proof of
Lemma 2.2. For a subset S ⊆ X let N(S) denote the
out neighborhood S and let N(S, l) := N(S) ∩ Wl. By
Lemma 2.3 we have,

∑
vx,i∈Wl(Xs)

wi ≤ |Wl(Xs))|2l+1

≤ 2|N(Wl(Xs))|2l+1 [By Lemma 2.3]

= 2
∑
h≥l

|N(Wl(Xs), h)|2l+1

= 2
∑
h≥l

∑
vy,j∈N(Wl(Xs),h)

2l+1

= 4
∑
h≥l

1

2h−l

∑
vy,j∈N(Wl(Xs),h)

2h

= 4
∑
h≥l

1

2h−l

∑
vy,j∈N(Wl(Xs)),h)

wj

Using this we have that,

∑
vx,i∈Xs

wi =
∑
l

∑
vx,i∈Wl(Xs)

wi

≤
∑
l

4
∑
h≥l

1

2h−l

∑
vy,j∈N(Wl(Xs),h)

wj

≤ 4
∑
h

∑
l≤h

1

2h−l

∑
vy,j∈N(Wl(Xs),h)

wj

≤ 4
∑
h

∑
l≤h

1

2h−l

∑
vy,j∈N(Xs,h)

wj



≤ 8
∑
h

∑
vy,j∈N(Xs,h)

wj

≤ 8
∑

vy,j∈Ys

wj

This completes proving (2.1) and Lemma 2.2.

3 Lower Bounds
In this section we show that there is no scalable algorithm,
there is no better oblivious algorithm than HDF, and the
uniform cost functions are necessary to obtainO(1)-speed
O(1)-competitiveness. All these lower bounds hold even
for randomized algorithms.

THEOREM 3.1. For any ε > 0, no randomized online
algorithm is constant competitive with speed 7/6 − ε for
the objective of

∑
j g(Fj).

Proof. We will rely on Yao’s Min-max Principle to prove
a lower bound on the competitive ratio of any randomized
online algorithm [9]. The randomized instance is con-
structed as follows. Consider the cost function g(F ) = 2c
for F > 15 and g(F ) = 0 for 0 ≤ F ≤ 15 where c ≥ 1 is
an arbitrary constant. The job instance is as follows.
• Jb: one big job of size 15 that arrives at time 0.
• S1: a set of small jobs that arrive at time 10. Each job

has size 35−30s
c and the total size of jobs in S1 is 10.

• S2: a set of small jobs that arrive at time 15. Each job
has size 35−30s

c and the total size of jobs in S2 is 10.
For simplicity, we assume that 10c

35−30s is an integer.
The job Jb and the set S1 of jobs arrive with probability
1, while the set S2 of jobs arrives with probability 1

2c . Let
E denote the event that the set S2 of jobs arrives.

Consider any deterministic algorithm A. We will
consider two cases depending on whether A finishes Jb
by time 15 or not. Note that A’s scheduling decision
concerning whether A completes Jb by time 15 or not
does not depend on the jobs in S2, since jobs in S2 arrive
at time 15. We first consider the case where A did not
finish the big job Jb by time 15. Conditioned on ¬E ,
A’s cost is at least 2c. Hence A has an expected cost at
least 2c(1 − 1

2c ) ≥ c. Now consider the case where A
completed Jb by time 15. For this case, say the event
E occurred. Let V (S, t) :=

∑
j∈S p

A(t) denote the
remaining volume, underA’s schedule, of all jobs in some
set S at time t. Let s = 7/6 − ε be the speed that A is
given where ε > 0 is a fixed constant. Since A spent
15
s amount of time during [0, 15] working on Jb, A could

have spent at most 15 − 15
s time on jobs in S1. Hence

it follows V (S1, 15) ≥ 10 − s(15 − 15
s ) = 25 − 15s

and V (S2, 15) = 10. Since A can process at most 15s
volume of work during [15, 30], we have V (S1∪S2, 30) ≥
35−30s = 30ε. Since each job in S1∪S2 has size 35−30s

c ,

the number of jobs left is at least c. Since at time 30, each
job has flow time at least 15, the algorithm A has total
cost no smaller than 2c2. Recalling that Pr[E ] = 1

2c , A’s
expected cost is at least c.

