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Abstract

We consider online algorithms for pull-based broadcast scheduling. In this setting there are n pages
of information at a server and requests for pages arrive online. When the server serves (broadcasts)
a page p, all outstanding requests for that page are satisfied. We study two related metrics, namely
maximum response time (waiting time) and maximum delay-factor and their weighted versions. We
obtain the following results in the worst-case online competitive model.

• We show that FIFO (first-in first-out) is 2-competitive even when the page sizes are different.
Previously this was known only for unit-sized pages [10] via a delicate argument. Our proof
differs from [10] and is perhaps more intuitive.

• We give an online algorithm for maximum delay-factor that is O(1/ε2)-competitive with (1 + ε)-
speed for unit-sized pages and with (2 + ε)-speed for different sized pages. This improves on the
algorithm in [12] which required (2+ε)-speed and (4+ε)-speed respectively. In addition we show
that the algorithm and analysis can be extended to obtain the same results for maximum weighted
response time and delay factor.

• We show that a natural greedy algorithm modeled after LWF (Longest-Wait-First) is not O(1)-
competitive for maximum delay factor with any constant speed even in the setting of standard
scheduling with unit-sized jobs. This complements our upper bound and demonstrates the impor-
tance of the tradeoff made in our algorithm.
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1 Introduction

We consider online algorithms in pull-based broadcasting. In this model there are n pages (representing
some form of useful information) available at a server and clients request a page that they are interested
in. When the server transmits a page p, all outstanding requests for that page p are satisfied since it is
assumed that all clients can simultaneously receive the information. It is in this respect that broadcast
scheduling differs crucially from standard scheduling where each jobs needs its own service from the server.
We distinguish two cases: all the pages are of same size (unit-size without loss of generality) and when
the pages can be of different size. Broadcast scheduling is motivated by several applications in wireless
and LAN based systems [1, 2, 26]. It has seen a substantial interest in the algorithmic scheduling literature
starting with the work of Bartal and Muthukrishanan [5]; see [21]. In addition to the applications, broadcast
scheduling has sustained interest due to the significant technical challenges that basic problems in this setting
have posed for algorithm design and analysis. To distinguish broadcast scheduling from “standard” job
scheduling, we refer to the latter as unicast scheduling — we use requests in the context of broadcast and
jobs in the context of unicast scheduling.

In this paper, we focus on scheduling to minimize two related objectives: the maximum response time
and the maximum delay factor. We also consider their weighted versions. Interestingly, the maximum re-
sponse time metric was studied in the (short) paper of Bartal and Muthukrishnan [5] where they claimed that
the online algorithm FIFO (for First In First Out) is 2-competitive for broadcast scheduling, and moreover
that no deterministic online algorithm is (2−ε)-competitive. (It is easy to see that FIFO is optimal in unicast
scheduling). Despite the claim, no proof was published. It is only recently, almost a decade later, that Chang
et al. [10] gave formal proofs for these claims for unit-sizes pages. This simple problem illustrates the diffi-
culty of broadcast scheduling: the ability to satisfy multiple requests for a page p with a single transmission
makes it difficult to relate the total “work” that the online algorithm and the offline adversary do. The upper
bound proof for FIFO in [10] is short but delicate. In fact, [5] claimed 2-competitiveness for FIFO even
when pages have different sizes. As noted in previous work [5, 14, 25], when pages have different sizes,
one needs to carefully define how a request for a page p gets satisfied if it arrives midway during the trans-
mission of the page. In this paper we consider the sequential model [14], the most restrictive one, in which
the server broadcasts each page sequentially and a client receives the page sequentially without buffering;
see [25] on the relationship between different models. The claim in [5] regarding FIFO for different pages
is in a less restrictive model in which clients can buffer and take advantage of partial transmissions and the
server is allowed to preempt. The FIFO analysis in [10] for unit-sized pages does not appear to generalize
for different page sizes. Our first contribution in this paper is the following.

Theorem 1.1. FIFO is 2-competitive for minimizing maximum response time in broadcast scheduling even
with different page sizes.

Note that FIFO, whenever the server is free, picks the page pwith the earliest request and non-preemptively
broadcasts it. Our bound matches the lower bound shown even for unit-sized pages, thus closing one aspect
of the problem. Our proof differs from that of Chang et al.; it does not explicitly use the unit-size assumption
and this is what enables the generalization to different page sizes. The analysis is inspired by our previous
work on maximum delay factor [12] which we discuss next.
Maximum (Weighted) Delay Factor and Weighted Response Time: The delay factor of a schedule is a
metric recently introduced in [10] (and implicitly in [7]) when requests have deadlines. Delay factor captures
how much a request is delayed compared to its deadline. More formally, let Jp,i denote the i’th request of
page p. Each request Jp,i arrives at ap,i and has a deadline dp,i. The finish time fp,i of a request Jp,i is defined
to be the earliest time after ap,i when the page p is sequentially transmitted by the scheduler starting from the
beginning of the page. Note that multiple requests for the same page can have the same finish time. Formally,
the delay factor of the job Jp,i is defined as max{1, fp,i−ap,i

dp,i−ap,i
}; we refer to the quantity Sp,i = dp,i − ap,i
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as the slack of Jp,i. For a more detailed motivation of delay factor, see [12]. Note that for unit-sized pages,
delay factor generalizes response time since one could set dp,i = ap,i + 1 for each request Jp,i in which
case its delay factor equals its response time. In this paper we are interested in online algorithms that
minimize the maximum delay factor, in other words the objective function is min maxp,i{1, fp,i−ap,i

dp,i−ap,i
}. We

also consider a related metric, namely weighted response time. Let wp,i be a non-negative weight associated
with Jp,i; the weighted response time is then wp,i(fp,i − ap,i) and the goal is to minimize the maximum
weighted response time. Delay factor and weighted response time have syntactic similarity if we ignore the
1 term in the definition of delay factor — one can think of the weight as the inverse of the slack. Although
the metrics are some what similar we note that there is no direct way to reduce one to the other. On the other
hand, we observe that upper bounds for one appear to translate to the other. We also consider the problem
of minimizing the maximum weighted delay factor min maxp,iwp,i{1, fp,i−ap,i

dp,i−ap,i
}.