Now let us look at the adversary’s schedule. Condi-
tioned on ¬E , the adversary completes Jb first and all jobs
in S1 by time 25, thereby having no cost. Conditioned on
E , the adversary delays the big job Jb until it completes all
jobs in S1 and S2 by time 20 and 30, respectively. Note in
this schedule that each job in S1∪S2 has flow time at most
15. The adversary has cost 2c only for the big job. Hence
the expected cost of the adversary is 1

2c (2c) = 1. This
together with the above argument that A’s expected cost
is at least c shows that the competitive ratio of any online
algorithm is at least c. Since this holds for any constant c,
the theorem follows.

THEOREM 3.2. For any ε > 0, there is no oblivious
randomized online algorithm that is O(1)-competitive for
the objective of

∑
j g(Fj) with speed augmentation 2− ε.

Proof. We appeal to Yao’s Min-max Principle [9]. Let
A be any deterministic online algorithm. Consider the
cost function g such that g(F ) = 2c for F > D and
g(F ) = 0 for 0 ≤ F ≤ D. The constant D is hidden to
A, and is set to 1 with probability 1

2c and to n + 1 with
probability 1 − 1

2c . Let E denote the event that D = 1.
At time 0, one big job Jb of size n + 1 is released. At
each integer time 1 ≤ t ≤ n, one unit sized job Jt is
released. Here n is assumed to be sufficiently large such
that ε(n+ 1)− 1 > c. Note that the event E has no effect
onA’s scheduling decision, sinceA is ignorant of the cost
function.

Suppose the online algorithm A finished the big job
Jb by time n + 1. Further, say the event E occurs; that is
D = 1. Since 2n+1 volume of jobs in total were released
and A can process at most (2− ε)(n+ 1) amount of work
during [0, n+ 1], A has at least 2n+ 1− (2− ε)(n+ 1)
volume of unit sized jobs unfinished at time n + 1. Each
of such unit sized jobs has flow time greater than 1, hence
A has total cost at least 2c(ε(n+1)−1)) > 2c2. Knowing
that Pr[E ] = 1

2c , A has an expected cost greater than
c. Now suppose A did not finish Jb by time n + 1.
Conditioned on ¬E , A has cost at least 2c. Hence A’s
expected cost is at least 2c(1− 1

2c ) > c.
We now consider the adversary’s schedule. Condi-

tioned on E (D = 1), the adversary completes each unit
sized job within one unit time hence has a non-zero cost
only for Jb, so has total cost 2c. Conditioned on ¬E
(D = n + 1), the adversary schedules jobs in a first in
first out fashion thereby having cost 0. Hence the adver-
sary’s expected cost is 1

2c (2c) = 1. The claim follows
since A has cost greater than c in expectation.

THEOREM 3.3. There is no randomized online algorithm



that is O(1)-speed O(1)-competitive for the objective of∑
j gj(Fj).

Proof. To show a lower bound on the competitive ratio
of any randomized algorithm, we appeal to Yao’s Min-
max Principle [9] and construct a distribution on job
instances for which any deterministic algorithm performs
poor compared to the optimal schedule. All cost functions
gi have a common structure. That is, each job Ji is
completely defined by two quantities di and λi, which we
call Ji’s relative deadline and cost respectively: gi(Fi) =
0 for 0 ≤ Fi ≤ di and gi(Fi) = λi for Fi > di. Hence
Ji incurs no cost if completed by time ri + di and cost λi
otherwise. Recall that ri and pi are Ji’s arrival time and
size respectively. For this reason, we will say that Ji has
deadline ri + di. For notational convenience, let us use
a compact notation (ri, ri + di, pi, λi) to characterize all
properties of each job Ji where pi is Ji’s size.

Let h, T, L be integers such that h ≥ 2s, T = 2h,
L > 2cT 2. For each integer 0 ≤ l ≤ h = 2s, there is
a set Cl of jobs (according to a distribution we will define
soon, some jobs in Cl may or may not arrive). All jobs
have deadlines no greater than T . We first describe the
set C0. In C0, all jobs have size 1 and relative deadline 1,
and there is exactly one job that arrives at each unit time.
The job with deadline t has cost Lt. More concretely,
C0 = {(t − 1, t, 1, Lt) | t is an integer such that 1 ≤
t ≤ T}. Note that |C0| = T . We now describe the
other sets of jobs Cl for each integer 1 ≤ l ≤ h. All
jobs in Cl have size 2l−1 and relative deadline 2l, and at
every 2l time steps, exactly one job in Cl arrives. The job
with deadline t has cost Lt. Formally, Cl = {(2l(j −
1), 2lj, 2l−1, L2lj) | j is an integer such that 1 ≤ j ≤
2h−l}. Note that |Cl| = 2h−l. Let C =

⋃
0≤l≤h Cl. Notice

that all jobs with deadline t have cost Lt.
As we mentioned above, jobs in C do not arrive

according to a probability distribution. To formally define
such a distribution on job instances, let us group jobs
depending on their arrival time. Let Rt denote the set of
jobs in C that arrive at time t. Let R≤t :=

⋃
0≤t′≤tRt′ .