Surprisingly, the maximum weighted response time metric appears to not have been studied formally
even in classical unicast scheduling; however a special case, namely maximum stretch has received attention.
The stretch of a job is its response time divided by its processing time; essentially the weight of a job is the
inverse of its processing time. Bender et al. [6, 8], motivated by applications to web-server scheduling,
studied maximum stretch and showed very strong lower bounds in the online setting. Using similar ideas, in
some previous work [12], we showed strong lower bounds for minimizing maximum delay factor even for
unit-time jobs. In [12], constant competitive algorithms were given for minimizing maximum delay factor in
both unicast and broadcast scheduling; the algorithms are based on resource augmentation [20] wherein the
algorithm is given a speed s > 1 server while the offline adversary is given a speed 1 server. They showed
that SSF (shortest slack first) is O(1/ε)-competitive with (1 + ε)-speed in unicast scheduling. SSF does not
work well in the broadcast scheduling. A different algorithm that involves waiting, SSF-W (shortest slack
first with waiting) was developed and analyzed in [12]; the algorithm is O(1/ε2)-competitive for unit-size
pages with (2 + ε)-speed and with (4 + ε)-speed for different sized pages. In this paper we obtain improved
results by altering the analysis of SSF-W in a subtle and important way. In addition we show that the
algorithm and analysis can be altered in an easy fashion to obtain the same bounds for weighted response
time and delay factor.

Theorem 1.2. There is an algorithm that is (1 + ε)-speed O(1/ε2)-competitive for minimizing maximum
delay factor in broadcast scheduling with unit-sized pages. For different sized pages there is a (2+ ε)-speed
O(1/ε2)-competitive algorithm. The same bounds apply for minimizing maximum weighted response time
and maximum weighted delay factor.

Remark 1.3. Minimizing maximum delay factor is NP-hard and there is no (2 − ε)-approximation unless
P = NP for any ε > 0 in the offline setting for unit-sized pages. There is a polynomial time computable
2-speed schedule with the optimal delay factor (with 1-speed) [10]. Theorem 1.2 gives a polynomial time
computable (1 + ε)-speed schedule that is O(1/ε2)-optimal (with 1-speed).

We remark that the algorithm SSF-W makes an interesting tradeoff between two competing metrics and
we explain this tradeoff in the context of weighted response time and a lower bound we prove in this paper
for a simple greedy algorithm. Recall that FIFO is 2-competitive for maximum response time in broadcast
scheduling and is optimal for job scheduling. What are natural ways to generalize FIFO to delay factor
and weighted response time? As shown in [12], SSF (which is equivalent to maximum weight first for
weighted response time) is O(1/ε)-competitive with (1 + ε)-speed for job scheduling but is not competitive
for broadcast scheduling — it may end up doing much more work than necessary by transmitting a page
repeatedly instead of waiting and accumulating requests for a page. One natural algorithm that extends
FIFO for delay factor or weighted response time is to schedule the request in the queue that has the largest
current delay factor (or weighted wait time). This greedy algorithm was labeled LF (longest first) since it
can be seen as an extension of the well-studied LWF (longest-wait-first) for average flow time. Since LWF
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is known to be O(1)-competitive with O(1)-speed for average flow time, it was suggested in [11] that LF
may be O(1)-speed O(1)-competitive for maximum delay factor. We show that this is not the case even for
unicast scheduling.

Theorem 1.4. For any constants s, c > 1, LF is not c-competitive with s-speed for minimizing maximum
delay factor (or weighted response time) in unicast scheduling of unit-time jobs.

Our algorithm SSF-W can be viewed as an interesting tradeoff between SSF and LF. SSF gives pref-
erence to small slack requests while the LF strategy helps avoid doing too much extra work in broadcast
scheduling by giving preference to pages that have waited sufficiently long even if they have large slack.
The algorithm SSF-W considers all requests whose delay factor at time t (or weighted wait time) is within a
constant factor of the largest delay factor at t and amongst those requests schedules the one with the smallest
slack. This algorithmic principle may be of interest in other settings and is worth exploring in the future.

Other Related Work: We have focussed on maximum response time and its variants and have already
discussed closely related work. Other metrics that have received substantial attention in broadcast scheduling
are minimizing average flow time and maximizing throughput of satisfied requests when requests have
deadlines. We refer the reader to a comprehensive survey on online scheduling algorithms by Pruhs, Sgall
and Torng [24] (see also [23]). The recent paper of Chang et al. [10] addresses, among other things, the
offline complexity of several basic problems in broadcast scheduling. Average flow-time received substantial
attention in both the offline and online settings [21, 17, 18, 19, 3, 4]. For average flow time, there are three
O(1)-speed O(1)-competitive online algorithms. LWF is one of them [14, 11] and the others are BEQUI
[14] and its extention [16]. Our recent work [11] has investigated Lk norms of flow-time and showed that
LWF is O(k)-speed O(k)-competitive algorithm. Constant competitive online algorithms for maximizing
throughput for unit-sized pages can be found in [22, 9, 27, 13]. A more thorough description of related work
is deferred to a full version of the paper.

Organization: We prove each of the theorems mentioned above in a different section. The algorithm and
analysis for weighted response time and weighted delay factor are very similar to that for delay factor and
hence, in this version, we omit the analysis and only describe the algorithm.

Notation: We denote the length of page p by `p. That is, `p is the amount of time a 1-speed server takes to
broadcast page p non-preemptively. We assume without loss of generality that for any request Jp,i, Sp,i ≥ `p.
For an algorithm A we let αA denote the maximum delay factor witnessed by A for a given sequence of
requests. We let α∗ denote the optimal delay factor of an offline schedule. Likewise, we let ρA denote the
maximum response time witnessed by A and ρ∗ the optimal response time of an offline schedule. For a time
interval I = [a, b] we define |I| = b− a to be the length of interval I .

2 Minimizing the Maximum Response Time

In this section we analyze FIFO for minimizing maximum response time when page sizes are different. We
first describe the algorithm FIFO. FIFO broadcasts pages non-preemptively. Consider a time t when FIFO
finished broadcasting a page. Let Jp,i be the request in FIFO’s queue with earliest arrival time breaking
ties arbitrarily. FIFO begins broadcasting page p at time t. At any time during this broadcast, we will say
that Jp,i forced FIFO to broadcast page p at this time. When broadcasting a page p all requests for page p
that arrived before the start of the broadcast are simultaneously satisfied when the broadcast completes. Any
request for page p that arrive during the broadcast are not satisfied until the next full transmission of p.

We consider FIFO when given a 1-speed machine. Let σ be an arbitrary sequence of requests. Let OPT
denote some fixed offline optimum schedule and let ρ∗ denote the optimum maximum response time. We
will show that ρFIFO ≤ 2ρ∗. For the sake of contradiction, assume that FIFO witnesses a response time
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cρ∗ by some job Jq,k for some c > 2. Let t∗ be the time Jq,k is satisfied, that is t∗ = fq,k. Let t1 be the
smallest time less than t∗ such that at any time t during the interval [t1, t∗] the request which forces FIFO
to broadcast a page at time t has response time at least ρ∗ when satisfied. Throughout the rest of this section
we let I = [t1, t∗]. Let JI denote the requests which forced FIFO to broadcast during I . Notice that during
the interval I , all requests in JI are completely satisfied during this interval. In other words, any request in
JI starts being satisfied during I and is finished during I .

We say that OPT merges two distinct requests for a page p if they are satisfied by the same broadcast.

Lemma 2.1. OPT cannot merge any two requests in JI into a single broadcast.

Proof. Let Jp,i, Jp,j ∈ JI such that i < j. Note that that Jp,i is satisfied before Jp,j . Let t′ be the time
that FIFO starts satisfying request Jp,i. By the definition of I , request Jp,i has response time at least ρ∗.
The request Jp,j must arrive after time t′, that is ap,j > t′, otherwise request Jp,j is satisfied by the same
broadcast of page p that satisfied Jp,i. Therefore, it follows that if OPT merges Jp,i and Jp,j then the finish
time of Jp,i in OPT is strictly greater than its finish time in FIFO which is already at least ρ∗; this is a
contradiction to the definition of ρ∗.

Lemma 2.2. All requests in JI arrived no earlier than time t1 − ρ∗.

Proof. For the sake of contradiction, suppose some request Jp,i ∈ JI arrived at time ap,i < t1 − ρ∗.
During the interval [ap,i+ ρ∗, t1] the request Jp,i must have wait time at least ρ∗. However, then any request
which forces FIFO to broadcast during [ap,i + ρ∗, t1] must have response time at least ρ∗, contradicting the
definition of t1.

We are now ready to prove Theorem 1.1, stating that FIFO is 2-competitive.

Proof. Recall that all requests in JI are completely satisfied during I . Thus we have that the total size of
requests in JI is |I|. By definition Jq,k witnesses a response time greater than 2ρ∗ and therefore t∗− aq,k >
2ρ∗. Since Jq,k ∈ JI is the last request done by FIFO during I , all requests in JI must arrive no later than
aq,k. Therefore, these requests must be finished by time aq,k+ρ∗ by the optimal solution. From Lemma 2.2,
all the requests JI arrived no earlier than t1 − ρ∗. Thus OPT must finish all requests in JI , whose total
volume is |I|, during Iopt = [t1 − ρ∗, aq,k + ρ∗]. Thus it follows that |I| ≤ |[t1 − ρ∗, aq,k + ρ∗]|, which
simplifies to t∗ ≤ aq,k + 2ρ∗. This is a contradiction to the fact that t∗ − aq,k > 2ρ∗.

t1 − ρ∗ t1 aq,k aq,k + ρ∗ t∗
Time

I

Iopt

Jq,k

Figure 1: Broadcasts by FIFO satisfying requests in JI are shown in blue. Note that aq,k and aq,k + ρ∗ are
not necessarily contained in I .

We now discuss the differences between our proof of FIFO for varying sized pages and the proof given
by Chang et al. in [10] showing that FIFO is 2-competitive for unit sized pages. In [10] it is shown that at
anytime t, F (t), the set of unique pages in FIFO’s queue satisfies the following property: |F (t) \ O(t)| ≤
|O(t)| where O(t) is the set of unique pages in OPT’s queue. This easily implies the desired bound. To
establish this, they use a slot model in which unit-sized pages arrive only during integer times which allows
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one to define unique pages. This may appear to be a technicality, however when considering different sized
pages, it is not so clear how one even defines unique pages since this number varies during the transmission
of p as requests accumulate. Our approach avoids this issue in a clean manner by not assuming a slot model
or unit-sized pages.

3 Minimizing Maximum Delay Factor and Weighted Response time

In this section we consider the problem of minimizing maximum delay factor and prove Theorem 1.2.

3.1 Unit Sized Pages

In this section we consider the problem of minimizing the maximum delay factor when all pages are of
unit size. In this setting we assume preemption is not allowed. In the standard unicast scheduling setting
where each broadcast satisfies exactly one request, it is known that the algorithm which always schedules the
request with smallest slack at any time is (1 + ε)-speed O(1

ε )-competitive [12]. However, in the broadcast
setting this algorithm, along with other simple greedy algorithms, do not provide constant competitive ratios
even with extra speed. The reason for this is that the adversary can force these algorithm to repeatedly
broadcast the same page even though the adversary can satisfy each of these requests in a singe broadcast.