We let Et, 0 ≤ t ≤ T − 1 denote the event that
all jobs in R≤t arrive and these are the only jobs that
arrive. Let Pr[Et] = 1

Ltθ where θ =
∑

0≤j≤T−1
1
Lj is a

normalization factor to ensures that
∑

0≤t≤T−1 Pr[Et] =
1.

The following lemma will reveal a nice structure of
the instance we created. Let Dt denote the set of jobs in C
that have deadline t. Let D>t :=

⋃
t<t′≤T Dt′ .

LEMMA 3.1. Consider the occurrence of event Et, 0 ≤
t ≤ T − 1. There exists a schedule with speed 1 that
completes all jobs in R≤t ∩ D>t before their deadline.
Further such a schedule has cost at most 2TLt.

Proof. We first argue that all jobs in R≤t ∩ D>t

can be completed before their deadline. Observe
that there exists exactly one job in Cl ∩ R≤t ∩ D>t
for each l. This is because the intervals {[2l(j −
1), 2lj] | j is an integer s.t. 1 ≤ j ≤ 2h−l} defined by
the arrival time and deadline of jobs in Cl is a partition of
the time interval [0, T ]. We schedule jobs inR≤t∩D>t in
increasing sizes. Hence the first job we schedule is the job
in C0 ∩ R≤t ∩ D>t and it has no choice other than being
scheduled exactly during [t, t+1]. Now consider each job
Ji in Cl ∩ R≤t ∩ D>t. It is not difficult to see that either
of [2l(j − 1), 2l(j − 1) + 2l−1] or [2l(j − 1) + 2l−1, 2lj]
is empty and therefore is ready to schedule the job Ji of
size 2l−1 in Cl ∩R≤t ∩D>t. Finally, we upper bound the
cost of the above schedule. Since all jobs with deadline
greater than t are completed before their deadline under
the schedule, each job can incur cost at most Lt. Know-
ing that there are at most 2T jobs, the total cost is at most
2TLt.

COROLLARY 3.1. E[OPT] ≤ 2T 2

θ .

Proof. Recall that Pr[Et] = 1
Ltθ . By Lemma 3.1,

we know, in case of the occurrence of event E , that
there exists a feasible schedule with speed 1 that re-
sults in cost at most 2TLt. Hence we have E[OPT] ≤∑

0≤t<T 2TLt 1
Ltθ = 2T 2

θ .

We now show any deterministic algorithm A per-
forms much worse than in expectation than the optimal
schedule OPT.

LEMMA 3.2. Any deterministic algorithm A given speed
less than s has cost at least Lθ in expectation.

Proof. Note that the total size of jobs in C0 is T and the
total size of jobs in each Cl, 1 ≤ l ≤ h is T/2. Hence the
total size of all jobs in C is at least (h/2+1)T ≥ (s+1)T .
The algorithm A, with speed s, cannot complete all jobs
in C before their deadline, since all jobs have arrival times
and deadlines during [0, T ]. Let Ji be a job in Dt+1

that A fails to complete before its deadline for an integer
0 ≤ t ≤ T − 1. Note that Ji arrives no later than t
since all jobs have size at least 1. Further, the decision
concerning whether A completes Ji before its deadline or
not has nothing to do with jobs in Rt+1. Hence it must
be the case that for at least one of the events E0, ..., Et,
A does not complete Ji by time t + 1, which incurs an
expected cost of at least 1

LtθL
t+1 ≥ L

θ .

By Yao’s Min-max Principle, Corollary 3.1 and
Lemma 3.2 shows the competitive ratio of any random-
ized algorithm is at least Lθ

/
2T 2

θ = L
2T 2 > c.