Due to this, we consider a more sophisticated algorithm called SSF-W (Shortest-Slack-First with Wait-
ing). This algorithm was developed and analyzed in [12]. In this paper we alter the algorithm in a slight but
practically important way. The main contribution is, however, a new analysis that is at a high-level similar
in outline to the one in [12] but is subtly different and leads to much improved bound on its performance.
SSF-W adaptively forces requests to wait after their arrival before they are considered for scheduling. The
algorithm is parameterized by a real value c > 1 which is used to determine how long a request should wait.
Before scheduling a page at time t, the algorithm determines the largest current delay factor of any request
that is unsatisfied at time t, αt. Amongst the unsatisfied requests that have a current delay factor at least
1
cαt, the page corresponding to the request with smallest slack is broadcasted. Note that in the algorithm,
each request is forced to wait to be scheduled until it has delay factor at least 1

cαt. Thus SSF-W can be seen
an adaptation of the algorithm which schedules the request with smallest slack in broadcasting setting with
explicit waiting. Waiting is used to potentially satisfy multiple requests with similar arrival times in a single
broadcast. Another interpretation, that we mentioned earlier, is that SSF-W is a balance between LF and
SSF.

Algorithm: SSF-W

• Let αt be the maximum delay factor of any request in SSF-W’s queue at time t.

• At time t, let Q(t) = {Jp,i | Jp,i has not been satisfied and t−ap,i

Sp,i
≥ 1

cαt}.

• If the machine is free at t, schedule the request in Q(t) with the smallest slack non-preemptively.

First we note the difference between SSF-W above and the one described in [12]. Let α′t denote the
maximum delay factor witnessed so far by SSF-W at time t over all requests seen by t including satisfied
and unsatisfied requests. In [12], a request Jp,i is in Q(t) if t−ap,i

Sp,i
≥ 1

cα
′
t. Note that α′t is monotonically

increases with t while αt can increase and decrease with t and is never more than α′t. In the old algorithm it
is possible that Q(t) is empty and no request is scheduled at t even though there are outstanding requests!
Our new version of SSF-W can be seen as more practical since there will always be requests in Q(t) if
there are outstanding requests and moreover it adapts and may reduce αt as the request sequence changes
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with time. It is important to note that our analysis and the analysis given in [12] hold for both definitions of
SSF-W with some adjustments.

We analyze SSF-W when it is given a (1 + ε)-speed machine. Let c > 1 + 2
ε be the constant which

parameterizes SSF-W. Let σ be an arbitrary sequence of requests. We let OPT denote some fixed offline
optimum schedule and let α∗ and αSSF-W denote the maximum delay factor achieved by OPT and SSF-W,
respectively. We will show that αSSF-W ≤ c2α∗. For the sake of contradiction, suppose that SSF-W
witnesses a delay factor greater than c2α∗. We consider the first time t∗ when SSF-W has some request
in its queue with delay factor c2α∗. Let the request Jq,k be a request which achieves the delay factor c2α∗ at
time t∗. Let t1 be the smallest time less than t∗ such that at each time t during the interval [t1, t∗] if SSF-W
is forced to broadcast by request Jp,i at time t it is the case that t−ap,i

Sp,i
≥ α∗ and Sp,i ≤ Sq,k. Throughout

this section we let I = [t1, t∗]. The main difference between the analysis in [12] and the one here is in the
definition of t1. In [12], t1 was implicitly defined to be aq,k + c(fq,k − aq,k).

We let JI denote the requests which forced SSF-W to schedule broadcasts during the interval [t1, t∗].
We now show that any two request in JI cannot be satisfied with a single broadcast by the optimal solution.
Intuitively, the most effective way the adversary to performs better than SSF-W is to merge requests of the
same page into a single broadcast. Here we will show this is not possible for the requests in JI . We defer
the proof of Lemma 3.1 to the Appendix, since the proof is similar to that of Lemma 2.1

Lemma 3.1. OPT cannot merge any two requests in JI into a single broadcast.

To fully exploit the advantage of speed augmentation, we need to ensure that the length of the interval I
is sufficiently long.

Lemma 3.2. |I| = |[t1, t∗]| ≥ (c2 − c)Sq,kα∗.

Proof. The request Jq,k has delay factor at least cα∗ at any time during I ′ = [t′, t∗], where t′ = t∗ − (c2 −
c)Sq,kα∗. Let τ ∈ I ′. The largest delay factor any request can have at time τ is less than c2α∗ by definition
of t∗ being the first time SSF-W witnesses delay factor c2α∗. Hence, ατ ≤ c2α∗. Thus, the request Jq,k is in
the queue Q(τ) because cα∗ ≥ 1

cατ . Moreover, this means that any request that forced SSF-W to broadcast
during I ′, must have delay factor at least α∗ and since Jq,k ∈ Q(τ) for any τ ∈ I ′, the requests scheduled
during I ′ must have slack at most Sq,k.

We now explain a high level view of how we lead to a contradiction. From Lemma 3.1, we know any two
requests in JI cannot be merged by OPT. Thus if we show that OPT must finish all these requests during
an interval which is not long enough to include all of them, we can draw a contradiction. More precisely, we
will show that all requests in JI must be finished during Iopt by OPT, where Iopt = [t1 − 2Sq,kα∗c, t∗]. It
is easy to see that all these requests already have delay factor α∗ by time t∗, thus the optimal solution must
finish them by time t∗. For the starting point, we will bound the arrival times of the requests in JI in the
following lemma. After that, we will draw a contradiction in Lemma 3.4.

Lemma 3.3. Any request in JI must have arrived after time t1 − 2Sq,kα∗c.

Proof. For the sake of contradiction, suppose that some request Jp,i ∈ JI arrived at time t′ < t1−2Sq,kα∗c.
Recall that Jp,i has a slack no bigger than Sq,k by the definition of I . Therefore at time t1 − Sq,kα∗c, Jp,i
has a delay factor of at least cα∗. Thus any request scheduled during the interval I ′ = [t1 − Sq,kα∗c, t1] has
a delay factor no less than α∗. We observe that Jp,i is in Q(τ) for τ ∈ I ′; otherwise there must be a request
with a delay factor bigger than c2α∗ at time τ and this is a contradiction to the assumption that t∗ is the first
time that SSF-W witnessed a delay factor of c2α∗. Therefore any request scheduled during I ′ has a slack
no bigger than Sp,i. Also we know that Sp,i ≤ Sq,k. In sum, we showed that any request done during I ′ had
slack no bigger than Sq,k and a delay factor no smaller than α∗, which is a contradiction to the definition of
t1.
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Now we are ready to prove the competitiveness of SSF-W.