4 Analysis of FIFO for Unit Size Jobs
In this section we will show that FIFO is (1 + ε)-speed
O( 1

ε2 )-competitive for minimizing
∑
i∈[n] g(Fi) when



jobs have uniform sizes and unit weights. Without loss of
generality, we can assume that all jobs have size 1, since
jobs are allowed to arrive at arbitrary times. The proof
follows similarly as in the case where jobs have unit size
and arbitrary weight. Recall that in the previous section
we charged the flow time of a job in the algorithm’s
schedule to jobs in the optimal solution’s schedule that
have larger flow time. In this case we can get a tighter
bound on the number of jobs in the optimal solution’s
schedule that a job in FIFO’s schedule can charge to,
which allows us to reduce the resource augmentation.

Consider an input sequence σ and fix a constant 0 <
ε ≤ 1

2 . Let Fi denote the flow time of job Ji in FIFO’s
schedule and F ∗i be the flow time of Ji in OPT’s schedule.
Let G = (V,E) be a flow network. There are source and
sink vertices s and t, respectively. As before, there are
two partite sets X and Y . There is a vertex vx,i ∈ X
and a vertex vy,i ∈ Y corresponding to job Ji for all
i ∈ [n]. There is an edge (s, vx,i) with capacity 1 for
all i ∈ [n]. There is an edge (vy,i, t) with capacity 4

ε2 for
all i ∈ [n]. There exists an edge (vx,i, vy,j) of capacity
∞ if Fi ≤ F ∗j . The focus of this section is showing the
following lemma.

LEMMA 4.1. The maximum flow in G is n.

Assuming that this lemma is true, then the following
theorem can be shown.

THEOREM 4.1. FIFO is (1+ε)-speed 4
ε2 -competitive for

minimizing
∑
i∈[n] g(Fi) when all jobs are unit sized.

Proof. Lemma 4.1 states that the maximum flow in G is
n. Let f denote a maximum flow in G and let f(u, v) be
the flow on an edge (u, v). Note that the maximum flow
is achieved only when f(s, vx,i) = 1 for all i ∈ [n]. We
have that,

FIFO =
∑
i∈[n]

g(Fi) =
∑
i∈[n]

f(s, vx,i)g(Fi)

=
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(Fi)

[f is conserved at vx,i]

≤
∑
i∈[n]

∑
j∈[n]

f(vx,i, vy,j)g(F ∗j )

[vx,i, vy,j ∈ E only if Fi ≤ F ∗j ]

≤
∑
j∈[n]

4

ε2
g(F ∗j )

[f is conserved at vy,j and
the capacity of vy,jt is 4

ε2 ]

=
4

ε2
OPT

Thus it only remains to prove Lemma 4.1. Clearly
the min-cut value is at most n, thus we focus on lower
bounding the min-cut value. Let (S, T ) be a minimum cut
such that S contains the source s and T contains the sink
t. To simplify the notation let Xs = X ∩S, Xt = X ∩T ,
Ys = Y ∩ S and Yt = Y ∩ T . By definition each edge
connecting s to a vertex in Xt is in (S, T ) and the total
capacity of these cut edges is

∑
vx,i∈Xt

1. Knowing that
each edge from a vertex in Ys to t is in (S, T ), it suffices
to show that

∑
vy,j∈Ys

4

ε2
≥

∑
vx,i∈Xs

1.(4.5)

As in the proof of Lemma 2.2, Ys is a subset of the
out neighborhood of the vertices in Xs since the edges
connecting vertices in X and Y have capacity ∞. We
now show a lemma similar to Lemma 2.3

LEMMA 4.2. The vertices in Xs have at least ε2

4 |Xs|
neighbors in Y , i.e. |N(Xs) ∩ Y | ≥ ε2

4 |Xs|.

Proof. Consider a maximal time interval I where FIFO is
always busy scheduling jobs. Let Jk be the job (if exists)
inXs that has arrived the earliest (thus has highest priority
in FIFO) out of all the jobs in Xs scheduled during I . Let
C(I) be the jobs in Xs scheduled by FIFO during I . We
will show that vx,k has at least ε

2

4 |C(I)| neighbors in Y
such that for each such neighbor vy,j , FIFO completed
the corresponding job Jj during the interval I . By taking
a union over all possible intervals I , we will have that the
neighborhood of Xs has size at least ε

2

4 |Xs|.
Notice that FIFO does a (1 + ε)(|I| − Fk) volume

of work during I \ [rk, Ck] since FIFO is given (1 + ε)
speed and is busy during this interval. Knowing that jobs
are unit sized, FIFO completes at most b(1+ε)(|I|−Fk)c
jobs during I \ [rk, Ck]. The job Jk is the only job
in C(I) scheduled during [rk, Ck] because Jk has the
highest priority in FIFO’s schedule of the jobs in C(I).
This implies that |C(I)| ≤ b(1 + ε)(|I| − Fk)c + 1.
FIFO completes a volume of (1 + ε)|I| work during
I . Further, every job FIFO completes during I arrived
during I since FIFO was not busy before I and FIFO
scheduled these jobs during I . Let e(I) denote the ending
time point of I and JFIFO(I) be the jobs completed
by FIFO during I . The previous argument implies that
at least a (1 + ε)|I| − |I| − Fk = ε|I| − Fk volume
of work corresponding to jobs in JFIFO(I) remains in
OPT’s queue at time e(I) + Fk since OPT has 1 speed.
If ε|I| − Fk is integral then at least ε|I| − Fk + 1 jobs in
JFIFO(I) have flow time at least Fk in OPT’s schedule;
here there is one job that could be completed exactly at
time e(I) + Fk that is counted. Otherwise, OPT has
dε|I|−Fke = bε|I|−Fkc+1 jobs in JFIFO(I) that have



timeI
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Figure 3: The interval I and I ′ in FIFO’s schedule.

flow time at least Fk. In either case, at least bε|I|−Fkc+1
jobs in JFIFO(I) have flow time at least Fk in OPT’s
schedule.

First consider the case where Fk ≤ ε
2 |I|. In this case

at least bε|I| −Fkc+ 1 ≥ b ε2 |I|c+ 1 jobs wait at least Fk
time in OPT. Knowing that |C(I)| ≤ b(1+ε)(|I|−Fk)c+
1 ≤ b(1 + ε)|I|c + 1, the neighborhood of vx,k contains
at least b ε2 |I|c+ 1 ≥ ε

2(1+ε)b(1 + ε)|I|c − ε
2(1+ε) + 1 ≥

ε
2(1+ε) (b(1 + ε)|I|c + 1) ≥ ε

2(1+ε) |C(I)| ≥ ε2

2 |C(I)|
nodes. The last inequality follows from ε < 1/2.

Let us consider the other case that Fk > ε
2 |I|. Let

t∗ be the earliest time before Ck such that FIFO only
schedules jobs that arrived no later than rk during [t∗, Ck].
Equivalently, t∗ is the beginning of the interval I by
definition of FIFO. Notice that t∗ ≤ rk. Let I ′ =
[t∗, Ck]. We know that FIFO completes a (1 + ε)|I ′|
volume of work during |I ′|. Let JFIFO(I ′) denote the
jobs completed by FIFO during I ′. Any job inJFIFO(I ′)
arrives after t∗ because FIFO was not scheduling a job
before t∗ by definition of I ′. Note that any job in
JFIFO(I ′) will have flow time at least Fk if it is not
satisfied until time Ck, since the jobs arrived no later than
rk. See Figure 3. Therefore, at least a (1 + ε)|I ′| − |I ′| =
ε|I ′| ≥ εFk >

ε2

2 |I| volume work corresponding to jobs
in JFIFO(I ′) remains unsatisfied in OPT’s schedule at
time Ck because OPT has unit speed and it was assumed
that Fk > ε

2 |I|. Thus at least d ε22 |I|e jobs in JFIFO(I ′)
have flow time at least Fk in OPT. We also know that
|C(I)| ≤ b(1 + ε)(|I| − Fk)c + 1 ≤ (1 + ε)|I| since
Fk ≥ 1

1+ε . Together this shows that vx,k has at least
ε2

2(1+ε) |C(I)| ≥ ε2

4 |C(I)| neighbors in Y knowing that
ε ≤ 1

2 .

Using Lemma 4.2 we cam complete the proof of
Lemma 4.1. By Lemma 4.2 we have |Xs| ≤ 4

ε2 |N(Xs)∩
Y | ≤ 4

ε2 |Ys| which implies (4.5) and Lemma 4.1.

5 Analysis of WLAPS for Concave Functions
In this section we consider the objective function∑
i∈[n] wig(Fi) wherewi is a positive weight correspond-

ing to job Ji and g : R≥0 → R≥0 is a twice differentiable,
non-decreasing, concave function. We let g′ and g′′ de-
note the derivative of g and the second derivative function

of g. For this objective we will show a (1 + ε)-speed
O( 1

ε2 ) competitive algorithm that is non-clairvoyant. The
algorithm we consider is a generalization of the algorithm
WLAPS [13, 14, 12].