Lemma 3.4. Suppose c is a constant s.t. c > 1 + 2/ε. If SSF-W has (1 + ε)-speed then αSSF-W ≤ c2α∗.

Proof. For the sake of contradiction, suppose that αSSF-W > c2α∗. During the interval I , the number of
broadcasts which SSF-W transmits is (1 + ε)|I|. From Lemma 3.3, all the requests processed during I
have arrived no earlier than t1 − 2cα∗Sq,k. We know that the optimal solution must process these requests
before time t∗ because these requests have delay factor at least α∗ by t∗. By Lemma 3.1 the optimal solution
must make a unique broadcast for each of these requests. Thus, the optimal solution must finish all of these
requests in 2cα∗Sq,k + |I| time steps. Thus, the it must hold that (1 + ε)|I| ≤ 2cα∗Sq,k + |I|. Using
Lemma 3.2, this simplifies to c ≤ 1 + 2/ε, which is a contradiction to c > 1 + 2/ε,.

The previous lemmas prove the first part of Theorem 1.2 when c = 1 + 3/ε. Namely that SSF-W
is a (1 + ε)-speed O( 1

ε2
)-competitive algorithm for minimizing the maximum delay factor in broadcast

scheduling with unit sized pages.
We now compare proof of Theorem 1.2 and the proof of Theorem 1.1 with the analysis given in [12].

The central technique used in [12] and in our analysis is to draw a contradiction by showing that the optimal
solution must complete more requests than possible on some time interval I . This technique is well known
in unicast scheduling. At the heart of this technique is to find the which requests to consider and bounding
the length of the interval I . This is where our proof and the one given in [12] differ. Here we are more
careful on how I is defined and how we find requests the optimal solution must broadcast during I . This
allows us to show tighter bounds on the speed and competitive ratios while simplifying the analysis. In fact,
our analysis of FIFO and SSF-W shows the importance of these definitions. Our analysis of FIFO shows
that a tight bound on the length of I can force a contradiction without allowing extra speed-up given to the
algorithm. Our analysis of SSF-W shows that when the length of I varies how resource augmentation can
be used to force the contradiction.

3.2 Weighted Response Time and Weighed Delay Factor

Before showing that SSF-W is (2 + ε)-speed O( 1
ε2

)-competitive for minimizing the maximum delay factor
with different sized pages, we show the connection of our analysis of SSF-W to the problem of minimizing
weighted response time. In this setting a request Jp,i has a weight wp,i instead of a slack. The goal is to
minimize the maximum weighted response time maxp,iwp,i(fp,i−ap,i). We develop an algorithm which we
call BWF-W for Biggest-Wait-First with Waiting. This algorithm is defined analogously to the definition
of SSF-W. The algorithm is parameterized by a constant c > 1. At any time t before broadcasting a page,
BWF-W determines the largest weighted wait time of any request which has yet to be satisfied. Let this
value be ρt. The algorithm then chooses to broadcast a page corresponding to the request with largest weight
amongst the requests whose current weighted wait time at time t is larger than 1

cρt.

Algorithm: BWF-W

• Let ρt be the maximum weighted wait time of any request in BWF-W’s queue at time t.

• At time t, let Q(t) = {Jp,i | Jp,i has not been satisfied and wp,i(t− ap,i) ≥ 1
cρt}.

• If the machine is free at t, schedule the request in Q(t) with largest weight non-preemptively.

Although minimizing the maximum delay factor and minimizing the maximum weighted flow time are
very similar metrics, the problems are not equivalent.
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It may also be of interest to minimize the maximum weighted delay factor. In this setting each request
has a deadline and a weight. The goal is to minimize maxp,iwp,i(fp,i − ap,i)/Sp,i. For this setting we
develop another algorithm which we call SRF-W (Smallest-Ratio-First with Waiting). The algorithm takes
the parameter c. At any time t before broadcasting a page, SRF-W determines the largest weighted delay
factor of any request which has yet to be satisfied. Let this value be αwt . The algorithm then chooses to
broadcast a page corresponding to the request with the smallest ratio of the slack over the weight amongst
the requests whose current weighted delay factor at time t is larger than 1

cα
w
t . The algorithm can be formally

expressed as follows.

Algorithm: SRF-W

• Let αwt be the maximum weighted delay factor of any request in SRF-W’s queue at time t.

• At time t, let Q(t) = {Jp,i | Jp,i has not been satisfied and wp,i(t− ap,i)/Sp,i ≥ 1
cα

w
t }.

• If the machine is free at t, schedule the request in Q(t) with smallest slack over weight non-
preemptively.

For the problems of minimizing the maximum weighted response time and weighted delay factor, the
upper bounds shown for SSF-W in this paper also hold for BWF-W and SRF-W, respectively. The analysis
of BWF-W and SRF-W is very similar to that of SSF-W and the proofs are omitted.

3.3 Varying Sized Pages

Here we extend our ideas to the case where pages can have a different sizes for the objective of minimizing
the maximum delay factor. We develop a generalization of SSF-W for this setting which is similar to the
generalization of SSF-W given in [12]. For each page p, we let `p denote the length of page p. Since pages
have different lengths, we allow preemption. Therefore, if t1 is the time where the broadcast of page p is
started and t2 is the time that this broadcast is completed it is the case that `p ≤ t2 − t1. A request for the
page p is satisfied by this broadcast only if the request arrives before time t1. A request that arrives during
the interval (t1, t2] does not start being satisfied because it must receive a sequential transmission of page p
starting from the beginning. It is possible that a transmission of page p is restarted due to another request
for page p arriving which has smaller slack. The original transmission of page p in this case is abandoned.
Notice that this results in wasted work by the algorithm. It is because of this wasted work that more speed
is needed to show the competitiveness of SSF-W.