Consider any job sequence σ and let 0 < ε ≤ 1/3 be
fixed. Without loss of generality it is assumed that each
job has a distinct arrival time. We assume that WLAPS is
given (1 + 3ε)-speed. At any time t, let A(t) denote the
jobs in WLAPS’s queue. The algorithm at each time t finds
the set of the most recently arriving jobs A′(t) ⊆ A(t)
such that

∑
Ji∈A′(t) wig

′(t − ri) = ε
∑
Ji∈A(t) wig

′(t −
ri). The algorithm WLAPS distributes the processing
power amongst the jobs inA′(t) according to their current
increase in the objective. That is Jj ∈ A′(t) receives pro-
cessing power (1+3ε)wjg

′(t−rj)/(ε
∑
Ji∈A′(t) wig

′(t−
ri)).

In case where there does not exist such a set A′(t)
such that the sum of wig′(t − ri) over all jobs A′(t) is
exactly ε

∑
Ji∈A(t) wig

′(t − ri), we make the following
small change. Let A′(t) be the smallest set of the most re-
cently arriving jobs such that the sum of wig′(t− ri) over
all jobs in A′(t) is no smaller than ε

∑
Ji∈A(t) wig

′(t −
ri). We let the job Jk, which has arrives the earliest in
A′(t), to receive processing power

∑
Ji∈A′(t) wig

′(t −
ri) − ε

∑
Ji∈A(t) wig

′(t − ri). For simplicity, through-
out the analysis, we will assume that there exists such
a set A′(t) of the most recently arriving jobs such that∑
Ji∈A′(t) wig

′(t − ri) = ε
∑
Ji∈A(t) wig

′(t − ri). This
is done to make the analysis more readable and the main
ideas transparent.

To prove the competitiveness of WLAPS we define
the following potential function. For a survey on potential
functions for scheduling problems see [15]. For a job
Ji let pAi (t) be the remaining size of job Ji in WLAPS
schedule at time t and let pOi (t) be the remaining size
of job Ji in OPT’s schedule at time t. Let zi(t) =
max{pAi (t)− pOi (t), 0}. The potential function is,

Φ(t) =
1

ε

∑
Ji∈A(t)

wig
′(t− ai)

∑
Jj∈A(t),rj≥ri

zj(t).

We will look into non-continuous changes of Φ(t)
that occur due to job arrivals and completions, and con-
tinuous continuous changes of Φ(t) that occur due to
WLAPS’s processing, OPT’s processing and time elapse.
We will aggregate all these changes later.

Job Arrival: Consider when job Jk arrives at time
t. There the change in the potential function is
1
εwkg

′(0)zk(rk)+ 1
ε

∑
Ji∈A(t) wig

′(t−ai)zk(rk). When
job Ji arrives zi(ri) = 0, so there is no change in the
potential function.



Job Completion: The optimal solution completing a
job has no effect on the potential function. When the
algorithm completes a job Ji at time t, some terms may
disappear from Φ(t). It can only decrease the potential
function, since all terms in Φ(t) are non-negative.

Continuous Change: We now consider the continuous
changes in the potential function at time t. These include
changes due to time elapse and changes in the z variable
due to OPT and WLAPS’s processing of jobs. First
consider the change in due to time. This is equal to

d

dt
Φ(t) =

1

ε

∑
Ji∈A(t)

wig
′′(t− ai)

∑
Jj∈A(t),rj≥ri

zj(t)

We know that wi and zi(t) are positive for all jobs
Ji ∈ A(t). Further g′′ is always non-positive since g is
concave. Therefore, time changing can only decrease the
potential.

Now consider the change due to OPT’s processing. It
can be seen that the most OPT can increase the potential
function is to work exclusively on the job which has the
latest arrival time. In this case, for any job Ji ∈ A(t) the
variable

∑
Jj∈A(t),rj≥ri zj(t) changes at rate 1 because

OPT has 1 speed. The increase in the potential due to
OPT’s processing is at most

d

dt
Φ(t) ≤ 1

ε

∑
Ji∈A(t)

wig
′(t− ai)

Now consider the change in the potential function
due to the algorithm’s processing. The algorithm de-
creases the z variable and therefore can only decrease
the potential function. Recall that a job Jj ∈ A′(t)
is processed by WLAPS at a rate of (1 + 3ε)wjg

′(t −
rj)/(

∑
Ji∈A′(t) wig

′(t − ri)) because WLAPS is given
(1 + 3ε)-speed. Therefore, for each job Jj ∈ A′(t) \O(t)
the variable zj decrease at a rate of (1 + 3ε)wjg

′(t −
rj)/(

∑
Ji∈A′(t) wig

′(t − ri)). Hence we can bound the
change in the potential as,

d

dt
Φ(t)

≤ −1

ε

∑
Ji∈A(t)\A′(t)

wig
′(t− ai)

∑
Jj∈A′(t)\O(t)

(1 + 3ε)wjg
′(t− rj)∑

Jk∈A′(t) wkg′(t− rk)

≤ −1 − ε

ε

∑
Ji∈A(t)

wig
′(t− ai)

∑
Jj∈A′(t)\O(t)

(1 + 3ε)wjg
′(t− rj)∑

Jk∈A′(t) wkg′(t− rk)

[By definition of A′(t)]

= −1 − ε

ε2

∑
Jj∈A′(t)\O(t)

(1 + 3ε)wjg
′(t− rj)

≤ −1 + ε

ε2

∑
Jj∈A′(t)

wjg
′(t− rj) +

2

ε2

∑
Jj∈O(t)

wjg
′(t− rj)

[Since 0 < ε ≤ 1/3]

≤ −1 + ε

ε

∑
Jj∈A(t)

wjg
′(t− rj) +

2

ε2

∑
Jj∈O(t)

wjg
′(t− rj)

[By definition of A′(t)]

By combining the changes due to OPT and the
algorithm’s processing and the change due to time, the
continuous change in the potential function is at most,

1

ε

∑
Ji∈A(t)

wig
′(t− ai)−

1 + ε

ε

∑
Jj∈A(t)

wjg
′(t− rj)

+
2

ε2

∑
Jj∈O(t)

wjg
′(t− rj)

= −
∑

Jj∈A(t)

wjg
′(t− rj) +

2

ε2

∑
Jj∈O(t)

wjg
′(t− rj)

Completing the Analysis: At this point we are ready to
complete the analysis. We know that Φ(0) = Φ(∞) = 0
by definition of Φ, which implies that total sum of non-
continuous changes and continuous changes of Φ(t) is 0.
Further there are no increases in Φ for non-continuous
changes. Hence we have

∫∞
t=0

d
dtΦ(t) ≥ 0. Let WLAPS

denote the algorithm’s final objective and OPT denote the
optimal solution’s final objective. Let d

dt WLAPS(t) =∑
Jj∈A(t) wjg

′(t− rj) denote the increase in WLAPS ob-
jective at time t and let d

dt OPT(t) =
∑
Jj∈O(t) wjg

′(t −
rj) denote the increase in OPT’s objective at time t. We
have that,

WLAPS

=

∫ ∞
t=0

d

dt
WLAPS(t)

≤
∫ ∞
t=0

d

dt
WLAPS(t) +

d

dt
Φ(t)

≤
∫ ∞
t=0

d

dt
WLAPS(t)− d

dt
WLAPS(t) +

2

ε2
d

dt
OPT(t)

≤ 2

ε2
OPT

This proves the following theorem.

THEOREM 5.1. The algorithm WLAPS is (1 + ε)-speed
O( 1

ε2 )-competitive for minimizing
∑
i∈[n] wig(Fi) when

g : R≥0 → R≥0 is a concave nondecreasing positive
function that is twice differentiable.

6 Missing Proofs from Analysis of HDF
To prove Lemma 2.1, we first show the following lemma.



LEMMA 6.1. Given an online algorithm that is s-speed
c-competitive for minimizing

∑
i∈[n] wig(Fi) when all

jobs have unit size and arbitrary weights, then there is
an online algorithm that is (1 + ε)s-speed

(
1+ε
ε · c

)
-

competitive for the same objective when jobs have varying
sizes and arbitrary weights where ε > 0 is any constant.

Proof. Let A′ denote an algorithm that is s-speed c-
competitive for minimizing

∑
i∈[n] wig(Fi) when all jobs

have unit size and arbitrary weights. Let ε > 0 be
a constant. Consider any sequence σ of n jobs with
varying sizes and varying weights. From this instance,
we construct a new instance σ′ of unit sizes and varying
weight jobs. Here we let ∆ denote the unit size and it is
assumed that ∆ is sufficiently small such that pi/∆ and
εpi

(1+ε)∆ are integers for all job Ji. For each job Ji of size
pi and weight wi, replace this job with a set Ui of unit
sized jobs. There are pi

∆ unit sized jobs in Ui; notice that
this implies that the total size of the jobs in Ui is pi. Each
job in Ui has weight ∆wi

pi
. Each job in Ui arrives at time

ri, the same time when Ji arrived in σ. This complete the
description of the instance σ′.