We outline the details of modifications to SSF-W. As before, at any time t, the algorithm maintains
a queue Q(t) at each time where a request Jp,i is in Q(t) if and only if t−ap,i

Sp,i
≥ 1

cαt. The algorithm
broadcasts a request with the smallest slack in Q(t). The algorithm may preempt a broadcast of p that is
forced by request Jp,i if another request Jp′,j becomes available for scheduling such that Sp′,j < Sp,i. If the
request Jp,i ever forces SSF-W to broadcast again, then SSF-W continues to broadcast page p from where
it left off before the preemption. If another request for page p forces SSF-W to broadcast page p before
Jp,i is satisfied, then the transmission of page p is restarted. A key difference between our generalization of
SSF-W and the one from [12] is that in our new algorithm, requests can be forced out of Q even after they
have been started. Hence, in our version of SSF-W every request in Q(t) has current delay factor at least
1
cαt at time t. Our algorithm breaks ties arbitrarily. In [12], ties are broken arbitrarily, but the algorithm
ensures that if a request Jp,k is started before a request Jp′,j then Jp,k will be finished before request Jp′,j .
Here, this requirement is not needed. Note that the algorithm may preempt a request Jp,i by another request
Jp,k, for the same page p if Sp,k < Sp,i. In this case the first broadcast of page p is abandoned. Notice that
multiple broadcasts of page p can repeatedly be abandoned.
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We now analyze the extended algorithm assuming that it has a (2 + ε)-speed advantage over the op-
timal offline algorithm. As mentioned before, the extra speed is needed to overcome the wasted work by
abandoning broadcasts.

As before, let σ be an arbitrary sequence of requests. We let OPT denote some fixed offline optimum
schedule and let α∗ denote the optimum delay factor. Let c > 1 + 4

ε be the constant that parameterizes
SSF-W. We will show that αSSF-W ≤ c2α∗. For the sake of contradiction, suppose that SSF-W witnesses
a delay factor greater than c2α∗. We consider the first time t∗ when SSF-W has some request in its queue
with delay factor c2α∗. Let the request Jq,k be a request which achieves the delay factor c2α∗ at time t∗. Let
t1 be the smallest time less than t∗ such that at each time t during the interval [t1, t∗] if SSF-W is forced to
broadcast by request Jp,i at time t it is the case that t−ap,i

Sp,i
≥ α∗ and Sp,i ≤ Sq,k. Throughout this section

we let I = [t1, t∗]. Notice that some requests that force SSF-W to broadcast during I could have started
being satisfied before t1.

We say that a request starts being scheduled at time t if it is the request which forces SSF-W to broadcast
at time t and t is the first time the request forces SSF-W to schedule a page. Notice that a request can only
start being satisfied once and at most one request starts being scheduled at any time. We now show a lemma
analogous to Lemma 3.1.

Lemma 3.5. Consider two distinct requests Jx,j and Jx,i for some page x. If Jx,j and Jx,i both start being
scheduled by SSF-W during the interval I then OPT cannot satisfy Jx,j and Jx,i by a single broadcast.

Proof. Without loss of generality say that request Jx,j was satisfied before request Jx,i by SSF-W. Let t′

be the time that SSF-W starts satisfying request Jx,j . By the definition of I , request Jx,j must have delay
factor at least α∗ at this time. We also know that the request Jx,i must arrive after time t′, otherwise request
Jx,i must also be satisfied at time t′. If the optimal solution combines these requests into a single broadcast
then the request Jx,j must wait until the request Jx,i arrives to be satisfied. However, this means that the
request Jx,j must achieve a delay factor greater than α∗ by OPT, a contradiction of the definition of α∗.

The next two lemmas have proofs similar to Lemma 3.2 and Lemma 3.3, we defer the proofs to the
Appendix.

Lemma 3.6. |I| = |[t1, t∗]| ≥ (c2 − c)Sq,kα∗.

Lemma 3.7. Any request which forced SSF-W to schedule a page during I must have arrived after time
t1 − 2Sq,kα∗c.

Using the previous lemmas we can bound the competitiveness of SSF-W. In the following lemma the
main difference between the proof for unit sized pages and the proof for varying sized pages can be seen.
The issue is that there can be some requests which start being satisfied before time t1 which force SSF-W
to broadcast a page during the interval I . When these requests were started, their delay factor need not be
bounded by α∗. Due to this, it is possible for these requests to be merged with other requests which forced
SSF-W to broadcast on the interval I .

Lemma 3.8. Suppose c is a constant s.t. c > 1 + 4/ε. If SSF-W has (2 + ε)-speed then αSSF-W ≤ c2α∗.

Proof. For the sake of contradiction, suppose that αSSF-W > c2α∗. Let A be the set of requests which start
being satisfied before time t1 which force SSF-W to broadcast at some time during I . Notice that no two
requests inA are for the same page. Let B be the set of requests which start being satisfied during the interval
I . Note that the sets A and B may consist of requests whose corresponding broadcast was abandoned at
some point and that A ∩ B = ∅ by definition. Let VA and VB denote the total sum of size of the requests in
A and B, respectively.
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During the interval I , the volume of broadcasts which SSF-W transmits is (2 + ε)|I|. Notice that
VA + VB ≥ (2 + ε)|I|, since A ∪ B accounts for all requests which forced SSF-W to broadcast their pages
during I . From Lemma 3.7, all the requests processed during I have arrived no earlier than t1 − 2cα∗Sq,k.
We know that the optimal solution must process these requests before time t∗ because these requests have
delay factor at least α∗ by this time.