Let OPT denote the optimal solution for the sequence
σ and OPT′ denote the optimal solution for the sequence
σ′. Note that

OPT′ ≤ OPT.(6.6)

This is because the most obvious schedule for σ′

corresponding to OPT has cost no greater than OPT. By
assumption of A′, we know that with s speed, the cost
of A′ on σ′ is at most cOPT′. Let Ui(t) denote the
jobs in Ui that have been released but are unsatisfied by
time t in A′’s schedule. Let βi denote the first time that
|Ui(βi)| = εpi

(1+ε)∆ ; recall that |Ui(ri)| = pi
∆ . Knowing

that each of the jobs in Ui(βi) are completed after time βi
in A′’s schedule and that g() is non-decreasing, we have

∑
i∈[n]

|Ui(βi)|
∆wi
pi

g(βi) =
∑
i∈[n]

εwi
1 + ε

g(βi) ≤ A′(6.7)

Now consider constructing an algorithm A for the
sequence σ based on A′. Whenever the algorithm A′

schedules a job in Ui then the algorithm A processes job
Ji at a (1+ε) faster rate of speed (unless Ji is completed).
We assume that at any time A has at most one unit sized
job Ui that has been partially proceeded. The algorithm
A will complete the job Ji at time βi. This is because A′

completed pi
∆ −

εpi
(1+ε)∆ = pi

(1+ε)∆ jobs in Ui before βi.
This required A′ spending at least ∆

s ·
pi

(1+ε)∆ = pi
(1+ε)s

time units on jobs in Ui since A′ has s speed and it takes
∆
s time units for A′ to complete a unit sized job. By

definition of A, the algorithm A with (1 + ε)s-speed did
at least pi

(1+ε)s · (1 + ε)s = pi volume of work for jobs in

Ui by time βi. Hence A completed each job Ji completed
by time βi. Knowing this and by (6.6) and (6.7), we have

A =
∑
i∈[n]

wig(βi) =
1 + ε

ε

∑
i∈[n]

εwi
1 + ε

g(βi)

≤ 1 + ε

ε
A′ ≤ 1 + ε

ε
cOPT′ [By definition of A]

≤ 1 + ε

ε
cOPT

Knowing that A processes jobs at most (1 + ε)

faster than A′, we have that A is (1 + ε)s-speed (1+ε)
ε c-

competitive for σ.

We now prove Lemma 2.1.

Proof of [Lemma 2.1] Consider any sequence σ of jobs
where jobs have varying sizes and weights. To prove this
lemma consider the conversion of σ to σ′ in Lemma 6.1
and consider setting the algorithm A′ to HDF. Let A
denote the algorithm which is generated from HDF in the
proof of Lemma 6.1. To prove the lemma we prove a
stronger statement by induction on time. We will show
that at any time t HDF on σ has worked on every job at
least as much as A on σ. Here HDF and A are both given
the same speed.

We prove this by induction on time t. When t = 0
the claim clearly holds. Now consider any time t > 0 and
assume HDF has worked on every job at least as much as
A every time before t. Now consider time t. If A does not
schedule a job at time t, then the claim follows. Hence,
we can assume A schedules some job Ji at time t. Notice
that in the proof of Lemma 6.1 when generating a set of
unit sized jobs Ui from Ji the density of the unit sized jobs
in Ui is the same as the density of job Ji. Knowing that
HDF has worked at least as much as A on every job and
the definition of HDF, this implies that if Ji is unsatisfied
in HDF’s schedule at time t then HDF will schedule job
Ji. Otherwise Ji is finished in HDF’s schedule at time t.
In either case, after time tHDF scheduled each job at least
as much as A on every job. Knowing that HDF worked at
least as much as A on every job at all times, Lemma 6.1
gives the claim. 2

7 Conclusions and Discussions
One obvious question is if there exists an online algorithm
that is O(1)-competitive with speed less than two or not.
To obtain such an algorithm (if exists), one must exploit
the structure of cost functions. Our analysis can be
extended to show that there exists an O(1)-speed O(1)-
competitive algorithm on identical parallel machines.
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