By Lemma 3.5 the optimal solution must make a unique broadcast for each request in B. We also know
that no two requests in A can be merged because no two requests in A are for the same page. The optimal
solution, however, could possibly merge requests in A with requests in B. Thus, the optimal solution must
broadcast at least a max{VA, VB} volume of requests during the interval [t1 − 2cα∗Sq,k, t∗]. Notice that
max{VA, VB} ≥ 1

2(VA + VB) ≥ 1
2(2 + ε)|I| and that |[t1 − 2cα∗Sq,k, t∗]| = 2cα∗Sq,k + |I|. Therefore,

it must hold that 1
2(2 + ε)|I| ≤ 2cα∗Sq,k + |I|. With Lemma 3.6, this simplifies to c ≤ 1 + 4/ε. This is a

contradiction to c > 1 + 4/ε.

Thus, we have the second part of Theroem 1.2 by setting c = 1 + 5/ε. Namely that SSF-W is (2 + ε)-
speed O( 1

ε2
)-competitive for minimizing the maximum delay factor for different sized pages.

4 Lower Bound for a Natural Greedy Algorithm LF

In this section, we consider a natural algorithm which is similar to SSF-W. This algorithm, which we will
call LF for Longest Delay First, always schedules the page which has the largest delay factor. Notice that
LF is the same as SSF-W when c = 1. However, we are able to show a negative result on the algorithm for
minimizing the maximum delay factor. This demonstrates the importance of the tradeoff between scheduling
a request with smallest slack and forcing requests to wait. The algorithm LF was suggested and analyzed
in our recent work [11] and is inspired by LWF which was shown to be O(1)-competitive with O(1)-speed
for average flow time [15]. In [11] LF is shown to be O(k)-competitive with O(k)-speed for Lk norms of
flow time and delay factor in broadcast scheduling for unit sized pages. Note that LF is a simple greedy
algorithm. It was suggested in [11] that LF may be competitive for maximum delay factor which is the
L∞-norm of delay factor.

To show the lower bound on the LF, we will show that it is not O(1)-speed O(1)-competitive, even in
the standard unicast scheduling setting with unit sized jobs. Since we are considering the unicast setting
where processing a page satisfies exactly one request, we drop the terminology of ‘requests’ and use ‘jobs’.
We also drop the index of a request Jp,i and use Ji since there can only be one request for each page. Let us
say that Ji has a wait ratio of ri(t) = t−ai

Si
at time t > ai, where ai and Si is the arrival time and slack size

of Ji. Note that the delay factor of Ji is max(1, ri(fi)) where fi is Ji’s finish time. We now formally define
LF. The algorithm LF schedules the request with the largest wait ratio at each time. LF can be seen as a
natural generalization of FIFO. This is because FIFO schedules the request with largest wait time at each
time. Recall that SSF-W forces requests to wait to help merge potential requests in a single broadcast. The
algorithm LF behaves similarly since it implicitly delays each request until it is the request with the largest
wait ratio, potentially merging many requests into a single broadcast. Hence, this algorithm is a natural
candidate for the problem of minimizing the maximum delay factor and it does not need any parameters like
the algorithm SSF-W. However, this algorithm cannot have a constant competitive ratio with any constant
speed.

For any speed-up s ≥ 1 and any constant c ≥ 2, we construct the following adversarial instance σ. For
this problem instance we will show that LF has wait ratio at least c, while OPT has wait ratio at most 1.
Hence, we can force LF to have a competitive ratio of c, for any constant c ≥ 2. In the instance σ, there
are a series job groups Ji for 0 ≤ i ≤ k, where k is a constant to be fixed later. We now fix the jobs in
each group. For simplicity of notation and readability, we will allow jobs to arrive at negative times. We can
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simply shift each of the times later, so that all arrival times are positive. It is also assumed that s and c are
integers in our example.

All jobs in each group Ji have the same arrival time Ai = −(sc)k−i+1 −
∑k−i−1

j=0 (sc)j and have the

same slack size of Si = c(sc)k−i

(1−1/sc)k−i . There will be s(sc)k+1 jobs in the group J0 and s(sc)k−i jobs in the
group Ji for 1 ≤ i ≤ k.

We now explain how LF and OPT behave for the instance σ. For simplicity, we will refer to Ji, instead
of a job in Ji, since all jobs in the same group are indistinguishable to the schedular. For the first group
J0, LF starts and keeps processing J0 upon its arrival until completing it. On the other hand, we let OPT
procrastinate J0 until OPT finishes all jobs in J1 to Jk. This does not hurt OPT, since the slack size of
the jobs in J0 is so large. In fact, we will show that OPT can finish J0 by its deadline. For each group Ji
for 1 ≤ i ≤ k, OPT will start Ji upon its arrival and complete each job in Ji without interruption. To the
contrary, for each 1 ≤ i ≤ k LF will not begin scheduling Ji until the jobs have been substantially delayed.
The delay of Jk is critical for LF, since the slack of Jk is small. For intuitive understanding, we refer the
reader to Figure 2.

Ak Fk

OPT LF
Ak−1 Fk−1

OPT LF
Fk−2

LF

Wait Ratio

1

2

3

Jk

Jk−1

Jk−2

Time

JkJk−1Jk−2

Figure 2: Comparison of scheduling of group Jk, Jk−1, and Jk−2 by LF and OPT.

We now formally prove that LF achieves wait ratio c, while OPT has wait ratio at most 1 for the given
problem instance σ. Let Fi = Ai + (sc)k−i+1, 0 ≤ i ≤ k. Let Ri be the maximum wait ratio for any job in
Ji witnessed by LF. We now define k to be a constant such that (1− 1

sc)
kc ≤ 1

3s .

Lemma 4.1. LF, given speed s, processes J0 during [A0, F0] and Ji during [Fi−1, Fi], 1 ≤ i ≤ k.

Proof Sketch: By simple algebra one can check that the length of the time intervals [A0, F0] and [Fi−1, Fi]
is the exact amount of time for LF with s-speed needs to completely process J0 and Ji, respectively.

First we show that J0 is finished during [A0, F0] by LF. It can be seen that at time F0 the jobs in Jj for
2 ≤ j ≤ k have not arrived, so we can focus on the class J1. The jobs in J1 can be shown to have the same
wait ratio as the jobs in J0 at time F0 and therefore the jobs in J1 have smaller wait ratio than the jobs in
J0 at all times before F0. This is because J0 has a bigger slack than J1. Hence, LF will finish all of the
jobs in J0 before beginning the jobs in J1.

To complete the proof, we show that Ji is finished during [Fi−1, Fi] by LF. It can be seen that at time
Fi the jobs in Jj for i + 2 ≤ j ≤ k have not arrived, so we can focus on the class Ji+1. The jobs in Ji
can be shown to have the same wait ratio as the jobs in Ji+1 at time Fi and therefore the jobs in Ji+1 have
smaller wait ratio than the jobs in Ji at all times before Fi. Hence, LF will finish all of the jobs in Ji before
beginning the jobs in Ji+1.
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Using Lemma 4.1 and the given arrival times of each of the jobs we have the following lemma.

Lemma 4.2. Ri = c(1− 1
sc)

k−i for 0 ≤ i ≤ k.

Notice that Lemma 4.2 implies that Rk ≥ c. Hence, the maximum delay factor witnessed by LF is at
least c. In the following lemma, we show that there exists a valid scheduling by OPT where the maximum
wait ratio is at most one. This will show that LF achieves a competitive ratio of c. Note that Lemma 4.2
shows that R0 ≤ 1

3s .

Lemma 4.3. Consider a schedule which processes each job in J0 during [Fk, Fk + |J0|] and each job in
Ji during [Ai, Ai + |Ji|] for 1 ≤ i ≤ k. This schedule is valid and, moreover, the maximum wait ratio
witnessed by this schedule is at most one.

Proof Sketch: It is not hard to show that the time intervals [Fk, Fk + |J0|] and [Ai, Ai + |Ji|] for 1 ≤ i ≤ k
do not overlap, therefore this is a valid schedule.

The wait ratio witnessed by the jobs in groups Ji for 1 ≤ i ≤ k can easily be seen to be at most 1. This
is because this schedule processes each of these jobs as soon as they arrive. We now show that the wait ratio
of each of the jobs in J0 is at most 1. Recall that R0, the maximum wait ratio of J0 by LF is at most 1

3s at
time F0. Using the fact sc ≥ 2, we can easily show that |Fk −A0| ≤ 2|F0 −A0|. Note that OPT can finish
J0 during [Fk, Fk + s|F0−A0|], since LF with s-speed could finish J0 during [A0, F0]. Thus the wait ratio
of J0 at time Fk + s|F0 −A0| is at most 2+s

3s ≤ 1.

From Lemma 4.2 the maximum delay factor witnessed by LF is c and by Lemma 4.3 the maximum
delay factor witnessed by OPT is 1. Hence we have the proof of Theorem 1.4.

5 Conclusion

In this paper, we showed an almost fully scalable algorithm1 for minimizing the maximum delay factor in
broadcasting for unit sized jobs. The slight modification we make to SSF-W from [12] makes the algorithm
more practical. Using the intuition developed for the maximum delay factor, we proved that FIFO is in fact
2-competitive for varying sized jobs closing the problem for minimizing the maximum response time online
in broadcast scheduling.

We close this paper with the following open problems. Although the new algorithm for the maximum
delay factor with unit sized jobs is almost fully scalable, it explicitly depends on speed given to the algorithm.
Can one get another algorithm independent of this dependency? For different sized pages, it is still open
on whether there exists a (1 + ε)-speed algorithm that is O(1)-competitive. For minimizing the maximum
response time offline it is of theoretical interest to show a lower bound on the approximation ratio that can
be achieved or to show an algorithm that is a c-approximation for some c < 2.
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A Omitted Proofs

A.1 Proof of Lemma 3.1

Proof. Let Jx,i, Jx,j ∈ JI such that i < j. Let t′ be the time that SSF-W starts satisfying request Jx,i. By
the definition of I , request Jx,i must have delay factor at least α∗ at time fx,i. We also know that the request
Jx,j must arrive after time t′, otherwise request Jx,j must also be satisfied at time t′. If the optimal solution
combines these requests into a single broadcast then the request Jx,i must wait until the request Jx,j arrives
to be satisfied. However, this means that the request Jx,i must achieve a delay factor greater than α∗ by
OPT, a contradiction of the definition of α∗.

A.2 Proof of Lemma 3.6

Proof. The request Jq,k has delay factor at least cα∗ at any time t during I ′ = [t′, t∗], where t′ = t∗− (c2−
c)Sq,kα∗. The largest delay factor any request can have during I ′ is less than c2α∗ by definition of t∗ being
the first time SSF-W witnesses delay factor c2α∗. Hence the request Jq,k is in the queue Q(t) at any time t
during I ′. Therefore, any request that forced SSF-W to broadcast on I ′, must have delay factor at least α∗

and since Jq,k ∈ Q(t) for all t ∈ I ′, the requests scheduled on I ′ must have slack at most Sq,k.
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A.3 Proof of Lemma 3.7

Proof. For the sake of contradiction, suppose that some request Jp,i that forced SSF-W to broadcast page
p on the interval I arrived at time t′ < t1 − 2Sq,kα∗c. Recall that Jp,i has a slack no bigger than Sq,k by
the definition of I . Therefore at time t1 − Sq,kα∗c, Jp,i has a delay factor of at least cα∗. Thus any request
scheduled during the interval [t1 − Sq,kα∗c, t1] has a delay factor no less than α∗. We observe that Jp,i is
in Q(τ) for τ ∈ [t1 − Sq,kα∗c, t1]; otherwise there must be a request with a delay factor bigger than c2α∗

at time τ and this is a contradiction to the assumption that t∗ is the first time that SSF-W witnessed a delay
factor of c2α∗. Therefore any request that forced SSF-W to broadcast during [t1 − Sq,kα∗c, t1] has a slack
no bigger than Sp,i. Also we know that Sp,i ≤ Sq,k by the definition of I . In sum, we showed that any
request that forced SSF-W to do a broadcast during [t1 − Sq,kα∗c, t1] have a slack no bigger than Sq,k and
a delay factor no smaller than α∗, which is a contradiction of the definition of t1.
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